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How	can	we	handle	all	this	data?
Option	1	:	Build	bigger	computing	systems

v We	need	the	resources
v Fundamental	limitations
v Wasteful	(resources,	energy,	cost,	…)

3	MB	of	internet	data	transfer				=								boiling	one	cup	of	water
(https://www.katescomment.com/energy-of-downloads/)



How	can	we	handle	all	this	data?
Option	2	:	Design	more	efficient	compression	methods

Enter	the	world	of	:	Compressed	sensing	



Compressed	sensing:	motivation
Applications	are	numerous	:

v Data	storage
v Reliable	data	transmission
v Collaborative	filtering	(e.g.	Netflix	predictions)
v Radar
v DNA	array	sequencing
v Neuroscience
v Predicting	earthquakes
v Restoring	damaged	artwork
v Crime	prediction
v Image	compression
vMedical	imaging
vMany,	many,	many	more…



Representations	of	High	Dimensional	
Data

Key	Idea	:	

Modern	data	is	too	large-scale.	Big	data								Big	understanding

Mathematical	tools	like	Compressed	Sensing	provide	
rigorous	means	for	representing	large	data	in	efficient	ways.

This	allows	for	efficient	data	acquisition,	storage,	and	
analysis.	



Representations	of	High	Dimensional	
Data

Key	Topics	:	

vMathematics	of	sparsity	and	compressed	sensing
v Sampling	designs
v Reconstruction	methods
v Quantization	issues

v Inferential	tasks
v Topic	modeling
v Clustering	and	classification	methods
v Numerical	optimization
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Because	most	practical	signals,	such	as	images,	contain	much	less	
information	than	their	dimension	(e.g.	256x256	=	65,536	pixels)	
would	suggest.



Why	is	compression	possible?

Because	most	practical	signals,	such	as	images,	contain	much	less	
information	than	their	dimension	(e.g.	256x256	=	65,536	pixels)	
would	suggest.

How	to	quantify	this?
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A	believable	example

This	image	is	sparse.

In	a	computer,	images	are	represented	by	an	array	of	numbers	(0=black,	
2555=white).	Sparse images	are	those	which	are	mostly	zeros	(black).



A	little	bit	harder…

This	image	is	NOT	sparse…uh	oh.

We	call	an	image	“compressible”	if	it	is	well	approximated	by	a	sparse	image.



Ok,	this	one	is	really	hard…

This	image	is	NOT	EVEN	CLOSE	to	sparse…uh	oh.
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Sparsifying transformations

v Haar wavelet	transformation	(Haar,	1909)
v Daubechies wavelet	transformation	(Daubechies,	1988)
v Curvelets (Candes et.al.,	2002)
v Shearlets (Kutyniok et.al.,	2005)
v Framelets (Cai et.al.,	2008)
v Omelets																																					(jk)



Sparsifying transformations

vMathematically,	a	basis	or	redundant	frame	B	such	that:

x	=	Bz,			z	is	s-sparse	(s	<<	d)



Sparsifying transformations
vWe	can	thus	assume	the	images	of	interest	are	sparse

vHow do	we	actually	compress them	and	then	how do	we	
reconstruct them	from	that	compression?

vSimple	ad-hoc	methods	not	feasible	for	practice.	Need	
sophisticated	robust	machinery,	motivated	by	applications.



Mathematical formulation

1. Signal of interest f ∈ Cn (or CN×N)

2. Sampling operator A : Cn → Cm.

3. Samples y = Af + ξ.

y
 =

 A



f

 +

ξ


4. Problem: Reconstruct signal f from measurements y
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Mathematical formulation

Measurements y = Af + ξ.

y
 =

 A



f
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ξ


Assume f is sparse:

I In the coordinate basis: ‖f ‖0
def
= |supp(f )| ≤ s � n

I In orthonormal basis: f = Bx where ‖x‖0 ≤ s � n

I In other dictionary: f = Dx where ‖x‖0 ≤ s � n

In practice, we encounter compressible signals.
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Restricted Isometry Property

I A satisfies the Restricted Isometry Property (RIP) when there
is δ < c such that

(1− δ)‖f ‖2 ≤ ‖Af ‖2 ≤ (1 + δ)‖f ‖2 whenever ‖f ‖0 ≤ s.

I Sub-gaussian measurement matrices satisfy the RIP with high
probability when

m & s log n.

I Subsampled bounded orthogonal (e.g. Fourier) matrices have
similar property: m & s log4 n.
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Recovery guarantees via `1-minimization

`1-minimization Candès-Romberg-Tao ’06

Let A satisfy the Restricted Isometry Property and set:

f̂ = argmin g‖g‖1 such that ‖Af − y‖2 ≤ ε,

where ‖ξ‖2 ≤ ε. Then we can stably recover the signal f :

‖f − f̂ ‖2 . ε+
‖f − fs‖1√

s
.
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Greedy methods

(Jeff Blanchard)

1. OMP

2. CoSaMP

3. IHT

4. ...



Extensions of CS

Some non-trivial branches

1. Non-orthonormal bases

2. Quantization

3. Matrix completion (Mark Davenport)



Non-orthonormal sparsifying bases

Many (most) signals are sparse in highly redundant tight frames.

1. Oversampled DFT

2. Gabor frames

3. Curvelet frames

4. Undecimated wavelet frames

5. ONB concatenations

6. ...

7. Gradient



Non-orthonormal sparsifying bases

`1-analysis

For arbitrary tight frame D, one may solve the `1-analysis program:

f̂ = argmin f̃ ∈Cn‖D∗f̃ ‖1 subject to ‖Af̃ − y‖2 ≤ ε.

`1-analysis Candès-Eldar-N-Randall ’10

Let D be an arbitrary tight frame and let A satisfy (a variant of
the) RIP. Then the solution f̂ to `1-analysis satisfies

‖f̂ − f ‖2 . ε+
‖D∗f − (D∗f )s‖1√

s
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Gradient sparsity
Natural images and smoothly varying signals are compressible in
the discrete gradient.

The discrete directional derivatives of an image f ∈ CN×N are

fx : CN×N → C(N−1)×N , (fx)j ,k = fj ,k − fj−1,k ,

fy : CN×N → CN×(N−1), (fy )j ,k = fj ,k − fj ,k−1,

and the discrete gradient operator is

∇[f ] = (fx , fy ).

‖∇[f ]‖1 := ‖f ‖TV is the total variation (TV).
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Stable signal recovery using total-variation minimization

Theorem N-Ward ’13

From m & s log(Nd) RIP measurements, for any f ∈ CNd
(d ≥ 2),

f̂ = argmin ‖Z‖TV such that ‖A(Z )− y‖2 ≤ ε,

satisfies

‖f − f̂ ‖TV . ‖∇[f ]−∇[f ]s‖1 +
√
sε (gradient error)

and

‖f − f̂ ‖2 .
[‖∇[f ]−∇[f ]s‖1√

s
+ ε

]
(signal error)

This error guarantee is optimal up to log factors.



Stable signal recovery using total-variation minimization

Theorem N-Ward ’13

From m & s log(Nd) RIP measurements, for any f ∈ CNd
(d ≥ 2),

f̂ = argmin ‖Z‖TV such that ‖A(Z )− y‖2 ≤ ε,

satisfies

‖f − f̂ ‖TV . ‖∇[f ]−∇[f ]s‖1 +
√
sε (gradient error)

and

‖f − f̂ ‖2 .
[‖∇[f ]−∇[f ]s‖1√

s
+ ε

]
(signal error)

This error guarantee is optimal up to log factors.



Stable signal recovery using total-variation minimization

Theorem N-Ward ’13

From m & s log(Nd) RIP measurements, for any f ∈ CNd
(d ≥ 2),

f̂ = argmin ‖Z‖TV such that ‖A(Z )− y‖2 ≤ ε,

satisfies

‖f − f̂ ‖TV . ‖∇[f ]−∇[f ]s‖1 +
√
sε (gradient error)

and

‖f − f̂ ‖2 .
[‖∇[f ]−∇[f ]s‖1√

s
+ ε

]
(signal error)

This error guarantee is optimal up to log factors.



Stable signal recovery using total-variation minimization

Theorem N-Ward ’13

From m & s log(Nd) RIP measurements, for any f ∈ CNd
(d ≥ 2),

f̂ = argmin ‖Z‖TV such that ‖A(Z )− y‖2 ≤ ε,

satisfies

‖f − f̂ ‖TV . ‖∇[f ]−∇[f ]s‖1 +
√
sε (gradient error)

and

‖f − f̂ ‖2 .
[‖∇[f ]−∇[f ]s‖1√

s
+ ε

]
(signal error)

This error guarantee is optimal up to log factors.



Stable signal recovery using total-variation minimization

Theorem N-Ward ’13

From m & s log(Nd) RIP measurements, for any f ∈ CNd
(d ≥ 2),

f̂ = argmin ‖Z‖TV such that ‖A(Z )− y‖2 ≤ ε,

satisfies

‖f − f̂ ‖TV . ‖∇[f ]−∇[f ]s‖1 +
√
sε (gradient error)

and

‖f − f̂ ‖2 .
[‖∇[f ]−∇[f ]s‖1√

s
+ ε

]
(signal error)

This error guarantee is optimal up to log factors.



The One-Bit Sparse reconstruction problem

I Standard: f ∈ Rn with ‖f ‖0 ≤ s acquired via nonadaptive
linear measurements 〈ai , f 〉+ ei , i = 1, . . . ,m.

I In practice, measurements need to be quantized.

I One-Bit: extreme quantization as y = sign(Af + e), i.e.,

yi = sign(〈ai , f 〉+ ei ), i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,
assuming the `2-normalization of f ,

‖f −∆(y)‖ ≤ h(λ)

where the oversampling factor is denoted

λ :=
m

s ln(n/s)

and h is rapidly decreasing to zero when λ increases.
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Limitations of the Framework

I Power decay is optimal since

‖f −∆opt(y)‖2 & λ−1

even if supp(f ) known in advance [Goyal-Vetterli-Thao ’98].

I Geometric intuition

Sn−1
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Adaptivity

Sn−1

f

I Remedy: adaptive choice of dithers τ1, . . . , τm in

yi = sign(〈ai , f 〉 − τi ), i = 1, . . . ,m.



Main results

Theorem Baraniuk-Foucart-N-Plan-Wootters ’16

I Pre-quantization error, yi = sign(〈ai , f 〉+ ei − τi ) :
if ‖e‖∞ ≤ εR 2−T (or ‖et‖2 ≤ ε

√
q‖f − f t‖2 throughout),

then
‖f − f T‖2 ≤ R 2−T = R exp(−cλ)

for the convex-optimization and hard-thresholding schemes.

I Post-quantization error, yi = fi sign(〈ai , f 〉+ ei − τi ) :
if |{i : f ti = −1}| ≤ ηq throughout, then

‖f − f T‖2 ≤ R 2−T = R exp(−cλ)

for the hard-thresholding scheme.
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Thank you!

E-mail:

I deanna@math.ucla.edu

Web:

I www.math.ucla.edu/~deanna/
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