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The neural code

Neurons communicate by firing signals called action potentials or spikes.
Spike times are collected in a table called a raster.
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The neural code

A neural code C C {0,1}" is a set of firing patterns, or codewords.
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Place cells

@ Place cells: a type of neuron, found in the hippocampus (navigation,
memory)

@ Each place cell has a place field - a region to which it is sensitive.

"
-

Neuron 1 Neuron 2 Neuron 3
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Receptive fields

Let X C RY be a stimulus space. A subset U; C X is the receptive field
for neuron / if that neuron has a high firing rate for stimuli in U;.

activity pattern QO OQOQO activity pattem OO QOO
codeword 11100 codeword 00101
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Receptive field codes

If C represents the full set of regions for some collection of receptive fields
U, then C = C(U) is a receptive field code.
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Receptive field codes

If C represents the full set of regions for some collection of receptive fields
U, then C = C(U) is a receptive field code.

If C = C(U) for some set of receptive fields U where each U; is a convex
open subset of RY, then C(U/) is a convex receptive field code.

codeword: 00101
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Big Questions

@ Given a code C, is C a convex receptive field code?

@ If so, what is the smallest dimension d so C can be realized as C(U)
for convex sets U; Cc R9?

Code C:

00000 10000 01000 00100
00010 00001 11000 10100
01100 01010 0O101T 00OM
11100 01110 01101 O10M
00111 011N
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The Neural Ring
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Simplicial complex of C

e A simplicial complex A on n vertices is a collection of subsets of
{1,...,n} = [n] such that if c € A and 7 C o, then T € A also.

@ A code C C {0,1}" corresponds to a set of subsets of [n]:
supp(C) = {o C [n] | ¢ = supp(c) for some ¢ € C}.

@ The simplicial complex of the code, denoted A(C), is the smallest
simplicial complex containing supp(C).

Nora Youngs Harvey Mudd College Neural Codes and Convexity




Why go beyond the simplicial complex?

All codes realized here have the same simplicial complex.
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Stanley-Reisner rings

Let A be a simplicial complex on n vertices and k a field. The
Stanely-Reisner ideal of A is defined

In = (xi, -+ xi, | {i, .-y is} & D)
Then, the Stanley-Reisner ring is given by
k[x1,...; Xn] /-

This ring encodes all information about the simplicial complex. We
attempt to generalize this idea for codes which are not necessarily
simplicial complexes.
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The Neural Ring

Given a code C C {0,1}", define the ideal I of F2[xi, ..., X,] as follows:
le = {f € F2[x1,...,xn] | f(c) =0 for all c € C}.
The neural ring Re is defined

Re = Fa[x, ..., Xa) /Ic-

Re is exactly the ring of functions f : C — {0, 1}.
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The neural ideal: alternative generators

For each v € {0, 1}", we consider the ‘indicator’ polynomial

= Hx,- H(l—x,-).

V,'=1 V,'=0

Then we define the neural ideal:

Je = ({ov | v £ C}).

In fact: Ic = Je + (x1(1 — x1), ..., Xn(1 — Xp)).
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Pseudo-monomials

The polynomials p, which generate Je are an example of
pseudo-monomials: polynomials of the form

xs | J(1 - x)

JET

forcnNnT=040.

Key Idea: if C = C(U), then any interesting relationships amongst the U;
are encoded by the pseudo-monomials in Jg.

Nora Youngs Harvey Mudd College Neural Codes and Convexity




Pseudo-monomials

Theorem (Curto, ltskov, Veliz-Cuba,Y. )

If C = C(U) for some set of receptive fields U = Uy,
U; C X CRY, then

x [[J(1-x) €t

JET

(Ui | ) U:

I€Eo JET

if and only if
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Canonical form

For practical purposes, we want a condensed set of generators for Jc.
The canonical form of J¢ is given by

CF(Je) = {f | f is a minimal pseudo-monomial of J¢}

@ Minimal here means that f is not a multiple of another
pseudo-monomial in Jg.

@ The pseudo-monomials in CF(J¢) correspond to a minimal set of
information about the relationships amongst the sets U;.
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Canonical form
The relationships in the canonical form come in 3 types:
Type 1: )

Type 2: 2% H(l — X;)

JET

Type 3: H(l — X;)

JET
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Canonical form

The relationships in the canonical form come in 3 types:
Type 1: Xy ﬂ U =10

Type 2: 3 H(l — X;)

JET

Type 3: [](1-x)

JET

Minimality can also be interpreted:

Example
If x1xox3 € CF(Jc), then Uy N Uz N U3z = (...but also, Uy N Uz # 0. I
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Helly's Theorem

Theorem (Helly)

Let Ui, ..., U, be convex sets in RY, with n > d. If every d + 1 of the sets
have nonempty intersection, then there is a point common to all the sets.
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Helly's Theorem

Theorem (Helly)

Let Ui, ..., U, be convex sets in RY, with n > d. If every d + 1 of the sets
have nonempty intersection, then there is a point common to all the sets.

Example

The code {1110,1101,1011,0111} cannot be realized in R2.
Note x1x2x3x4 € CF(Jc).

Nora Youngs Harvey Mudd College Neural Codes and Convexity



Helly's Theorem

Theorem (Helly)

Let Ui, ..., U, be convex sets in R, with n > d. If every d + 1 of the sets
have nonempty intersection, then there is a point common to all the sets.

Example

The code {1110,1101,1011,0111} cannot be realized in R2.
Note x1x0x3x4 € CF(Jc).

This only uses simplicial complex information.

Lemma (Curto, Itskov, Veliz-Cuba, Y.)
If x, € CF(J¢), then C cannot be realized in R? for d < |o| — 1.
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Using the canonical form
If there are no Type 1 relations at all, then A(C) is a simplex.

Lemma (MRC)

If A(C) is a disjoint union of simplices, then C is convex in R? for d < 2.

1100 1011
0110 0011
1111
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The nerve lemma

@ Given a cover U of a set X, the nerve N(U) is the simplicial complex
given by o € N(U) & ;c, Ui #0.

o If C = C(U), then A(C) = N(U).

Lemma (Nerve Lemma)

IfU = Uy, ..., U, is a finite cover of X with all intersections of U;s
contractible, then N(U) and X are homotopy equivalent.
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Local obstructions

Consider the code

C = {000, 100,010, 110,101, 011}.

As neuron 3 fires with 1 and 2, but never with both, and never alone, this
cannot be realized with open convex sets.

U,
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Local obstructions

Given C(U), a pair 0,7 with o N 7 = () forms a local obstruction if

NuicUu

i€o IET

but the nerve of the cover of the intersection by sets in 7 is not
contractible.
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Local obstructions

Given C(U), a pair 0,7 with o N7 = () forms a local obstruction if

NuicUu

i€o IET

but the nerve of the cover of the intersection by sets in 7 is not
contractible.

Lemma (MRC, Giusti-ltskov)
If C is a convex code, then C is locally convex (has no local obstructions). \
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Links

The link of o in A is given by

Lk,(A)={reA|TNo=0,TUoc € A}

Collect the sets with non-contractible links in A:

M(A) = {o € A| Lk;(A) is non-contractible}.

Theorem (MRC)
C is locally convex if and only if M(A(C)) C C. I

The codewords in M(A(C)) are mandatory.
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Max intersection complete

Lemma (MRC)

Mandatory codewords M(A(C)) are always intersections of maximal
facets/codewords.

We say C is max intersection complete if C contains all intersections of
maximal codewords.

Theorem (MRC)
If C is a max intersection complete code, then C is locally convex. I
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Open questions

@ Dimension - we know very little.
@ Conjecture 1: C is convex if and only if C is locally convex.

@ Conjecture 2: If C is max. intersection complete, then C is convex.
Conjecture 1 = Conjecture 2.
The converse to Conjecture 2 does not hold.
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Open questions

Conjecture 2: If C is max. intersection complete, then C is convex.

Theorem (Tancer)
if C = A(C), then C is convex. l
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Open questions

Conjecture 2: If C is max. intersection complete, then C is convex.

Theorem (Tancer)
if C = A(C), then C is convex.

Theorem (Giusti-Kronholm)

If C is intersection complete (contains all possible intersections of
codewords) then C is convex.

Theorem (MRC) J

If n < 4, then C is convex if and only if C is max intersection complete.
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Algebraic signatures

Algebraic signature of J¢

Property of C

3z,(1-z;)(1 - z;) € CF(Je) si.

non-convex

Z,Z;x; € Je
3z, ﬂ,e,(l - z;) € CF(Je) s.t.
Ge¢(o, 1) is disconnected

non-convex

- r'[_,e,(l - x;) € CF(Je) s.t.
z,z, € CF(Je)

non-convex

Vz,[I...(1-z) € CF(J%),
z,z, & Jo

locally convex

E

V2, L., (1 - 2,) € CF(J),
<1

convex
(N-complete)

Table 1: Algebraic signatures of convexity. Ge¢(o,7) is the simple graph on vertex set 7 with
edges {(ij) € 7 x 7 | z.ziz; € Jc}.
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