Snapshot Attractors and the Transition to Extensive Chaos in Large Mean Field Coupled Systems

Edward Ott University of Maryland

Collaborators on this work:

Wai Lim Ku (former UMD student, now at NIH)
Michelle Girvan (Dept. of Physics UMD)

Reference: arXiv 1412.3803

Summary

We consider an example of a globally coupled system of many (N >> 1) identical Landau-Stuart oscillators.

Our main points are as follows:

- (1) There are two types of attractors in our system: Low dimensional "clumped states" and high dimensional "extensively chaotic" states.
- (2) By extensively chaotic we mean that for large N (attractor dimension) ~ N, and (# positive Lyapunov exponents) ~ N
- (3) Extensive chaos for our system be effectively analyzed by approximating it by snapshot attractors.
- (4) We examine dynamical transitions (bifurcations) between extensive chaos and low dimensional clump states.

Model: Landau-Stuart Oscillators

A system of mean-field-coupled Landau-Stuart oscillators

$$\dot{W}_j = W_j - (1 + iC_2)|W_j|^2 W_j + K(1 + iC_1)(\bar{W} - W_j)$$

 $j = 1, 2, ...N,$

 Since the W's are complex, this is a 2Ndimensional dynamical system,

$$W_j(t) = \rho_j(t)e^{i\theta_j(t)}$$

- The mean field: $\bar{W} = N^{-1} \sum_{j} W_{j}$
- We fix C₁=-7.5, C₂=0.90 and examine how the dynamics changes as the coupling constant K varies.

Attractors at intermediate K values (1 > K > 0.65)

Two clump state:

All oscillators have either one of two W values which rigidly rotate in the W-plane.

Low dimensional (a fixed point in the rotating frame).

Extensive chaos

The fractal pattern of points in the W-plane varies chaotically in time as does the mean field W(t).

Matthews, Mirollo, Strogatz, Physica D (1991). Hakim, Rappel, Phys Rev A (1992). Nakagawa, Kuramoto, Physica D (1995).

Movie # 1: Stretching and folding dynamics of the extensively chaotic attractor

How do attractors evolve with adiabatic variation of K?

THE TRANSITION TO EXTENSIVE CHAOS AS K DECREASES THROUGH K*~ 0.75

As K decreases through K* the clumps appear to explode and there is a relatively rapid transition to extensive chaos (i.e., no long transients of irregularly varying length as we will see occurs as K increases past K**).

We have a fairly good understanding of the mechanism of this transition. See our paper, arXiv 1412.3803, for this material.

Movie # 2: Explosive transition from clumps to extensive chaos when K decreases through K*

THE TRANSITION TO CLUMPS AS K INCREASES PAST K** ~ 0.85

Above K=K** the extensively chaotic attractor is replaced by a chaotic transient.

At fixed K>K**, for slightly different conditions (e.g., initial conditions) the lifetime of transient extensively chaotic behavior varies in an apparently random manner.

This average lifetime $<\tau>$ diverges as K approaches K^{**} from above. This behavior is reminiscent of crisis type transitions in low dimensional chaotic systems (Grebogi, Ott, Yorke, Physica D [1983]).

$$1/<\tau>\sim (K-K**)^{\gamma}$$

The numerics are consistent with this formula with a critical exponent value $\gamma = 1$, and K^{**} about 0.847.

Movie # 3: Rapid evolution from an initial condition with oscillator states randomly sprinkled in |W|<1 into a transient extensively chaotic state at K=0.86 > K**

SKIP

Movie # 4: Transition to a two clump state at the end of the extensively chaotic transient state initiated in movie #3

SKIP

Rest of this talk

Discussion of the character of the extensively chaotic state and why snapshot attractors are relevant to it.

Conclusions.

1

Fractal distribution of snapshots

CLAIM: In the limit N going to infinity, the fractal dimension D of the attractor in the full 2N dimensional system state space is such that D/N approaches the fractal dimension of the snapshots.

Result of Dimension Calculation

Result of Dimension Calculation

SKIP

Numerical validation of this perspective

Self-consistent mean field

External mean field

SKIP

Further Blow-up

Self-consistent mean field

External mean field

<u>Lyapunov Dimension</u> (Previous talk by Young)

SKIP

Consider an M dimensional system with Lyapunov exponents

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_M$$

• Q is the largest integer such that $\sum_{q=1}^Q \lambda_q \geq 0$.

• Lyapunov dimension:
$$D_L = Q + \frac{1}{|\lambda_{Q+1}|} \sum_{q=1}^Q \lambda_q.$$

Kaplan-Yorke conjecture: $D_I = D_L$

J. L. Kaplan and J. A. Yorke (1979)

For random dynamical systems: L. S. Young and F. Ladrappier (1988)

Application of Kaplan-Yorke Dimension Formula to Snapshots

- For large N, $\bar{W}(t)$ is regarded as externally imposed
- In this limit, there are two Lyapunov exponents for each oscillator.

$$\lambda_1 > 0 > \lambda_2$$
 $\lambda_1 + \lambda_2 < 0$

$$D_L = 1 + \lambda_1/|\lambda_2|$$

for all j = 1, 2, ..., N

Results

Extensivity

Our hypothesis that, in the large N limit, $\overline{W}(t)$ can be regarded as imposed implies that, for the full 2N dimensional system, there are essentially N Lyapunov exponents $\lambda_1 > 0$ and N Lyapunov exponents $\lambda_2 < 0$.

One indication of extensivity:

(# positive
$$\lambda$$
's) $\sim N$

Applying the Kaplan-Yorke formula to this situation we have that the dimension of the attractor in the full 2N dimensional space at N >> 1 satisfies

$$N \lambda_1 + (D - N) \lambda_2 = 0$$

$$D/N = 1 + (\lambda_1/|\lambda_2|)$$
 (Extensive)

Final comment: We believe that, with appropriate modifications, most of this can be extended to the case of nonidentical oscillators with some spread in their parameters. [See our paper on arXiv.]

Summary of Main Points

- High dimensional extensively chaotic attractors of mean field coupled systems can be viewed as a collection of chaotically driven uncoupled units and analyzed using a snapshot attractor approach.
- Low dimensional attractors may coexist with extensively chaotic attractors accompanied by subcritical bifurcations between them.
- Ref.: arXiv 1412.3803.

Possible Relevance to Fluid Turbulence of the Transition to Extensive Chaos

- In fluids, as forcing increases, transitions from steady, to low dimensional dynamics, to turbulence are observed (e.g., Brandstater and Swinney [1987]).
- Turbulence takes place on an extensively chaotic attractor. E.g., Constantin, Foias, Temam [Physica D, 1988] show that (Dimension) ~ (Container Volume).
- Also it has been shown both numerically (e.g., papers by B. Eckhardt et al.) and experimentally, that in pipe flow, low dimensional and turbulent attractors coexist.
- Our work provides a simple, understandable model for coexistence and transitions between extensive and nonextensive dynamics.

