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Summary

We consider an example of a globally coupled system of
many (N >> 1) identical Landau-Stuart oscillators.

Our main points are as follows:

(1) There are two types of attractors in our system: Low
dimensional “clumped states” and high dimensional
“‘extensively chaotic” states.

(2) By extensively chaotic we mean that for large N
(attractar dimension) ~ N , and
(# positive Lyapunov exponents) ~ N

(3) Extensive chaos for our system be effectively analyzed
by approximating it by snapshot attractors.

(4) We examine dynamical transitions (bifurcations)
between extensive chaos and low dimensional clump
states.




Model: Landau-Stuart Oscillators

A system of mean-field-coupled Landau-Stuart
oscillators

W; = W; — (1 +iCo)|W;|2W; + K(1 + iCy)(W — W;)

Since the W’s are complex, this is a 2N-
dimensional dynamical system,

W;(t) = ps(t)e®®
The mean field: W = N! Z W,

J
We fix C,=-7.5, C,=0.90 and examine how the
dynamics changes as the coupling constant K
varies.



Attractors at intermediate K values
(1> K >0.65)

1 K=0.95
» Two clump state: gy |
All oscillators have either one of two W values E . f
which rigidly rotate in the W-plane. 05
Low dimensional (a fixed point in the rotating -1 -
frame). Re(W)

- Extensive chaos R
The fractal pattern of points in the W-plane varies e
chaotically in time as does the mean field W(i). : .
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Movie # 1: Stretching and folding
dynamics of the extensively chaotic
attractor
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K=0.95
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How do attractors evolve with adiabatic variation of K?
K*=
0.75 2 cl
Decreasing K <« L —I Stc;tl;mp
Extensive — » Increasing K
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THE TRANSITION TO EXTENSIVE CHAOS AS K
DECREASES THROUGH K*~ 0.75

As K decreases through K* the clumps appear
to explode and there is a relatively rapid
transition to extensive chaos (i.e., no long
transients of irregularly varying length as we
will see occurs as K increases past K**).

We have a fairly good understanding of the
mechanism of this transition. See our paper,
arXiv 1412.3803, for this material.



Movie # 2: Explosive transition from clumps to
extensive chaos when K decreases through K*




THE TRANSITION TO CLUMPS AS KINCREASES PAST K** ~ 0.8§

Above K=K™* the extensively chaotic attractor is replaced by a chaotic
transient.

At fixed K>K™*, for slightly different conditions (e.g., initial conditions) the
lifetime of transient extensively chaotic behavior varies in an
apparently random manner.

This average lifetime < 7 > diverges as K approaches K™ from above.

This behavior is reminiscent of crisis type transitions in low dimensional
chaotic systems (Grebogi, Ott, Yorke, Physica D [1983]).
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Movie # 3: Rapid evolution from an initial
condition with oscillator states randomly
sprinkled in |W]<1 into a transient extensively
chaotic state at K=0.86 > K**
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Movie # 4: Transition to a two clump state at the
end of the extensively chaotic transient state
Initiated in movie #3
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Rest of this talk

Discussion of the character of the extensively
chaotic state and why snapshot attractors are
relevant to it.

Conclusions.



Fractal distribution of snapshots

a) o4 e N = 50000,
. K B K=0.8

Im(W/)

Re(W))

0.3 04

CLAIM: In the limit N going to infinity, the fractal dimension D of the
attractor in the full 2N dimensional system state space is such

that D/N approaches the fractal dimension of the snapshots.
14



Result of Dimension Calculation

K=0.7

K=0.8
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Result of Dimension Calculation

K=0.7

=0.8
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Numerical validation of this perspective

Self-consistent mean field
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External mean field
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Self-consistent mean field
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Lyapunov Dimension
(Previous talk by Young )

SKIP

* Consider an M dimensional system with Lyapunov
exponents

AL A2 .2 Ay
Q
* Q is the largest integer such that Z Aq = 0.
g=1
Q

: . 1
* Lyapunov dimension: D; = Q + Ag-
AQ+1] 2

Kaplan-Yorke conjecture: D, =D,

J. L. Kaplan and J. A. Yorke (1979) 21
For random dynamical systems: L. S. Young and F. Ladrappier (1988)



Application of Kaplan-Yorke Dimension
Formula to Snapshots

« Forlarge N, W (t) is regarded as externally
imposed

* In this limit, there are two Lyapunov exponents for
each oscillator.

A >0 > Ao /\1+/\Q<0

Dy =1+ /\1/‘/\2| forallj=1,2,...,N
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Results
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Extensivity

Our hypothesis that, in the large N limit, W(t) can be
regarded as imposed implies that, for the full 2N
dimensional system, there are essentially N Lyapunov
exponents A,>0 and N Lyapunov exponents A,<0 .

One Iindication of extensivity:
(# positive A’s) ~ N

Applying the Kaplan-Yorke formula to this situation we
have that the dimension of the attractor in the full 2N
dimensional space at N >> 1 satisfies

NA,+(D-N)A,=0
or
D/N=1+(A,/|A,)]) (Extensive)

Final comment: We believe that, with appropriate modifications. most of this can be extended to the case
of nomdentical oscillators with some spread in thewr parameters. [See our paper on arXiv. |



Summary of Main Points

 High dimensional extensively chaotic
attractors of mean field coupled systems
can be viewed as a collection of chaotically
driven uncoupled units and analyzed using
a shapshot attractor approach.

 Low dimensional attractors may coexist
with extensively chaotic attractors
accompanied by subcritical bifurcations

between them.
 Ref.: arXiv 1412.3803.
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Possible Relevance to Fluid Turbulence of the
Transition to Extensive Chaos

In fluids, as forcing increases, transitions from steady, to
low dimensional dynamics, to turbulence are observed

(e.g., Brandstater and Swinney [1987]).

Turbulence takes place on an extensively chaotic
attractor. E.g., Constantin, Foias, Temam [Physica D,
1988] show that (Dimension) ~ (Container Volume).

Also It has been shown both numerically (e.qg., papers by
B. Eckhardt et al.) and experimentally, that in pipe flow,
low dimensional and turbulent attractors coexist.

Our work provides a simple, understandable model for
coexistence and transitions between extensive and

nonextensive dynamics.



