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6.1. 2D di↵usion equation with input in layers. Consider the two-dimensional
stochastic elliptic problem

⇢
�r · (a(x,!)ru(x,!)) = f(x), in D
u = g(x), on @D,

(6.2)

with the physical domain D = [�1, 1]2, with the right-hand-side f = 1, and zero
Dirichlet boundary condition. The random di↵usivity field a(x,!) has the covariance
function,

C(x, y) = exp

✓
�kx� yk2

`2

◆
, x, y 2 [�1, 1]2, (6.3)

where ` is the correlation length. Here we choose a short correlation length, ` = 0.2,
where the global KL expansion results in d = 200 random dimensions. We divide the
physical domain D = [�1, 1]2 into four rectangular layers with distinct mean values,

µa =

8
>>><

>>>:

200, D1 = [�1, 1]⇥ [1/2, 1],

40, D2 = [�1, 1]⇥ [0, 1/2],

8, D3 = [�1, 1]⇥ [�1/2, 0],

4, D4 = [�1, 1]⇥ [�1,�1/2].

(6.4)

To compute the gPC expansion,we employ the high level (with level 7) sparse grids
stochastic collocation and then approximate the gPC expansion coe�cients using the
sparse grids quadrature rule (with level 7). The reference FEM solutions are computed
over a 64⇥ 64 linear elements, which result in negligible spatial discretization errors
for this case. For domain partitioning, we utilize three sets of subdomains: 4 ⇥ 4,
8 ⇥ 8, and 16 ⇥ 16 (the number of FEM elements in each subdomain is adjusted in
each case to keep the overall number of elements at 64⇥ 64).

Figure 6.1 shows one realization of the input random field a(x, Z) with distinct
means values in each layer indicated above and the corresponding full finite element
solution (reference solution) of the di↵usion problem in the domain D = [�1, 1]2.

Fig. 6.1. Left: One realization of the input a(x, Z) with distinct means values in each layer
indicated above, Right: Its corresponding full finite element solution (reference solution).
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Motivation

Collocation methods are widely used in uncertainty quantification 
of practical problems:

‣ Non-intrusive: run different parameter realizations of the      
deterministic solver. 
‣ Fast convergence can be achieved for smooth problems. 

‣ High cost: repetitive runs of deterministic solvers
‣ Extreme case: “I can only afford 10 simulations”

What can we do with this scenario?

However,
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Motivation

For many problems, there usually exists low fidelity models:

‣ Affordable cost: coarser meshes, simplified physics, coarse-grained    
model, …
‣ Low accuracy but resolve some important features

Wishlist:

‣ Efficiency from low fidelity models
‣ Accuracy from high fidelity models

How can we glue models together?
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Setup
8
<

:

ut(x, t, Z) = L(u), in D ⇥ (0, T ]⇥ IZ ,

B(u) = 0, on @D ⇥ [0, T ]⇥ IZ ,

u = u0, in D ⇥ {t = 0}⇥ IZ .

The goal: build a surrogate  of       in a non-instrusive way uH

Q1: How to choose        intelligently?zn
Q2: How to compute       without extensive sampling the high-fidelity solver?cn

uL

uH
: low fidelity solution (cheap)

v(x, t, z) =
mX

n=1

cn(z)u
H(x, t, zn), zn 2 IZ

4

: high fidelity solution (expensive)



Point Selection

Key idea: Explore the parameter space by the cheap low-fi model

‣ Search the space by the low-fi model via greedy algorithm:

� = {z1, . . . , zM}

Where 

zm = argmax

z2�
d(uL

(z), UL
m�1)

We seek a solution,           , which is constrained 
through a linear parametrized PDE 

Problems of interest

u(x, µ)

L(x, µ)u(x, µ) = f(x, µ) x � �

u(x, µ) = g(x, µ) x � ��
µ ⇥ D � RM

The Reduced Basis Approach: A Motivation

The Main Idea: Reduce the Basis
We might expect a good approximation using a Galerkin approach
using solutions for “well chosen” sampling of parameters as base
functions.

X

M

u(µj ) u(µ)

Assumption:  The solution varies smoothly on a low-
dimensional manifold under parameter variation.

Choosing the samples well, 
we should be able to derive 
good approximations for all 
parameters

Wednesday, November 2, 11

uH(zj)
uH(z)Low-fi approximation space:

UL
m�1(�) ={uL(z1), . . . , u

L(zm�1)}

Candidate set:
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✓ Enrich the space by finding the furtherest point away from the  
space spanned by the existed set

✓ The greedy choice is (almost) asymptotically optimal. (Devore, 2013)



Lifting procedure

‣ Construct            as projection coefficients from low-fidelity model:

‣ Using the same coefficients, construct the approximation 
rule for high-fidelity model

v(x, t, z)H =
mX

n=1

cn(z)u
H(zn)

{cn}

• Justification: e.g., linear scaling, coarse/fine mesh

v(z)L = PUL(�)u
L(z) =

mX

n=1

cn(z)u
L(zn)
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The coefficients are possibly inferred from the low-fi model

• This is in fact a lifting operator from low-fi space to high-fi space



Overview of Bi-fidelity algorithm

‣ Run the high-fi models on those m points to get 

‣ Bi-fidelity approximation:      

‣ Apply the same coefficients to            to get the bi-fi approximation 

The approximation quality depends on how well the low-fi model approximates  
the functional variation of high-fi model in the parameter space

uH(�)

uH(�)

‣ Run the low-fi models at each point of     to obtain � uL(�), UL(�)

 select the most “important”  m points —  

‣ For any given           , compute low-fi projection coefficients

v(z)L = PUL(�)u
L(z) =

mX

n=1

cn(z)u
L(zn)

v(z)H =
mX

n=1

cn(z)u
H(zn)
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z 2 Iz

�

most expensive part!



Tri-fidelity senario

‣ Run the low-fi model to select the most “important” m points  

‣ Run the medium and high-fidelity models at those m points to get 

‣ Tri-fidelity approximation:
       

uH(�) uM1(�)

vH(z) =
mX

n=1

cM1
n (z)uH(zn)

z 2 Iz

‣ Apply the same coefficients to            to get the tri-fi approximation uH(�)

‣ For any given           , compute med-fi projection coefficients 

v(z)M1 = PUM1 (�)u
M1(z) =

mX

n=1

cM1
n (z)uM1(zn) more accurate

coefficients
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1D Burgers’ equation

low-fi: 100 points (in physical space), FD
high-fi: 1000 points, FD

mean l2 error

u

t

+ uu

x

= ⌫u

xx

, x 2 (�1, 1),
u(�1) = 1 + �, u(1) = �1.

� ⇠ U(0, 0.1)
⌫ = 0.5
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ref solution: high-fi solution



1D stochastic elliptic equation

low-fi: 16 points, Cheb Collocation
high-fi:128 points, Cheb Collocation

low fidelity: too coarse to 
resolve the feature in the 
high-D random space

⇢
�(a(Z, x)u

x

(Z, x))
x

= 1, (Z, x) 2 I

Z

⇥ (0, 1)
u(Z, 0) = 0, u(Z, 1) = 0.

a(Z, x) = 1 + �

dX

k=1

1

k⇡

cos (2⇡kx)Z

(k)
, d > 1.
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2D stochastic elliptic equation

d = 17

low-fi: FE with 80 elements,1D model
med-fi: FE with 32 elements, 2D model
high-fi: FE with 12800 elements, 2D model

low-fi: commit modeling error

⇢
�r · (a(x, y, Z)ru) = 0, (x, y) 2 (�1, 1)2

u(�1, y, Z) = �1, u(1, y, Z) = 1, uy(x,�1, Z) = 0, uy(x, 1, Z) = 0.
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Here we let � = 0.5 and (Z(1), . . . , Z(d)) 2 [�1, 1]d be uniformly distributed. (The
positivity of a is strictly enforced for the choice of parameters throughout this paper.)

The Chebyshev collocation method is employed to solve the problem in physical
space. We use 16 Chebyshev collocation points in the low-fidelity model and 128
points in the high-fidelity model. The bi-fidelity approximation is then carried out
in random space with di↵erent dimensionality by varying d in the di↵usivity model
(5.5). The error decay is plotted in Figure 5.2 with respect to an increasing number of
high-fidelity runs, where both the errors in the L1 norm (dashed lines) and in mean
L2 norm (solid lines) are shown, for dimensions d = 10, 20 and 50. Again, we observe
fast error decay (on semi-log scale) for d = 10, with only a few high-fidelity runs.
For higher dimensions d = 20 and 50, the error saturates quickly. This is because of
the very coarse nature of the low-fidelity model. With only 16 Chebyshev nodes, the
low-fidelity model can not resolve the problem, especially the fine structure resulting
from the di↵usivity (5.5) when d is large. Therefore, the error from the low-fidelity
model dominates.
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Fig. 5.2. Numerical errors with respect to the number of high-fidelity simulations, for the one-
dimensional stochastic di↵usion equation (5.4) with random dimensions d = 10, 20 and 50. Solid
lines are the mean L2 errors and dashed lines are L1 errors.

5.2.2. Two-dimensional and Tri-fidelity simulation. We now consider the
following 2D stochastic elliptic equation:

⇢ �r · (a(x, y, Z)ru) = 0, (x, y) 2 (�1, 1)2

u(�1, y, Z) = �1, u(1, y, Z) = 1, uy(x,�1, Z) = 0, uy(x, 1, Z) = 0,
(5.6)

where the di↵usivity field is defined via the following Karhunen-Loeve expansion

a(x, y, Z) = 1 +
dX

k=1

p
�k k(x, y)Z

(k). (5.7)

We let (Z(1), . . . , Z(d)) 2 (�1, 1)d be uniformly distributed random variables and let
(�k, k)dk=1 be the eigen-pairs in the Karhunen-Loeve expansion of an (x, y) random
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2D acoustic horn
Time-harmonic Helmholtz equation:

8
>>>><

>>>>:

4u+ 4u = 0,
(2i+ 1/25)u+

@u

@n

= 0, �

out

2iu+

@u

@n

= 4i, �

in

@u

@n

= 0, �

j

, j = 3, 8
iµ

j

u+

@u

@n

= 0, on other boundaries,

µ = (µ1, µ2, µ4, µ5, µ6, µ7, µ9, µ10) 2 [0, 1]8
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2D acoustic horn

low-fi: P2 FE with 196 elements

med-fi: P2 FE with 2061 elements

high-fi: P2 FE with 22810 elements

tri-fi is preferable due to less off-line time5 10 15 20 25 30 35 40
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fast computation of statistical moments

14

2

uses the low-fidelity solutions, which consist of a large number of samples, to construct
a best approximation of the target solution statistics (mean, variance, etc), and then
apply the best approximation to the high-fidelity samples. Our method is essentially
a “learning” algorithm, where the low-fidelity samples are used to “train” the best
approximation. It is di↵erent from the aforementioned existing methods, as it does
not achieve the improved performance via variance reduction. Nor does it require a
hierarchy of models from spatial refinement. The current method is an extension of
the method developed in [18, 26], where the same training idea was first proposed and
used to predict the solutions at arbitrary sample locations. Here we show that the
method can be highly e�cient in approximating the statistics (mean, variance, etc)
of the underlying stochastic problem. We establish an error bound of the method and
use extensive numerical examples to demonstrate its performance. In the examples
with varying multiple dimensions, accuracy solutions can be obtained by a mere O(10)
number of high-fidelity simulation samples.

2. Problem Setup. Let w be the solution of a system of governing equations
in a bounded spatial domain D ⇢ R`, ` = 1, 2, 3, and a random parameter domain
IZ ✓ Rd, d � 1. For general discussion we do not assume any specific form of the
governing equations. We are interested in a quantity-of-interest (QoI), which is a
function of the solution w, i.e.,

v = q(w) : D̄ ⇥ IZ ! R. (2.1)

Hereafter we denote x = (x1, . . . , x`) the spatial variable and z = (z1, . . . , zd) the
random variable. Let ⇢ : Iz ! R+ be the probability distribution function of z. We
are interested in evaluating the statistical average of the QoI, ⌫ : D̄ ! R,

⌫(·) = E[v] =
Z

v(·, z)⇢(z)dz. (2.2)

For example, when v = wk, k � 1, it stands for the k-th moment of the solution.

2.1. Numerical approximations. For numerical approximation, we seek an
approximate solution u in a linear subspace V for any fixed random variables,

u : Iz ! V. (2.3)

Obviously, the choice of the linear subspace V depends on the chosen numerical
method. We assume that the numerical method is deterministic and satisfies

u(·, z) ⇡ v(·, z), 8z 2 IZ ,

in a proper norm in the physical space.
Since the solution dependence in the random space can also be complex, the

mean operator E in (2.2) also needs to be approximated. In this paper we focus on
linear sampling based approximation, which is the predominant approach in practice.
Let ⇥ = {z1, . . . , zm} ⇢ IZ be a set of samples, then for any integrable function
f : IZ ! R we define

eE[f ;⇥] :=
mX

i=1

wif(zi) ⇡ E[f ], (2.4)

• Monte Carlo, Quadrature: requires many bi-fi constructions

Question:  can we approximate hi-fi mean more efficiently?



Bi-fidelity algorithm for statistical mean

‣ Run the high-fi models on those m points to get 

‣ Bi-fidelity approximation:      

‣ Apply the same coefficients to            to get the bi-fi meanuH(�)

uH(�)

‣ Run the low-fi models at each point of     to obtain � uL(�), UL(�)

 compute its mean and select the most “important”  m points —  

‣ Project  low-fidelity mean on the low-fi approximation space

15

�

most expensive part!

PUL(�)µ
L =

mX

n=1

cnu
L(zn) ⇡ µL

µB = PUH(�)µ
H =

mX

n=1

cnu
H(zn)

instead of lifting low-fi samples, we are lifting low-fi mean!



2D acoustic horn
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Fig. 4.5. Acoustic horn problem: Numerical errors in mean (top) and second moment (bottom)
with respect to the number of high-fidelity simulations by standard Monte Carlo method and bi-fidelity
method).
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Summary 

✓ Collocation methods for high-fidelity samples and mean

✓ Non-intrusive and implementation is straightforward

✓ Fast convergence if the low fidelity model can mimic the 
parametric dependence of the high fidelity model

✓ The number of high-fi simulations required is limited,e.g.,O(10)

✓ The discretization/models can be very different.
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Next step: mismatching models



Thank you!
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Error Analysis

Error bound

small if the solution is in the low-dimensional manifold

depends on how well the low-fidelity model approximates 
the functional variation in the parameter space

non-invertibility of high-fidelity Gramian matrix 

Error Analysis 
•  The approximation quality depends on how well the low-fidelity model 
     approximates the functional variation in the parameter space. 

dm/2(u
H(�)) : m/2-width of the space uH(Γ) 

✏ = ✏1 + ✏2 + ✏1✏2

���
p
GH

�
GL

��1 p
GH � I

���  ✏2

Q = I�P

����
⇣p

GH
⌘�

(fH � fL)

����  ✏1

����
⇣p

GH
⌘�

fH
����

fL = (huL(zik), u
L(z)iL)1km

fH = (huH(zik), u
H(z)iH)1km

��uH(z)� vH(z)
��H Cdm/2(u

H(�)) + ✏
��PUH(�)u

H(z)
��H

+
���
p
GH(GL)�1QfL

���

•  Error bound [Narayan et al, 2013]: 

Error Analysis 
•  The approximation quality depends on how well the low-fidelity model 
     approximates the functional variation in the parameter space. 

dm/2(u
H(�)) : m/2-width of the space uH(Γ) 

✏ = ✏1 + ✏2 + ✏1✏2

���
p
GH

�
GL

��1 p
GH � I

���  ✏2

Q = I�P

����
⇣p

GH
⌘�

(fH � fL)

����  ✏1

����
⇣p

GH
⌘�

fH
����

fL = (huL(zik), u
L(z)iL)1km

fH = (huH(zik), u
H(z)iH)1km

��uH(z)� vH(z)
��H Cdm/2(u

H(�)) + ✏
��PUH(�)u

H(z)
��H

+
���
p
GH(GL)�1QfL

���

•  Error bound [Narayan et al, 2013]: 

Coordinates behave similarly in different space

Gramian matrices behave similarly
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