#### Less is More: Compressed Sensing

**SIAM Annual Meeting** 

Deanna Needell Mathematics, UCLA









# Systems to handle big data might be this generation's moon landing

by Stacey Higginbotham 🎽 🛛 Apr. 1, 2012 - 9:00 PM PST

5 Comments

Option 1 : Build bigger computing systems



Option 1 : Build bigger computing systems

- We need the resources
- Fundamental limitations
- ✤ Wasteful (resources, energy, cost, ...)



Option 1 : Build bigger computing systems

- We need the resources
- Fundamental limitations
- ✤ Wasteful (resources, energy, cost, ...)





3 MB of internet data transfer = boiling one cup of water

(https://www.katescomment.com/energy-of-downloads/)

Option 2 : Design more efficient compression methods



Enter the world of : Compressed sensing

# Compressed sensing: motivation

Applications are numerous :

- Data storage
- Reliable data transmission
- Collaborative filtering (e.g. Netflix predictions)
- Radar
- DNA array sequencing
- Neuroscience
- Predicting earthquakes
- Restoring damaged artwork
- Crime prediction
- Image compression
- Medical imaging
- Many, many, many more...

# Representations of High Dimensional Data

Key Idea :

Modern data is too large-scale. Big data 🚅 Big understanding

Mathematical tools like Compressed Sensing provide rigorous means for representing large data in efficient ways.

This allows for efficient data acquisition, storage, and analysis.

# Representations of High Dimensional Data

Key Topics :

Mathematics of sparsity and compressed sensing

- Sampling designs
- Reconstruction methods
- Quantization issues
- Inferential tasks
  - Topic modeling
  - Clustering and classification methods
  - Numerical optimization

#### Digital Camera (Rice Univ.)





#### Digital Camera (Rice Univ.)



Hyperspectral camera (InView Corp.)













Magnetic Resonance Imaging (MRI)



Less measurements = less time









(a)





(b)



(d)





Original D

Repaired A



Corruptions

Frame 1

480 × 620 pixels

### Why is compression possible?



# Why is compression possible?



Because most practical signals, such as images, contain much less information than their dimension (e.g. 256x256 = 65,536 pixels) would suggest.

# Why is compression possible?



Because most practical signals, such as images, contain much less information than their dimension (e.g. 256x256 = 65,536 pixels) would suggest.

How to quantify this?

#### A believable example



This image is sparse.

#### A believable example



#### This image is sparse.

In a computer, images are represented by an array of numbers (0=black, 2555=white). Sparse images are those which are mostly zeros (black).

#### A little bit harder...



#### This image is NOT sparse...uh oh.

We call an image "compressible" if it is well approximated by a sparse image.

#### Ok, this one is really hard...



#### This image is NOT EVEN CLOSE to sparse...uh oh.

#### Sparsifying transformations







## Sparsifying transformations





#### Haar wavelet transformation (Haar, 1909)



## Sparsifying transformations





Haar wavelet transformation (Haar, 1909)
Daubechies wavelet transformation (Daubechies, 1988)








- Haar wavelet transformation (Haar, 1909)
- Daubechies wavelet transformation (Daubechies, 1988)
- Curvelets (Candes et.al., 2002)







- Haar wavelet transformation (Haar, 1909)
- Daubechies wavelet transformation (Daubechies, 1988)
- Curvelets (Candes et.al., 2002)
- Shearlets (Kutyniok et.al., 2005)







- Haar wavelet transformation (Haar, 1909)
- Daubechies wavelet transformation (Daubechies, 1988)
- Curvelets (Candes et.al., 2002)
- Shearlets (Kutyniok et.al., 2005)
- Framelets (Cai et.al., 2008)







- Haar wavelet transformation (Haar, 1909)
- Daubechies wavelet transformation (Daubechies, 1988)
- Curvelets (Candes et.al., 2002)
- Shearlets (Kutyniok et.al., 2005)
- Framelets (Cai et.al., 2008)
- Omelets







- Haar wavelet transformation (Haar, 1909)
- Daubechies wavelet transformation (Daubechies, 1988)
- Curvelets (Candes et.al., 2002)
- Shearlets (Kutyniok et.al., 2005)
- Framelets (Cai et.al., 2008)

Omelets



(jk)



### Mathematically, a basis or redundant frame B such that:

x = Bz, z is s-sparse (s << d)

We can thus assume the images of interest are sparse

How do we actually compress them and then how do we reconstruct them from that compression?

Simple ad-hoc methods not feasible for practice. Need sophisticated robust machinery, motivated by applications.

- 1. Signal of interest  $f \in \mathbb{C}^n$  (or  $\mathbb{C}^{N \times N}$ )
- 2. Sampling operator  $\mathcal{A} : \mathbb{C}^n \to \mathbb{C}^m$ .
- 3. Samples  $y = Af + \xi$ .



4. Problem: Reconstruct signal f from measurements y

- 1. Signal of interest  $f \in \mathbb{C}^n$  (or  $\mathbb{C}^{N \times N}$ )
- 2. Sampling operator  $\mathcal{A} : \mathbb{C}^n \to \mathbb{C}^m$ .
- 3. Samples  $y = \mathcal{A}f + \xi$ .  $\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} \mathcal{A} \end{bmatrix} \begin{bmatrix} f \end{bmatrix}$

4. Problem: Reconstruct signal f from measurements y

- 1. Signal of interest  $f \in \mathbb{C}^n$  (or  $\mathbb{C}^{N \times N}$ )
- 2. Sampling operator  $\mathcal{A} : \mathbb{C}^n \to \mathbb{C}^m$ .
- 3. Samples  $y = Af + \xi$ .



4. Problem: Reconstruct signal f from measurements y

- 1. Signal of interest  $f \in \mathbb{C}^n$  (or  $\mathbb{C}^{N \times N}$ )
- 2. Sampling operator  $\mathcal{A} : \mathbb{C}^n \to \mathbb{C}^m$ .
- 3. Samples  $y = Af + \xi$ .



4. Problem: Reconstruct signal f from measurements y

Measurements  $y = Af + \xi$ .



Assume *f* is sparse:

- ▶ In the coordinate basis:  $||f||_0 \stackrel{\text{def}}{=} |\text{supp}(f)| \le s \ll n$
- ▶ In orthonormal basis: f = Bx where  $||x||_0 \le s \ll n$
- ▶ In other dictionary: f = Dx where  $||x||_0 \le s \ll n$

Measurements  $y = Af + \xi$ .



Assume *f* is sparse:

- ▶ In the coordinate basis:  $||f||_0 \stackrel{\text{def}}{=} |\text{supp}(f)| \le s \ll n$
- ▶ In orthonormal basis: f = Bx where  $||x||_0 \le s \ll n$
- ▶ In other dictionary: f = Dx where  $||x||_0 \le s \ll n$

Measurements  $y = Af + \xi$ .



Assume *f* is sparse:

- ▶ In the coordinate basis:  $||f||_0 \stackrel{\text{def}}{=} |\text{supp}(f)| \le s \ll n$
- ▶ In orthonormal basis: f = Bx where  $||x||_0 \le s \ll n$
- ▶ In other dictionary: f = Dx where  $||x||_0 \le s \ll n$

Measurements  $y = Af + \xi$ .



Assume *f* is sparse:

- ▶ In the coordinate basis:  $||f||_0 \stackrel{\text{def}}{=} |\text{supp}(f)| \le s \ll n$
- ▶ In orthonormal basis: f = Bx where  $||x||_0 \le s \ll n$
- In other dictionary: f = Dx where  $||x||_0 \le s \ll n$

Measurements  $y = Af + \xi$ .



Assume *f* is sparse:

- ▶ In the coordinate basis:  $||f||_0 \stackrel{\text{def}}{=} |\text{supp}(f)| \le s \ll n$
- ▶ In orthonormal basis: f = Bx where  $||x||_0 \le s \ll n$
- In other dictionary: f = Dx where  $||x||_0 \le s \ll n$

#### Restricted Isometry Property

➤ A satisfies the Restricted Isometry Property (RIP) when there is δ < c such that</p>

$$(1-\delta)\|f\|_2 \le \|\mathcal{A}f\|_2 \le (1+\delta)\|f\|_2$$
 whenever  $\|f\|_0 \le s$ .

 Sub-gaussian measurement matrices satisfy the RIP with high probability when

 $m\gtrsim s\log n.$ 

Subsampled bounded orthogonal (e.g. Fourier) matrices have similar property: m ≥ s log<sup>4</sup> n.

Restricted Isometry Property

➤ A satisfies the Restricted Isometry Property (RIP) when there is δ < c such that</p>

$$(1-\delta)\|f\|_2 \le \|\mathcal{A}f\|_2 \le (1+\delta)\|f\|_2$$
 whenever  $\|f\|_0 \le s$ .

 Sub-gaussian measurement matrices satisfy the RIP with high probability when

 $m \gtrsim s \log n$ .

Subsampled bounded orthogonal (e.g. Fourier) matrices have similar property: m ≥ s log<sup>4</sup> n.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Restricted Isometry Property

➤ A satisfies the Restricted Isometry Property (RIP) when there is δ < c such that</p>

$$(1-\delta)\|f\|_2 \le \|\mathcal{A}f\|_2 \le (1+\delta)\|f\|_2$$
 whenever  $\|f\|_0 \le s$ .

 Sub-gaussian measurement matrices satisfy the RIP with high probability when

 $m \gtrsim s \log n$ .

Subsampled bounded orthogonal (e.g. Fourier) matrices have similar property: m ≥ s log<sup>4</sup> n. Recovery guarantees via  $\ell_1$ -minimization

### *l*<sub>1</sub>-minimization Candès-Romberg-Tao '06Let A satisfy the *Restricted Isometry Property* and set:

 $\hat{f} = \operatorname{argmin}_{g} \|g\|_{1}$  such that  $\|\mathcal{A}f - y\|_{2} \leq \varepsilon$ ,

where  $\|\xi\|_2 \leq \varepsilon$ . Then we can stably recover the signal f:

$$\|f - \hat{f}\|_2 \lesssim \varepsilon + \frac{\|f - f_s\|_1}{\sqrt{s}}.$$

Recovery guarantees via  $\ell_1$ -minimization

#### $\ell_1$ -minimization Candès-Romberg-Tao '06

Let A satisfy the Restricted Isometry Property and set:

$$\hat{f} = \operatorname{argmin}_{g} \|g\|_{1}$$
 such that  $\|\mathcal{A}f - y\|_{2} \leq \varepsilon$ ,

where  $\|\xi\|_2 \leq \varepsilon$ . Then we can stably recover the signal f:

$$\|f-\hat{f}\|_2 \lesssim \varepsilon + rac{\|f-f_s\|_1}{\sqrt{s}}.$$

(Jeff Blanchard)

- 1. OMP
- 2. CoSaMP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 3. IHT
- 4. ...

#### Some non-trivial branches

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Non-orthonormal bases
- 2. Quantization
- 3. Matrix completion (Mark Davenport)

Many (most) signals are sparse in highly redundant tight frames.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. Oversampled DFT
- 2. Gabor frames
- 3. Curvelet frames
- 4. Undecimated wavelet frames
- 5. ONB concatenations
- 6. ...
- 7. Gradient

 $\ell_1$ -analysis

For arbitrary tight frame D, one may solve the  $\ell_1$ -analysis program:

$$\hat{f} = \operatorname{argmin}_{\tilde{f} \in \mathbb{C}^n} \| D^* \tilde{f} \|_1$$
 subject to  $\| \mathcal{A} \tilde{f} - y \|_2 \le \varepsilon$ .

#### $\ell_1$ -analysis Candès-Eldar-N-Randall '10

Let *D* be an arbitrary tight frame and let *A* satisfy (a variant of the) RIP. Then the solution  $\hat{f}$  to  $\ell_1$ -analysis satisfies

$$\|\hat{f} - f\|_2 \lesssim \varepsilon + \frac{\|D^*f - (D^*f)_s\|_1}{\sqrt{s}}.$$

 $\ell_1$ -analysis

For arbitrary tight frame D, one may solve the  $\ell_1$ -analysis program:

$$\hat{f} = \operatorname{argmin}_{\tilde{f} \in \mathbb{C}^n} \|D^* \tilde{f}\|_1$$
 subject to  $\|\mathcal{A}\tilde{f} - y\|_2 \le \varepsilon$ .

#### $\ell_1$ -analysis Candès-Eldar-N-Randall '10

Let *D* be an arbitrary tight frame and let *A* satisfy (a variant of the) RIP. Then the solution  $\hat{f}$  to  $\ell_1$ -analysis satisfies

$$\|\hat{f} - f\|_2 \lesssim \varepsilon + \frac{\|D^*f - (D^*f)_s\|_1}{\sqrt{s}}.$$

Many (most) signals are sparse in highly redundant tight frames.

- 1. Oversampled DFT
- 2. Gabor frames
- 3. Curvelet frames
- 4. Undecimated wavelet frames
- 5. ONB concatenations
- 6. ...
- 7. Gradient

#### Gradient sparsity

Natural images and smoothly varying signals are compressible in the *discrete gradient*.



The discrete directional derivatives of an image  $f \in \mathbb{C}^{N imes N}$  are

$$\begin{aligned} f_{x} : \mathbb{C}^{N \times N} &\to \mathbb{C}^{(N-1) \times N}, \qquad (f_{x})_{j,k} = f_{j,k} - f_{j-1,k}, \\ f_{y} : \mathbb{C}^{N \times N} &\to \mathbb{C}^{N \times (N-1)}, \qquad (f_{y})_{j,k} = f_{j,k} - f_{j,k-1}, \end{aligned}$$

and the discrete gradient operator is

$$\nabla[f]=(f_x,f_y).$$

 $\|\nabla[f]\|_1 := \|f\|_{\mathsf{TV}}$  is the total variation  $(\mathsf{TV})_{(n), (B), (B), (B)}$ 

#### Gradient sparsity

Natural images and smoothly varying signals are compressible in the *discrete gradient*.



The discrete directional derivatives of an image  $f \in \mathbb{C}^{N \times N}$  are

$$\begin{split} f_x : \mathbb{C}^{N \times N} &\to \mathbb{C}^{(N-1) \times N}, \qquad (f_x)_{j,k} = f_{j,k} - f_{j-1,k}, \\ f_y : \mathbb{C}^{N \times N} &\to \mathbb{C}^{N \times (N-1)}, \qquad (f_y)_{j,k} = f_{j,k} - f_{j,k-1}, \end{split}$$

and the discrete gradient operator is

$$\nabla[f]=(f_x,f_y).$$

 $\|\nabla[f]\|_1 := \|f\|_{\mathsf{TV}}$  is the total variation  $(\mathsf{TV})_{(n)}, (n), (n) \in \mathbb{R}$ 

#### Gradient sparsity

Natural images and smoothly varying signals are compressible in the *discrete gradient*.



The discrete directional derivatives of an image  $f \in \mathbb{C}^{N \times N}$  are

$$\begin{split} f_x : \mathbb{C}^{N \times N} &\to \mathbb{C}^{(N-1) \times N}, \qquad (f_x)_{j,k} = f_{j,k} - f_{j-1,k}, \\ f_y : \mathbb{C}^{N \times N} &\to \mathbb{C}^{N \times (N-1)}, \qquad (f_y)_{j,k} = f_{j,k} - f_{j,k-1}, \end{split}$$

and the discrete gradient operator is

$$\nabla[f]=(f_x,f_y).$$

 $\|\nabla[f]\|_1 := \|f\|_{\mathsf{TV}}$  is the total variation (TV), and the set of the se

Theorem N-Ward '13 From  $m \gtrsim s \log(N^d)$  RIP measurements, for any  $f \in \mathbb{C}^{N^d}$   $(d \ge 2)$ ,  $\hat{f} = \operatorname{argmin} ||Z||_{TV}$  such that  $||\mathcal{A}(Z) - y||_2 \le \varepsilon$ ,

$$\|f - \hat{f}\|_{TV} \lesssim \|\nabla[f] - \nabla[f]_s\|_1 + \sqrt{s\varepsilon} \qquad (\text{gradient error})$$
$$\|f - \hat{f}\|_2 \lesssim \left[\frac{\|\nabla[f] - \nabla[f]_s\|_1}{\sqrt{s\varepsilon}} + \varepsilon\right] \qquad (\text{signal error})$$

This error guarantee is optimal up to log factors.

Theorem N-Ward '13 From  $m \gtrsim s \log(N^d)$  RIP measurements, for any  $f \in \mathbb{C}^{N^d}$   $(d \ge 2)$ ,  $\hat{f} = \operatorname{argmin} ||Z||_{TV}$  such that  $||\mathcal{A}(Z) - y||_2 \le \varepsilon$ , satisfies

$$\|f - \hat{f}\|_{TV} \lesssim \|\nabla[f] - \nabla[f]_{s}\|_{1} + \sqrt{s}\varepsilon \qquad \text{(gradient error)}$$

and

$$\|f - \hat{f}\|_2 \lesssim \left[ \frac{\|\nabla[f] - \nabla[f]_s\|_1}{\sqrt{s}} + \varepsilon 
ight]$$
 (signal error)

This error guarantee is optimal up to log factors.

Theorem N-Ward '13 From  $m \gtrsim s \log(N^d)$  RIP measurements, for any  $f \in \mathbb{C}^{N^d}$   $(d \ge 2)$ ,  $\hat{f} = \operatorname{argmin} ||Z||_{TV}$  such that  $||\mathcal{A}(Z) - y||_2 \le \varepsilon$ , satisfies  $||f - \hat{f}||_{TV} \lesssim ||\nabla[f] - \nabla[f]_s||_1 + \sqrt{s}\varepsilon$  (gradient error)

$$\|f - \hat{f}\|_2 \lesssim \left[\frac{\|\nabla[f] - \nabla[f]_s\|_1}{\sqrt{s}} + \varepsilon\right]$$
 (signal error)

This error guarantee is optimal up to log factors.

Theorem N-Ward '13 From  $m \gtrsim s \log(N^d)$  RIP measurements, for any  $f \in \mathbb{C}^{N^d}$   $(d \ge 2)$ ,  $\hat{f} = \operatorname{argmin} ||Z||_{TV}$  such that  $||\mathcal{A}(Z) - y||_2 \le \varepsilon$ , satisfies

$$\|f - \hat{f}\|_{TV} \lesssim \|\nabla[f] - \nabla[f]_{s}\|_{1} + \sqrt{s}\varepsilon \qquad (\text{gradient error})$$
$$\|f - \hat{f}\|_{2} \lesssim \left[\frac{\|\nabla[f] - \nabla[f]_{s}\|_{1}}{\sqrt{s}} + \varepsilon\right] \qquad (\text{signal error})$$

This error guarantee is optimal up to log factors.

and

Theorem N-Ward '13 From  $m \gtrsim s \log(N^d)$  RIP measurements, for any  $f \in \mathbb{C}^{N^d}$   $(d \ge 2)$ ,  $\hat{f} = \operatorname{argmin} ||Z||_{TV}$  such that  $||\mathcal{A}(Z) - y||_2 \le \varepsilon$ , satisfies

$$\|f - \hat{f}\|_{TV} \lesssim \|\nabla[f] - \nabla[f]_s\|_1 + \sqrt{s}\varepsilon \qquad (\text{gradient error})$$
$$\|f - \hat{f}\|_2 \lesssim \left[\frac{\|\nabla[f] - \nabla[f]_s\|_1}{\sqrt{s}} + \varepsilon\right] \qquad (\text{signal error})$$

This error guarantee is optimal up to log factors.

and

#### The One-Bit Sparse reconstruction problem

- Standard: f ∈ ℝ<sup>n</sup> with ||f||<sub>0</sub> ≤ s acquired via nonadaptive linear measurements (a<sub>i</sub>, f) + e<sub>i</sub>, i = 1,..., m.
- ▶ In practice, measurements need to be quantized.
- One-Bit: extreme quantization as y = sign(Af + e), i.e.,

$$y_i = \operatorname{sign}(\langle a_i, f \rangle + e_i), \qquad i = 1, \dots, m$$

Goal: find reconstruction maps Δ : {±1}<sup>m</sup> → ℝ<sup>n</sup> such that, assuming the ℓ<sub>2</sub>-normalization of f,

 $\|f - \Delta(y)\| \le h(\lambda)$ 

where the oversampling factor is denoted

$$\lambda := \frac{m}{s \ln(n/s)}$$

・ロット (雪) (日) (日) (日)

and *h* is rapidly decreasing to zero when  $\lambda$  increases.
Standard: f ∈ ℝ<sup>n</sup> with ||f||<sub>0</sub> ≤ s acquired via nonadaptive linear measurements (a<sub>i</sub>, f) + e<sub>i</sub>, i = 1,..., m.

▶ In practice, measurements need to be quantized.

• One-Bit: extreme quantization as y = sign(Af + e), i.e.,

$$y_i = \operatorname{sign}(\langle a_i, f \rangle + e_i), \qquad i = 1, \dots, m$$

Goal: find reconstruction maps Δ : {±1}<sup>m</sup> → ℝ<sup>n</sup> such that, assuming the ℓ<sub>2</sub>-normalization of f,

 $\|f - \Delta(y)\| \le h(\lambda)$ 

where the oversampling factor is denoted

$$\lambda := \frac{m}{s \ln(n/s)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Standard: f ∈ ℝ<sup>n</sup> with ||f||<sub>0</sub> ≤ s acquired via nonadaptive linear measurements (a<sub>i</sub>, f) + e<sub>i</sub>, i = 1,..., m.
- ► In practice, measurements need to be quantized.
- One-Bit: extreme quantization as  $y = \operatorname{sign}(\mathcal{A}f + e)$ , i.e.,

$$y_i = \operatorname{sign}(\langle a_i, f \rangle + e_i), \qquad i = 1, \dots, m_i$$

▶ Goal: find reconstruction maps  $\Delta : \{\pm 1\}^m \to \mathbb{R}^n$  such that, assuming the  $\ell_2$ -normalization of f,

 $\|f - \Delta(y)\| \le h(\lambda)$ 

where the oversampling factor is denoted

$$\lambda := \frac{m}{s \ln(n/s)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Standard: f ∈ ℝ<sup>n</sup> with ||f||<sub>0</sub> ≤ s acquired via nonadaptive linear measurements (a<sub>i</sub>, f) + e<sub>i</sub>, i = 1,..., m.
- In practice, measurements need to be quantized.
- One-Bit: extreme quantization as y = sign(Af + e), i.e.,

$$y_i = \operatorname{sign}(\langle a_i, f \rangle + e_i), \qquad i = 1, \dots, m_i$$

Goal: find reconstruction maps Δ : {±1}<sup>m</sup> → ℝ<sup>n</sup> such that, assuming the ℓ<sub>2</sub>-normalization of f,

 $\|f - \Delta(y)\| \le h(\lambda)$ 

where the oversampling factor is denoted

$$\lambda := \frac{m}{s \ln(n/s)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Standard: f ∈ ℝ<sup>n</sup> with ||f||<sub>0</sub> ≤ s acquired via nonadaptive linear measurements (a<sub>i</sub>, f) + e<sub>i</sub>, i = 1,..., m.
- In practice, measurements need to be quantized.
- One-Bit: extreme quantization as y = sign(Af + e), i.e.,

$$y_i = \operatorname{sign}(\langle a_i, f \rangle + e_i), \qquad i = 1, \dots, m_i$$

Goal: find reconstruction maps Δ : {±1}<sup>m</sup> → ℝ<sup>n</sup> such that, assuming the ℓ<sub>2</sub>-normalization of f,

$$\|f - \Delta(y)\| \le h(\lambda)$$

where the oversampling factor is denoted

$$\lambda := \frac{m}{s \ln(n/s)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Standard: f ∈ ℝ<sup>n</sup> with ||f||<sub>0</sub> ≤ s acquired via nonadaptive linear measurements (a<sub>i</sub>, f) + e<sub>i</sub>, i = 1,..., m.
- In practice, measurements need to be quantized.
- One-Bit: extreme quantization as y = sign(Af + e), i.e.,

$$y_i = \operatorname{sign}(\langle a_i, f \rangle + e_i), \qquad i = 1, \dots, m_i$$

▶ Goal: find reconstruction maps  $\Delta : \{\pm 1\}^m \to \mathbb{R}^n$  such that, assuming the  $\ell_2$ -normalization of f,

 $\|f - \Delta(y)\| \le h(\lambda)$ 

where the oversampling factor is denoted

$$\lambda := \frac{m}{s \ln(n/s)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Standard: f ∈ ℝ<sup>n</sup> with ||f||<sub>0</sub> ≤ s acquired via nonadaptive linear measurements (a<sub>i</sub>, f) + e<sub>i</sub>, i = 1,..., m.
- In practice, measurements need to be quantized.
- One-Bit: extreme quantization as y = sign(Af + e), i.e.,

$$y_i = \operatorname{sign}(\langle a_i, f \rangle + e_i), \qquad i = 1, \dots, m_i$$

Goal: find reconstruction maps Δ : {±1}<sup>m</sup> → ℝ<sup>n</sup> such that, assuming the ℓ<sub>2</sub>-normalization of f,

$$\|f - \Delta(y)\| \le h(\lambda)$$

where the oversampling factor is denoted

$$\lambda := \frac{m}{s \ln(n/s)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Limitations of the Framework

Power decay is optimal since

$$\|f - \Delta_{\mathrm{opt}}(y)\|_2 \gtrsim \lambda^{-1}$$

even if supp(f) known in advance [Goyal-Vetterli-Thao '98].

Geometric intuition



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Limitations of the Framework

Power decay is optimal since

$$\|f - \Delta_{\mathrm{opt}}(y)\|_2 \gtrsim \lambda^{-1}$$

even if supp(f) known in advance [Goyal-Vetterli-Thao '98].Geometric intuition



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Limitations of the Framework

Power decay is optimal since

$$\|f - \Delta_{\mathrm{opt}}(y)\|_2 \gtrsim \lambda^{-1}$$

even if supp(f) known in advance [Goyal-Vetterli-Thao '98].

Geometric intuition



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

# Adaptivity



• Remedy: adaptive choice of dithers  $\tau_1, \ldots, \tau_m$  in

$$y_i = \operatorname{sign}(\langle a_i, f \rangle - \tau_i), \qquad i = 1, \ldots, m.$$

### Main results

#### Theorem Baraniuk-Foucart-N-Plan-Wootters '16

▶ Pre-quantization error,  $y_i = \operatorname{sign}(\langle a_i, f \rangle + e_i - \tau_i)$ : if  $||e||_{\infty} \leq \varepsilon R 2^{-T}$  (or  $||e^t||_2 \leq \varepsilon \sqrt{q} ||f - f^t||_2$  throughout), then

$$||f - f^{T}||_{2} \le R 2^{-T} = R \exp(-c\lambda)$$

for the convex-optimization and hard-thresholding schemes.

▶ Post-quantization error,  $y_i = f_i \operatorname{sign}(\langle a_i, f \rangle + e_i - \tau_i)$ : if  $|\{i : f_i^t = -1\}| \le \eta q$  throughout, then

$$||f - f^{T}||_{2} \le R 2^{-T} = R \exp(-c\lambda)$$

for the hard-thresholding scheme.

### Main results

#### Theorem Baraniuk-Foucart-N-Plan-Wootters '16

▶ Pre-quantization error,  $y_i = \operatorname{sign}(\langle a_i, f \rangle + e_i - \tau_i)$ : if  $||e||_{\infty} \leq \varepsilon R 2^{-T}$  (or  $||e^t||_2 \leq \varepsilon \sqrt{q} ||f - f^t||_2$  throughout), then

$$||f - f^{T}||_{2} \le R 2^{-T} = R \exp(-c\lambda)$$

for the convex-optimization and hard-thresholding schemes.

► Post-quantization error,  $y_i = f_i \operatorname{sign}(\langle a_i, f \rangle + e_i - \tau_i)$ : if  $|\{i : f_i^t = -1\}| \le \eta q$  throughout, then

$$\|f - f^{\mathsf{T}}\|_2 \le R \, 2^{-\mathsf{T}} = R \exp(-c\lambda)$$

for the hard-thresholding scheme.

# Thank you!

### E-mail:

deanna@math.ucla.edu

### Web:

www.math.ucla.edu/~deanna/

#### **References:**

- E. J. Candès, Y. C. Eldar, D. Needell and P. Randall. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1):59-73.
- D. Needell and R. Ward. Stable image reconstruction using total variation minimization. SIAM Journal on Imaging Sciences, 6(2):1035-1058.
- D. Needell and R. Ward. Near-optimal compressed sensing guarantees for total variation minimization. IEEE Transactions on Image Processing, 22(10):3941-3949.
- R. Baraniuk, S. Foucart, D. Needell, Y. Plan, M. Wootters. Exponential decay of reconstruction error from binary measurements of sparse signals. IEEE Trans. Information Theory, vol. 63, num. 6, 3368 - 3385, 2017.