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  Functional Magnetic Resonance Imaging (fMRI) 
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Image courtesy of fMRI Research 
Center at Columbia University 

• Blood-oxygen-level-dependent (BOLD) signal related to brain activity 

while subject performs some task in scanner 

 
• 4D ‘brain movie’:   a sequence of  3D brain volumes  
    3D voxels  ~ 3x3x3 mm,  time repetitions (TR) ~1-2s 

 

• Challenge: high-dimensional, small-sample data 

    10,000 to 100,000 variables (voxels), but only 100s of TRs (samples), and less than 100 subjects 
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 Brain is a network – so let’s treat it like one!  

 Network types we consider here:  

 Functional networks (correlation matrix) 

 Markov networks (inverse covariance/precision matrix) 

 Why networks? 

 rich source of predictive features!  

 discriminative information unavailable in task-based activations 

 interpretability: beyond brain areas, towards global brain functioning  

 



 Schizophrenia is not a localized dysfunction, unlike depression,  
     epilepsy, stroke, Parkinson’s, etc. 
 
 Hypothesized to be a disconnection syndrome [Wernicke1906; 
     Bleuler, 1911; Friston & Frith, 1995] 

 

Our focus: network-based ‘biomarkers’ 

  Discriminative Network Models of  Schizophrenia     [Rish et al, PLoS One 2013] 
 [Cecchi et al, NIPS 2009] 

 What specific effects does schizophrenia have on functional 
networks as defined by fMRI?   

 
 Are network disruptions explainable by area-specific, task-dependent 

linear disruptions?  
 

 Is it possible to use functional networks to provide for  consistent 
predictive modeling? 



 Patient Group (11 subjects) 
 Prone to auditory hallucinations 
 Native French speakers, right-handed, 3+ yrs. illness 
 

 Normal Group (11 subjects) 

8,95 secs 
4 s 

Response 1 Response 2 

Tone: 200ms Silence 750ms Cue 500 ms 

Sentence 
3,5 s 

 
                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

96 trials, with 32 sentences in French (native), 32 
sentences in foreign languages, and 32 silence interval 
controls. Two runs. 

   Experiment: Simple Auditory Task in fMRI Scanner*   

*M. Plaze, et al., Schizophrenia Research (2006) 

Sentence  
3,5 s 



 
 For each voxel, compute a score (e.g., correlation, or GLM coefficient) 

reflecting how well its activity matches the stimulus sequence   
 
 Threshold the scores to select only statistically significant ones  
 

fMRI activation image and time-course  
courtesy of Steve Smith, FMRIB 

Standard Approach: Univariate, Task-Related Activations   

However, no statistically significant differences were found across groups; 
also, classification based on activation features was not very accurate*   

*G. Cecchi, et al., Neural Information Processing Systems (NIPS-2009) 



Group  
discrimination 

Linear activation 
identification 

 

Template-based ROI 
network identification 

However, no statistically significant links were identified 

 ROI Analysis: Inter-Region Correlations 



 Network link (i,j)  correlation 
between BOLD(i) and BOLD(j) 
is above a threshold (e.g.,0.7) 

 

 Degree maps:  

     degree(voxel i) = number of its 
neighbors in the network  

 
      Variety of degree maps: 

 Full degree maps  
 
 Long-distance degree maps – non-

local connections (> 5 voxels apart) 
 
 inter-hemispheric degree maps – only 

links between the hemispheres 
 

 

 Functional Networks: Voxel-Based Correlations 



 -  Degree maps show a clear pattern even after FDR correction for multiple comparisons 
 - abnormal degree distribution in correlation networks for   
      - schizophrenic patients such as lack of “hubs” in auditory cortex 
 
 -   However, activation maps practically do not survive the correction! 

Bonferroni (too strict): 
- degree maps: 50 voxels 
- activation maps: 0-1 voxels 
 

  False-Discovery Rate (FDR):   
- degree maps: 1033 voxels 
- activation maps: 0-7 voxels 

 
  

  FDR-corrected 
(Normalized) Degree Maps   

 Degree Maps Reveal a Distinctive Pattern (Unlike Activation Maps) 

2-sample t-test performed  
for each voxel in degree   
and activation maps 
 
Red/yellow: Normal subjects 
have higher values than 
Schizophrenics 
  



 44 samples: (11 schizophrenics, 11 normals) x 2 runs 
 

 22-fold cross-validation 
 leave-one-subject-out (i.e., 2 runs for each subject),                                                       

NOT leave-one-sample-out (samples are not i.i.d., subjects are) 
 

 Classifiers: 
 Linear SVM  
 Naïve Bayes 
 Markov Networks (Markov Random Fields) 

 

 Features:  voxel activations vs. topological features (voxel degrees and ‘global’ 
topological features, e.g., mean degree, mean geodesic distance, giant 
component size, etc.) 

 
 Which features – topological or activation – are more informative?  More stable?                      
    Which ones allow to generalize better to unseen samples, as opposed to the 

standard hypothesis-testing framework? 
 

 Predictive Modeling with Topological vs Activation Features 



 Stability:  Degrees Are More Stable Features than Activations   

 When selecting top-K most significant voxels over data subsets in leave-subject-out cross-validation, 
degree maps yield higher overlap (~70% common voxels), unlike activation maps   



Voxel degree features +  
Sparse Markov Random Field* 

Classifier = 86% accuracy 

Statistically significant degree features                  
(after FDR correction) 
Areas: BA 22 and BA 21(auditory/temporal 
areas, possibly related to the auditory task) 
 
 

[Cecchi  et al,  NIPS 2009] 

 Classification: Degrees Greatly Outperform Activations   

*Sparse MRF classifier is a probabilistic classifier 
that learns a sparse MRF model for each class,  
then assigns test sample to the most likely class 
 
More on sparse MRFs – later in this talk 



Top cross-voxel correlations 
(link ‘weights’)  +  SVM classifier =                                              

93% accuracy 

[Rish et al,  PLOS One 2013] 

Top statistically significant 
correlations: cerebellum (declive) 
and the occipital cortex (BA 19) 
 

 Even Better Results with Link Weights (Pairwise Correlations)   



   Network Features as Schizophrenia Markers 

 Correlations:  link weights 

 Voxel strength:  sum of weights        
of links connected to the node. 
Absolute strength sum of abs. 
weights. Positive strength  sum     
of pos. only weights. 

 Clustering coefficient of a voxel:        
the fraction of node’s neighbors that 
are neighbors of each other 

 Voxel degrees:                            
degree(voxel i) = number of its 
neighbors in functional network 

 Local efficiency:                                      
global efficiency computed on voxel’s 
neighborhoods. Global efficiency: 
average inverse shortest path length 

 

       

Showed significant statistical differences 
across two groups, and 86% accuracy in  
schizophrenia classification   

Variety of other network features, beyond  
degrees, show significant statistical 
differences and are predictive (though 
less than link weights and degrees) about 
schizophrenia [PLOS One’12] 

 Just a dozen of correlation  features 
allows for even better 93% accuracy 

Functional networks contain large amounts 
of schizophrenia-related information that 
may not be present in task-based activations 



  Part 2:  Markov Networks  (Markov Random Fields)  

MRFs are probabilistic models that capture joint distribution over the 
voxels, rather then just pairwise correlations as in functional networks 
 
Given joint P(X), one can make probabilistic queries: given activity in 
brain area A, what happens to brain area B, etc. 



Markov random field of jointly Gaussian variables 
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  Gausian Markov Random Fields (GMRFs) 



  Maximum Likelihood Estimation of  the Inverse Covariance Matrix 



Various algorithms:   
• Approximation: LASSO for each node (Meinshausen&Buhlman, 2006) 
• Block-coordinate descent: COVSEL (Banerjee et al, 2006),      
   glasso (Friedman et al, 2007) 
• Projected gradient (Duchi et al, 2008) 
• Greedy ascent SINCO (Scheinberg and Rish, 2010) 
• Alternating Linearization Method (Scheinberg et al, 2011) 
• several more recent efficient techniques available 

Various sparse structure, besides basic edge-sparsity: 
• diagonal structure (Levina et al., 2008) 
• block structure for known block-variable assignments (Duchi et al., 2008) 
• unknown block-variable assignments (Marlin & Murphy, 2009; Marlin et al., 2009) 
• spatial coherence (Honorio et al, 2009) 
• common structure among multiple tasks (Honorio et al, 2010) 

 



 Hypothesis:   often, only a relatively few variables are interacting 
with each other, forming network clusters; the rest are not relevant 

  Variable Selection in Gaussian MRFs  

 Datasets with thousands of variables:  
   fMRI, gene expression, stock prices, world weather 

 
 Goal: select these important nodes, and find their interaction pattern 

[Honorio et al, AISTATS 2012] 



 An additional (last) term to encourage variable selection 

log-likelihood 
of the dataset 

sparseness 
prior 

our variable- 
selection prior 

A proxy for the number of 
connected nodes  NP-

hard learning 

  Variable-Selection Regularizer: Block-Sparsity over Node’s Neighbors 

 Variable-selection prior: block l1/lp norm, for  

  

 We use Block-Coordinate Descent (BCD) on the primal (not dual!):  
a sequence of quadratic subproblems with closed form solutions, 

    see (Honorio et al, AISTATS 2012) 
     

 



   Example: Cocaine Addiction fMRI Data 

  fMRI dataset  previously collected by  (Goldstein et al, 2007) 
 15 cocaine addicted subjects and 11 control subjects 

 87 scans/TRs (3.5 s), 53x63x46 voxels 

 Subsampling to reduce dimensionality: 4x4x4 voxel cubes 869 nodes 

 Task: visual attention, with monetary reward (see [Honorio 2012] ) 

Variable-selection GMRF (LI,L2) learn higher-likelihood models that its competitors 
including standard graphical lasso (GL), Meinshausen-Buhlmann (MO,MA) approach, 
scale-free networks (SF) and Tikhonov regularization (TR). 
Variable-selection assumption seem to fit the data better than standard sparse GMRFs. 

control subjects addicted subjects 



Blue - positive interactions  
red -  negative interactions  
 
The variable-selection sparse  
GMRF approach learns networks  
that  involve fewer connected 
variables (~50 connected 
nodes) and have higher log-
likelihood than the standard edge-
only sparse GMRF learning, 
‘graphical lasso’. 
 
 
When performing classification of 
cocaine vs. control by using 
GMRFs, all methods obtain 84.6% 
leave-one-subject-out accuracy  

cocaine subjects control subjects 
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  (Much) Better Interpretability Than Standard Sparse Gaussian MRFs  



Blue - positive interactions  
red -  negative interactions  

cocaine subjects control subjects 

  Discussion  

In cocaine addicts, as compared to controls, we observe 

• increased interactions between the visual cortex (left) and the prefrontal cortex (right)  

• decreased density of interactions between the visual cortex with other brain areas   

Also,  prefrontal cortex is involved in  decision making and reward processing, and abnormal 
monetary processing in the prefrontal cortex was reported in (Goldstein et al, 2009) when 
comparing cocaine addicted individuals to controls.   

Note that the trigger for reward was a visual stimulus and that abnormalities in the visual 
cortex was reported in (Lee et al, 2003) when comparing cocaine abusers to control subjects 



    Summary 

 Two types of networks: functional (covariance) and Markov (inverse covariance) 

 Network-based features can be very informative even when GLM-based voxel 
activations are not (schizophrenia study)  

 
 Markov networks (MRFs) , unlike functional, summarize joint probability 

distribution over the whole brain. We focus here on sparse Gaussian MRFs 

 To learn more about sparse models and their applications to functional MRI, see 
 

Rish and Grabarnik, 
Sparse Modeling:  
Theory, Algorithms,  
and Applications 
 

Rish et al. 
Practical 
Applications of 
Sparse Modeling 
 

 
Variable-selection prior produces much more interpretable GMRFs 

 



Extra stuff 

 



   Cocaine Addiction fMRI Data 

  fMRI dataset  previously collected by  (Goldstein et al, 2007) 

 15 cocaine addicted subjects and 11 control subjects 

 87 scans/TRs (3.5 s), 53x63x46 voxels 

 Subsampling to reduce dimensionality: 4x4x4 voxel cubes 869 nodes 

 Task: visual attention, with monetary reward 



Our methods (LI,L2) outperform competitors, e.g. Meinshausen-Buhlmann (MO,MA), 
graphical lasso (GL), scale-free networks (SF) and Tikhonov regularization (TR). 
 
Variable-selection assumption seem to fit the data better than standard sparse GMRFs. 

control subjects addicted subjects 

  Results: Better Model Fit (Better Likelihood) 

 1/3 of the data was used for training, 1/3 for validation and 1/3 for testing 

 Results comparing negative log-likelihood (lower  better) of networks 
learned using various methods: 
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