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Collocation methods are widely used in uncertainty quantification
of practical problems:

» Non-intrusive: run different parameter realizations of the
deterministic solver.

» Fast convergence can be achieved for smooth problems.

However,

» High cost: repetitive runs of deterministic solvers
» Extreme case:"‘l can only afford |0 simulations”

What can we do with this scenario?
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For many problems, there usually exists low fidelity models:

» Affordable cost: coarser meshes, simplified physics, coarse-grained
model, ...
» Low accuracy but resolve some important features

Wishlist:

» Efficiency from low fidelity models
» Accuracy from high fidelity models

ow can we glue models together?
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ug(z,t,4) = L(u), in D x (0,T]x Iz,
B(u) =0, on 0D x [0, T| x I,
U = ug, inDX{t:O}Xlz.

ul :low fidelity solution (cheap)
utt : high fidelity solution (expensive)

The goal: build a surrogate of u in a non-instrusive way
m

v(x,t,z) = Z cn (U (2,t, 2),  2n € Iy

n=1

Ql:How to choose z,, intelligently?

Q2: How to compute ¢, without extensive sampling the high-fidelity solver?
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Key idea: Explore the parameter space by the cheap low-fi model

» Search the space by the low-fi model via greedy algorithm:

Zm — arg margc d(uL(Z), Uqfv,—l)
-
Where . A M

Candidate set:

F:{Zl,...,ZM}

Low-fi approximation space: %) u'? (2)
Ufrlr;z—l(f}/) :{UL(Zl)w"vuL(Zm—1)} 7‘/ -

v Enrich the space by finding the furtherest point away from the
space spanned by the existed set

V' The greedy choice is (almost) asymptotically optimal. (Devore, 201 3)
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The coefficients are possibly inferred from the low-fi model

» Construct {cn} as projection coefficients from low-fidelity model:

v(z)t = PUL(,V)UL(Z) = Z cn(2)u” (25

» Using the same coefficients, construct the approximation
rule for high-fidelity model

v(z,t,2)"? = Z cn(2)u' (2,,)

* This is in fact a lifting operator from low-fi space to high-fi space

* Justification: e.g., linear scaling, coarse/fine mesh
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» Run the low-fi models at each point of " to obtain u”(T'),U*(T)

select the most “important” m points —7Y

» Run the high-fi models on those m points to get u (v)

most expensive part!
» Bi-fidelity approximation:

» For any given =z € I., compute low-fi projection coefficients
m

v(z)t = PULh,)UL(Z) = Z cn(2)u” (2)

n=1

» Apply the same coefficients to u*(y) to get the bi-fi approximation

v(z)? = Z cn(2)u' (2,)

The approximation quality depends on how well the low-fi model approximates
the functional variation of high-fi model in the parameter space
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» Run the low-fi model to select the most “important” m points

» Run the medium and high-fidelity models at those m points to get

H( Ml(

v)

u™ (v) u

» Tri-fidelity approximation:

» For any given :z ¢ I,,compute med-fi projection coefficients

M M
U(Z) b= PUMl (,y)u E 1 ) more zfccurate
coefficients

» Apply the same coefficients to u'(v) to get the tri-fi approximation

=D @u (z)
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|D Burgers’ equation
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Ut + Ully = Vg,
u(—1) =1+,

low-fi: 100 points (in physical space), FD
high-fi: |000 points, FD

r e (—1,1),

u(1)

mean |2 error

ref solution: high-fi solution

. e T =

— perturbed solution
— = unperturbed solution

[l <— mesh distribution
1 1 1

-1 -0.8 -0.6 -0.4
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| D stochastic elliptic equation
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{ —(a(Z,x)us(Z,x))s = 1,
u(Z,0) =0,

1
:1—|—O'ZHCOS

(2mkx)Z®),

(Z,CB) cly, X (0,1)
u(Z,1) = 0.

d > 1.

low-fi: 16 points, Cheb Collocation
high-fi:128 points, Cheb Collocation

low fidelity: too coarse to

™ resolve the feature in the

high-D random space
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~V - (a(x,y, Z)Vu) = 0, (z,y) € (—1,1)7
u(—1,y,2) =-1, wu(l,y,Z2)=1, wuy(zr,—1,2)=0, wuy(z,1,2)=0.

d
a(z,y, Z2) =14+ Y / Mete(z,y) 2™ d=1T7
k=1

........... —El—bi—fidelity1 |
........... ... |—%—Dbifidelity 2|
‘ ‘ ‘ ‘ —p— tri—fidelit

low-fi: FE with 80 elements, | D model
med-fi; FE with 32 elements, 2D model
high-fi: FE with 12800 elements, 2D model

low-fi: commit modeling error
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Time-harmonic Helmholtz equation:

Au + 4u = 0,

(20 +1/25)u+ 2% =0, Tou

2iu + % = 44, Cin

gu — ), T,j=3,8

LU+ g—z = 0, on other boundaries,

M= (M17M27lu47:u57,u67,u77,u97,u10) S~ [07 1]8
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S SRR I—El—bi—flidelity1 ]
............. —e—bl—flde|lty2
10 ............ ............ ............ ............ ........... —*—tri-fidelity || IOW'ﬁ: P2 FE Wlth |96 elements

med-fi; P2 FE with 2061 elements

high-fi: P2 FE with 22810 elements
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E[f;0] == _wif(s) ~ E[f]

® Monte Carlo, Quadrature: requires many bi-fi constructions

Question: can we approximate hi-fi mean more efficiently?

| 4
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» Run the low-fi models at each point of T to obtain u”(T"), UX(T')

compute its mean and select the most “important” m points — "/

()

most expensive part!

» Run the high-fi models on those m points to get u

» Bi-fidelity approximation:

» Project low-fidelity mean on the low-fi approximation space

PUL(’Y)ML — Z cau” (2n) ~ 1"

» Apply the same coefficients tc?TLH (v) to get the bi-fi mean
™m

po = 7D(ﬂf(w)lﬁH — Z cnu' (2n)

n=1

instead of lifting low-fi samples, we are lifting low-fi mean!
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v Collocation methods for high-fidelity samples and mean

v' Non-intrusive and implementation is straightforward

v Fast convergence if the low fidelity model can mimic the
parametric dependence of the high fidelity model

V' The number of high-fi simulations required is limited,e.g.,O(10)

V' The discretization/models can be very different.

Next step: mismatching models

|7
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Thank you!
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Error bound
lu (z) — 07 (2)||" <Clpya(@ (@) + € || Py yu (2)||

- |[vereh) ot
small if the solution is in the low-dimensional manifold

depends on how well the low-fidelity model approximates
the functional variation in the parameter space

€ — €1 + €9+ €169

(V GH> (7 —fth)|| <@ (V GH) fHH Coordinates behave similarly in different space
VGH (GL)_1 VGH — IH < e Gramian matrices behave similarly

non-invertibility of high-fidelity Gramian matrix



