Less is More: Compressed Sensing

SIAM Annual Meeting
Deanna Needell
Mathematics, UCLA

So much data...

So much data...

So much data...

So much data...

Systems to handle big data might be this generation's moon landing
by Stacey Higginbotham y Apr. 1, 2012-9:00 PM PST
5 Comments

How can we handle all this data?

Option 1 : Build bigger computing systems

How can we handle all this data?

Option 1 : Build bigger computing systems

* We need the resources
* Fundamental limitations
* Wasteful (resources, energy, cost, ...)

How can we handle all this data?

Option 1 : Build bigger computing systems
We need the resources
Fundamental limitations
Wasteful (resources, energy, cost, ...)

3 MB of internet data transfer $=$ boiling one cup of water

How can we handle all this data?

Option 2 : Design more efficient compression methods

Enter the world of : Compressed sensing

Compressed sensing: motivation

Applications are numerous:

* Data storage
* Reliable data transmission
* Collaborative filtering (e.g. Netflix predictions)
* Radar
* DNA array sequencing
* Neuroscience
* Predicting earthquakes
* Restoring damaged artwork
* Crime prediction

Image compression

* Medical imaging
* Many, many, many more...

Representations of High Dimensional Data

Key Idea :

Modern data is too large-scale. Big datarer Big understanding
\longrightarrow Mathematical tools like Compressed Sensing provide rigorous means for representing large data in efficient ways.
\longrightarrow This allows for efficient data acquisition, storage, and analysis.

Representations of High Dimensional Data

Key Topics :

* Mathematics of sparsity and compressed sensing
* Sampling designs
* Reconstruction methods
* Quantization issues
* Inferential tasks
* Topic modeling
* Clustering and classification methods

Numerical optimization

Applications

* Digital Camera (Rice Univ.)

Applications

* Digital Camera (Rice Univ.)

Applications

* Hyperspectral camera (InView Corp.)

Applications

* Magnetic Resonance Imaging (MRI)

Applications

* Magnetic Resonance Imaging (MRI)

Applications

* Magnetic Resonance Imaging (MRI)

Applications

* Magnetic Resonance Imaging (MRI)

Less measurements = less time

Applications

* Magnetic Resonance Imaging (MRI)

Results of Compressed Sensing

Original
4096 Pixels
4096 Pixels
65536 Pixels
800 Measurements (20\%) (40\%)

6600 Measurements
(10\%)

Results of Compressed Sensing

Results of Compressed Sensing

(a)

(c)

(b)

(d)

Results of Compressed Sensing

 A in

㻤

Results of Compressed Sensing

Results of Compressed Sensing

Original D

Corruptions

Repaired A

480×620 pixels

Why is compression possible?

Why is compression possible?

Because most practical signals, such as images, contain much less information than their dimension (e.g. $256 \times 256=65,536$ pixels) would suggest.

Why is compression possible?

Because most practical signals, such as images, contain much less information than their dimension (e.g. $256 \times 256=65,536$ pixels) would suggest.

How to quantify this?

A believable example

This image is sparse.

A believable example

This image is sparse.

In a computer, images are represented by an array of numbers ($0=$ black, $2555=$ white). Sparse images are those which are mostly zeros (black).

A little bit harder...

This image is NOT sparse...uh oh.

We call an image "compressible" if it is well approximated by a sparse image.

Ok, this one is really hard...

This image is NOT EVEN CLOSE to sparse... uh oh.

Sparsifying transformations

Sparsifying transformations

* Haar wavelet transformation (Haar, 1909)

Sparsifying transformations

* Haar wavelet transformation (Haar, 1909)
* Daubechies wavelet transformation (Daubechies, 1988)

Sparsifying transformations

* Haar wavelet transformation (Haar, 1909)
* Daubechies wavelet transformation (Daubechies, 1988)
* Curvelets (Candes et.al., 2002)

Sparsifying transformations

* Haar wavelet transformation (Haar, 1909)
* Daubechies wavelet transformation (Daubechies, 1988)
* Curvelets (Candes et.al., 2002)
* Shearlets (Kutyniok et.al., 2005)

Sparsifying transformations

* Haar wavelet transformation (Haar, 1909)
* Daubechies wavelet transformation (Daubechies, 1988)
* Curvelets (Candes et.al., 2002)
* Shearlets (Kutyniok et.al., 2005)
* Framelets (Cai et.al., 2008)

Sparsifying transformations

* Haar wavelet transformation (Haar, 1909)
* Daubechies wavelet transformation (Daubechies, 1988)
* Curvelets (Candes et.al., 2002)
* Shearlets (Kutyniok et.al., 2005)
* Framelets (Cai et.al., 2008)
* Omelets

Sparsifying transformations

* Haar wavelet transformation (Haar, 1909)
* Daubechies wavelet transformation (Daubechies, 1988)
© Curvelets (Candes et.al., 2002)
* Shearlets (Kutyniok et.al., 2005)
* Framelets (Cai et.al., 2008)
* Omelets

Sparsifying transformations

* Mathematically, a basis or redundant frame B such that:

$$
x=B z, \quad z \text { is } s \text {-sparse }(s \ll d)
$$

Sparsifying transformations

We can thus assume the images of interest are sparse

* How do we actually compress them and then how do we reconstruct them from that compression?
* Simple ad-hoc methods not feasible for practice. Need sophisticated robust machinery, motivated by applications.

Mathematical formulation

1. Signal of interest $f \in \mathbb{C}^{n}$ (or $\mathbb{C}^{N \times N}$)
2. Sampling operator $\mathcal{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$.
3. Samples $y=\mathcal{A} f+\xi$.

4. Problem: Reconstruct signal f from measurements y

Mathematical formulation

1. Signal of interest $f \in \mathbb{C}^{n}$ (or $\mathbb{C}^{N \times N}$)
2. Sampling operator $\mathcal{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$.
3. Samples $y=\mathcal{A} f+\xi$.

4. Problem: Reconstruct signal f from measurements y

Mathematical formulation

1. Signal of interest $f \in \mathbb{C}^{n}$ (or $\mathbb{C}^{N \times N}$)
2. Sampling operator $\mathcal{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$.
3. Samples $y=\mathcal{A} f+\xi$.

$$
[y]=[
$$

$$
][f]+[\xi]
$$

4. Problem: Reconstruct signal f from measurements y

Mathematical formulation

1. Signal of interest $f \in \mathbb{C}^{n}$ (or $\mathbb{C}^{N \times N}$)
2. Sampling operator $\mathcal{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$.
3. Samples $y=\mathcal{A} f+\xi$.

$$
[y]=[
$$

$$
][f]+[\xi]
$$

4. Problem: Reconstruct signal f from measurements y

Mathematical formulation

Measurements $y=\mathcal{A} f+\xi$.

$$
[y]=[\quad \mathcal{A} \quad[f]+[\xi]
$$

Assume f is sparse:

- In the coordinate basis: $\|f\|_{0} \xlongequal{\text { def }}|\operatorname{supp}(f)| \leq s \ll n$
- In orthonormal basis: $f=B x$ where $\|x\|_{0} \leq s \ll n$
- In other dictionary: $f=D x$ where $\|x\|_{0} \leq s \ll n$

In practice, we encounter compressible signals.

Mathematical formulation

Measurements $y=\mathcal{A} f+\xi$.
$[y]=[\quad \mathcal{A}] f]+[\xi]$
Assume f is sparse:

- In the coordinate basis: $\|f\|_{0} \xlongequal{\text { def }}|\operatorname{supp}(f)| \leq s \ll n$
- In orthonormal basis: $f=B x$ where $\|x\|_{0} \leq s \ll n$
- In other dictionary: $f=D x$ where $\|x\|_{0} \leq s \ll n$

In practice, we encounter compressible signals.

Mathematical formulation

Measurements $y=\mathcal{A} f+\xi$.
$[y]=[\quad \mathcal{A}] f\left[\begin{array}{l} \\ \xi]\end{array}\right.$
Assume f is sparse:

- In the coordinate basis: $\|f\|_{0} \xlongequal{\text { def }}|\operatorname{supp}(f)| \leq s \ll n$
- In orthonormal basis: $f=B x$ where $\|x\|_{0} \leq s \ll n$
- In other dictionary: $f=D x$ where $\|x\|_{0} \leq s \ll n$

In practice, we encounter compressible signals.

Mathematical formulation

Measurements $y=\mathcal{A} f+\xi$.
$\left.[y]=\left[\begin{array}{l}\mathcal{A}\end{array}\right] f\right]+[\xi]$
Assume f is sparse:

- In the coordinate basis: $\|f\|_{0} \xlongequal{\text { def }}|\operatorname{supp}(f)| \leq s \ll n$
- In orthonormal basis: $f=B x$ where $\|x\|_{0} \leq s \ll n$
- In other dictionary: $f=D x$ where $\|x\|_{0} \leq s \ll n$

In practice, we encounter compressible signals.

Mathematical formulation

Measurements $y=\mathcal{A} f+\xi$.
$\left.[y]=\left[\begin{array}{l}\mathcal{A}\end{array}\right] f\right]+[\xi]$
Assume f is sparse:

- In the coordinate basis: $\|f\|_{0} \stackrel{\text { def }}{=}|\operatorname{supp}(f)| \leq s \ll n$
- In orthonormal basis: $f=B x$ where $\|x\|_{0} \leq s \ll n$
- In other dictionary: $f=D x$ where $\|x\|_{0} \leq s \ll n$

In practice, we encounter compressible signals.

Restricted Isometry Property

- \mathcal{A} satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|\mathcal{A} f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

- Sub-gaussian measurement matrices satisfy the RIP with high probability when

$$
m \gtrsim s \log n .
$$

- Subsampled bounded orthogonal (e.g. Fourier) matrices have similar property: $m \gtrsim s \log ^{4} n$.

Restricted Isometry Property

- \mathcal{A} satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|\mathcal{A} f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

- Sub-gaussian measurement matrices satisfy the RIP with high probability when

$$
m \gtrsim s \log n
$$

- Subsampled bounded orthogonal (e.g. Fourier) matrices have similar property: $m \gtrsim s \log ^{4} n$.

Restricted Isometry Property

- \mathcal{A} satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|\mathcal{A} f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

- Sub-gaussian measurement matrices satisfy the RIP with high probability when

$$
m \gtrsim s \log n
$$

- Subsampled bounded orthogonal (e.g. Fourier) matrices have similar property: $m \gtrsim s \log ^{4} n$.

Recovery guarantees via ℓ_{1}-minimization

ℓ_{1}-minimization Candès-Romberg-Tao '06
Let A satisfy the Restricted Isometry Property and set:

$$
\hat{f}=\operatorname{argmin}_{g}\|g\|_{1} \text { such that }\|\mathcal{A} f-y\|_{2} \leq \varepsilon,
$$

where $\|\xi\|_{2} \leq \varepsilon$. Then we can stably recover the signal f :

Recovery guarantees via ℓ_{1}-minimization

ℓ_{1}-minimization Candès-Romberg-Tao '06
Let A satisfy the Restricted Isometry Property and set:

$$
\hat{f}=\operatorname{argmin}_{g}\|g\|_{1} \text { such that }\|\mathcal{A} f-y\|_{2} \leq \varepsilon,
$$

where $\|\xi\|_{2} \leq \varepsilon$. Then we can stably recover the signal f :

$$
\|f-\hat{f}\|_{2} \lesssim \varepsilon+\frac{\left\|f-f_{s}\right\|_{1}}{\sqrt{s}} .
$$

Greedy methods

(Jeff Blanchard)

1. OMP
2. CoSaMP
3. IHT
4. ...

Extensions of CS

Some non-trivial branches

1. Non-orthonormal bases
2. Quantization
3. Matrix completion (Mark Davenport)

Non-orthonormal sparsifying bases

Many (most) signals are sparse in highly redundant tight frames.

1. Oversampled DFT
2. Gabor frames
3. Curvelet frames
4. Undecimated wavelet frames
5. ONB concatenations
6. ...
7. Gradient

Non-orthonormal sparsifying bases

ℓ_{1}-analysis
For arbitrary tight frame D, one may solve the ℓ_{1}-analysis program:

$$
\hat{f}=\operatorname{argmin}_{\tilde{f} \mathbb{C}^{n}}\left\|D^{*} \tilde{f}\right\|_{1} \quad \text { subject to } \quad\|\mathcal{A} \tilde{f}-y\|_{2} \leq \varepsilon .
$$

ℓ_{1}-analysis Candès-Eldar-N-Randall ' 10
Let D be an arbitrary tight frame and let \mathcal{A} satisfy (a variant of the) RIP. Then the solution \hat{f} to ℓ_{1}-analysis satisfies

Non-orthonormal sparsifying bases

ℓ_{1}-analysis

For arbitrary tight frame D, one may solve the ℓ_{1}-analysis program:

$$
\hat{f}=\operatorname{argmin}_{\tilde{f} \in \mathbb{C}^{n}}\left\|D^{*} \tilde{f}\right\|_{1} \quad \text { subject to } \quad\|\mathcal{A} \tilde{f}-y\|_{2} \leq \varepsilon .
$$

ℓ_{1}-analysis Candès-Eldar-N-Randall ' 10

Let D be an arbitrary tight frame and let \mathcal{A} satisfy (a variant of the) RIP. Then the solution \hat{f} to ℓ_{1}-analysis satisfies

$$
\|\hat{f}-f\|_{2} \lesssim \varepsilon+\frac{\left\|D^{*} f-\left(D^{*} f\right)_{s}\right\|_{1}}{\sqrt{s}}
$$

Non-orthonormal sparsifying bases

Many (most) signals are sparse in highly redundant tight frames.

1. Oversampled DFT
2. Gabor frames
3. Curvelet frames
4. Undecimated wavelet frames
5. ONB concatenations
6. ...
7. Gradient

Gradient sparsity

Natural images and smoothly varying signals are compressible in the discrete gradient.

The discrete directional derivatives of an image $f \in \mathbb{C}^{N \times N}$ are

and the discrete gradient operator is

Gradient sparsity

Natural images and smoothly varying signals are compressible in the discrete gradient.

The discrete directional derivatives of an image $f \in \mathbb{C}^{N \times N}$ are

$$
\begin{array}{ll}
f_{x}: \mathbb{C}^{N \times N} \rightarrow \mathbb{C}^{(N-1) \times N}, & \left(f_{x}\right)_{j, k}=f_{j, k}-f_{j-1, k}, \\
f_{y}: \mathbb{C}^{N \times N} \rightarrow \mathbb{C}^{N \times(N-1)}, & \left(f_{y}\right)_{j, k}=f_{j, k}-f_{j, k-1},
\end{array}
$$

and the discrete gradient operator is

$$
\nabla[f]=\left(f_{x}, f_{y}\right)
$$

Gradient sparsity

Natural images and smoothly varying signals are compressible in the discrete gradient.

The discrete directional derivatives of an image $f \in \mathbb{C}^{N \times N}$ are

$$
\begin{array}{ll}
f_{x}: \mathbb{C}^{N \times N} \rightarrow \mathbb{C}^{(N-1) \times N}, & \left(f_{x}\right)_{j, k}=f_{j, k}-f_{j-1, k}, \\
f_{y}: \mathbb{C}^{N \times N} \rightarrow \mathbb{C}^{N \times(N-1)}, & \left(f_{y}\right)_{j, k}=f_{j, k}-f_{j, k-1},
\end{array}
$$

and the discrete gradient operator is

$$
\nabla[f]=\left(f_{x}, f_{y}\right)
$$

$\|\nabla[f]\|_{1}:=\|f\|_{\mathrm{TV}}$ is the total variation (TV).

Stable signal recovery using total-variation minimization

Theorem N-Ward '13
From $m \gtrsim s \log \left(N^{d}\right)$ RIP measurements, for any $f \in \mathbb{C}^{N^{d}}(d \geq 2)$,

$$
\hat{f}=\operatorname{argmin}\|Z\|_{T V} \quad \text { such that } \quad\|\mathcal{A}(Z)-y\|_{2} \leq \varepsilon,
$$

satisfies

$$
\|f-\hat{f}\|_{T V} \lesssim\left\|\nabla[f]-\nabla[f]_{s}\right\|_{1}+\sqrt{s \varepsilon}
$$

Stable signal recovery using total-variation minimization

Theorem N-Ward '13
From $m \gtrsim s \log \left(N^{d}\right)$ RIP measurements, for any $f \in \mathbb{C}^{N^{d}}(d \geq 2)$,

$$
\hat{f}=\operatorname{argmin}\|Z\|_{T V} \quad \text { such that } \quad\|\mathcal{A}(Z)-y\|_{2} \leq \varepsilon,
$$

satisfies

$$
\|f-\hat{f}\|_{T V} \lesssim\left\|\nabla[f]-\nabla[f]_{s}\right\|_{1}+\sqrt{s} \varepsilon
$$

and

Stable signal recovery using total-variation minimization

Theorem N-Ward '13
From $m \gtrsim s \log \left(N^{d}\right)$ RIP measurements, for any $f \in \mathbb{C}^{N^{d}}(d \geq 2)$,

$$
\hat{f}=\operatorname{argmin}\|Z\|_{T V} \quad \text { such that } \quad\|\mathcal{A}(Z)-y\|_{2} \leq \varepsilon,
$$

satisfies

$$
\|f-\hat{f}\|_{T V} \lesssim\left\|\nabla[f]-\nabla[f]_{s}\right\|_{1}+\sqrt{s} \varepsilon
$$

(gradient error)

This error guarantee is optimal up to log factors.

Stable signal recovery using total-variation minimization

Theorem N-Ward '13
From $m \gtrsim s \log \left(N^{d}\right)$ RIP measurements, for any $f \in \mathbb{C}^{N^{d}}(d \geq 2)$,

$$
\hat{f}=\operatorname{argmin}\|Z\|_{T V} \quad \text { such that } \quad\|\mathcal{A}(Z)-y\|_{2} \leq \varepsilon,
$$

satisfies

$$
\|f-\hat{f}\|_{T V} \lesssim\left\|\nabla[f]-\nabla[f]_{s}\right\|_{1}+\sqrt{s} \varepsilon
$$

(gradient error)
and

$$
\|f-\hat{f}\|_{2} \lesssim\left[\frac{\left\|\nabla[f]-\nabla[f]_{s}\right\|_{1}}{\sqrt{s}}+\varepsilon\right]
$$

(signal error)

Stable signal recovery using total-variation minimization

Theorem N-Ward '13
From $m \gtrsim s \log \left(N^{d}\right)$ RIP measurements, for any $f \in \mathbb{C}^{N^{d}}(d \geq 2)$,

$$
\hat{f}=\operatorname{argmin}\|Z\|_{T V} \quad \text { such that } \quad\|\mathcal{A}(Z)-y\|_{2} \leq \varepsilon,
$$

satisfies

$$
\|f-\hat{f}\|_{T V} \lesssim\left\|\nabla[f]-\nabla[f]_{s}\right\|_{1}+\sqrt{s} \varepsilon \quad \text { (gradient error) }
$$

and

$$
\begin{equation*}
\|f-\hat{f}\|_{2} \lesssim\left[\frac{\left\|\nabla[f]-\nabla[f]_{s}\right\|_{1}}{\sqrt{s}}+\varepsilon\right] \tag{signalerror}
\end{equation*}
$$

This error guarantee is optimal up to log factors.

The One-Bit Sparse reconstruction problem

- Standard: $f \in \mathbb{R}^{n}$ with $\|f\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle a_{i}, f\right\rangle+e_{i}, i=1, \ldots, m$.
- In practice, measurements need to be quantized
- One-Bit: extreme quantization as $y=\operatorname{sign}(\mathcal{A} f+e)$, i.e.,

$$
y_{i}=\operatorname{sign}\left(\left\langle a_{i}, f\right\rangle+e_{i}\right), \quad i=1, \ldots, m
$$

- Goal: find reconstruction maps $\Delta:\{ \pm 1\}^{m} \rightarrow \mathbb{R}^{n}$ such that,

The One-Bit Sparse reconstruction problem

- Standard: $f \in \mathbb{R}^{n}$ with $\|f\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle a_{i}, f\right\rangle+e_{i}, i=1, \ldots, m$.
- In practice, measurements need to be quantized.
- One-Bit: extreme quantization as $y=\operatorname{sign}(\mathcal{A} f+e)$, i.e.,

$$
y_{i}=\operatorname{sign}\left(\left\langle a_{i}, f\right\rangle+e_{i}\right), \quad i=1, \ldots, m .
$$

- Goal: find reconstruction maps $\Delta:\{ \pm 1\}^{m} \rightarrow \mathbb{R}^{n}$ such that,

The One-Bit Sparse reconstruction problem

- Standard: $f \in \mathbb{R}^{n}$ with $\|f\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle a_{i}, f\right\rangle+e_{i}, i=1, \ldots, m$.
- In practice, measurements need to be quantized.
> One-Bit: extreme quantization as $y=\operatorname{sign}(\mathcal{A} f+e)$, i.e.,

$$
y_{i}=\operatorname{sign}\left(\left\langle a_{i}, f\right\rangle+e_{i}\right), \quad i=1, \ldots, m
$$

- Goal: find reconstruction maps $\Delta:\{ \pm 1\}^{m} \rightarrow \mathbb{R}^{n}$ such that,

The One-Bit Sparse reconstruction problem

- Standard: $f \in \mathbb{R}^{n}$ with $\|f\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle a_{i}, f\right\rangle+e_{i}, i=1, \ldots, m$.
- In practice, measurements need to be quantized.
- One-Bit: extreme quantization as $y=\operatorname{sign}(\mathcal{A} f+e)$, i.e.,

$$
y_{i}=\operatorname{sign}\left(\left\langle a_{i}, f\right\rangle+e_{i}\right), \quad i=1, \ldots, m .
$$

- Goal: find reconstruction maps $\Delta:\{ \pm 1\}^{m} \rightarrow \mathbb{R}^{n}$ such that,

The One-Bit Sparse reconstruction problem

- Standard: $f \in \mathbb{R}^{n}$ with $\|f\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle a_{i}, f\right\rangle+e_{i}, i=1, \ldots, m$.
- In practice, measurements need to be quantized.
- One-Bit: extreme quantization as $y=\operatorname{sign}(\mathcal{A} f+e)$, i.e.,

$$
y_{i}=\operatorname{sign}\left(\left\langle a_{i}, f\right\rangle+e_{i}\right), \quad i=1, \ldots, m .
$$

- Goal: find reconstruction maps $\Delta:\{ \pm 1\}^{m} \rightarrow \mathbb{R}^{n}$ such that,
\square
where the oversampling factor is denoted

The One-Bit Sparse reconstruction problem

- Standard: $f \in \mathbb{R}^{n}$ with $\|f\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle a_{i}, f\right\rangle+e_{i}, i=1, \ldots, m$.
- In practice, measurements need to be quantized.
- One-Bit: extreme quantization as $y=\operatorname{sign}(\mathcal{A} f+e)$, i.e.,

$$
y_{i}=\operatorname{sign}\left(\left\langle a_{i}, f\right\rangle+e_{i}\right), \quad i=1, \ldots, m
$$

- Goal: find reconstruction maps $\Delta:\{ \pm 1\}^{m} \rightarrow \mathbb{R}^{n}$ such that, assuming the ℓ_{2}-normalization of f,

where the oversampling factor is denoted

The One-Bit Sparse reconstruction problem

- Standard: $f \in \mathbb{R}^{n}$ with $\|f\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle a_{i}, f\right\rangle+e_{i}, i=1, \ldots, m$.
- In practice, measurements need to be quantized.
- One-Bit: extreme quantization as $y=\operatorname{sign}(\mathcal{A} f+e)$, i.e.,

$$
y_{i}=\operatorname{sign}\left(\left\langle a_{i}, f\right\rangle+e_{i}\right), \quad i=1, \ldots, m
$$

- Goal: find reconstruction maps $\Delta:\{ \pm 1\}^{m} \rightarrow \mathbb{R}^{n}$ such that, assuming the ℓ_{2}-normalization of f,

$$
\|f-\Delta(y)\| \leq h(\lambda)
$$

where the oversampling factor is denoted

$$
\lambda:=\frac{m}{s \ln (n / s)}
$$

and h is rapidly decreasing to zero when λ increases.

Limitations of the Framework

- Power decay is optimal since

$$
\left\|f-\Delta_{\mathrm{opt}}(y)\right\|_{2} \gtrsim \lambda^{-1}
$$

even if $\operatorname{supp}(f)$ known in advance [Goyal-Vetterli-Thao '98].

- Geometric intuition

Limitations of the Framework

- Power decay is optimal since

$$
\left\|f-\Delta_{\mathrm{opt}}(y)\right\|_{2} \gtrsim \lambda^{-1}
$$

even if $\operatorname{supp}(f)$ known in advance [Goyal-Vetterli-Thao '98].

- Geometric intuition

Limitations of the Framework

- Power decay is optimal since

$$
\left\|f-\Delta_{\mathrm{opt}}(y)\right\|_{2} \gtrsim \lambda^{-1}
$$

even if $\operatorname{supp}(f)$ known in advance [Goyal-Vetterli-Thao '98].

- Geometric intuition

Adaptivity

- Remedy: adaptive choice of dithers $\tau_{1}, \ldots, \tau_{m}$ in

$$
y_{i}=\operatorname{sign}\left(\left\langle a_{i}, f\right\rangle-\tau_{i}\right), \quad i=1, \ldots, m
$$

Main results

Theorem Baraniuk-Foucart-N-Plan-Wootters '16

- Pre-quantization error, $y_{i}=\operatorname{sign}\left(\left\langle a_{i}, f\right\rangle+e_{i}-\tau_{i}\right)$: if $\|e\|_{\infty} \leq \varepsilon R 2^{-T}$ (or $\left\|e^{t}\right\|_{2} \leq \varepsilon \sqrt{q}\left\|f-f^{t}\right\|_{2}$ throughout), then

$$
\left\|f-f^{T}\right\|_{2} \leq R 2^{-T}=R \exp (-c \lambda)
$$

for the convex-optimization and hard-thresholding schemes.
if $\left|\left\{i: f_{i}^{t}=-1\right\}\right| \leq \eta q$ throughout, then

$$
\left\|f-f^{T}\right\|_{2} \leq R 2^{-T}=R \exp (-c \lambda)
$$

for the hard-thresholding scheme.

Main results

Theorem Baraniuk-Foucart-N-Plan-Wootters '16

- Pre-quantization error, $y_{i}=\operatorname{sign}\left(\left\langle a_{i}, f\right\rangle+e_{i}-\tau_{i}\right)$: if $\|e\|_{\infty} \leq \varepsilon R 2^{-T}$ (or $\left\|e^{t}\right\|_{2} \leq \varepsilon \sqrt{q}\left\|f-f^{t}\right\|_{2}$ throughout), then

$$
\left\|f-f^{T}\right\|_{2} \leq R 2^{-T}=R \exp (-c \lambda)
$$

for the convex-optimization and hard-thresholding schemes.

- Post-quantization error, $y_{i}=f_{i} \operatorname{sign}\left(\left\langle a_{i}, f\right\rangle+e_{i}-\tau_{i}\right)$: if $\left|\left\{i: f_{i}^{t}=-1\right\}\right| \leq \eta q$ throughout, then

$$
\left\|f-f^{T}\right\|_{2} \leq R 2^{-T}=R \exp (-c \lambda)
$$

for the hard-thresholding scheme.

Thank you!

E-mail:

- deanna@math.ucla.edu

Web:

- www.math.ucla.edu/~deanna/

References:

- E. J. Candès, Y. C. Eldar, D. Needell and P. Randall. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1):59-73.
- D. Needell and R. Ward. Stable image reconstruction using total variation minimization. SIAM Journal on Imaging Sciences, 6(2):1035-1058.
- D. Needell and R. Ward. Near-optimal compressed sensing guarantees for total variation minimization. IEEE Transactions on Image Processing, 22(10):3941-3949.
- R. Baraniuk, S. Foucart, D. Needell, Y. Plan, M. Wootters. Exponential decay of reconstruction error from binary measurements of sparse signals. IEEE Trans. Information Theory, vol. 63, num. 6, 3368-3385, 2017.

