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What 1s a ‘singular pattern’?

e Multiple scale systems — or SP PDEs — appear naturally in ‘applications’.

e While exhibiting behavior of a richness comparable to general, non-SP sys-
tems, the SP nature of these systems provides a framework — based on various
¢ — 0 limits — by which the behavior of the patterns can be unraveled.

The theme of today:

The strong cross-

fertilization between

applications and the | gt S G S
development of Sl ot L
mathematical theory. |




Structure of the talk

» Autocatalytic reactions & Gray-Scott dynamics.
— Semi-strong pulse interactions.

» Spatial ecology, vegetation patterns and desertification.
— Pattern dynamics of under slowly varying circumstances.

 The Busse balloon: turbulence <« desertification.

— Slowly nonlinear singularly perturbed equations.
— A fine-structure of the boundary of the Busse balloon.

« Pattern dynamics under slowly varying conditions.
«— The impact of the speed of change.

«— Catastrophic <> gradual decline. T some
Intermezzos

e (Conclusions & Discussion.



CHEMISTRY: Autocatalytic chemical reactions

(I) J.E. Pearson, Complex patterns in a simple system, Science (1994).

Computer
simulations
of the
Gray-Scott
RDE.

Diffusion
coefficient




(II) K.J. Lee, W.D. McCormick, J.E. Pearson, H.L. Swinney,

diffusion system, Nature (1994).

aDoralory experiment

The dynamics of ‘self-
replicating’ spots and pulses.

— The interaction of localized
structures beyond the weak
interaction limit.

Experimental observation of self-replicating spots in a reaction-

Dynamics of an

autocatalytic chemical
reaction.

Numerical simulations
of the Gray-Scott
model.




Weak < Strong interactions

WEAK 1nteractions:
| [ pulses are so far apart that they
% .. |only ‘communicate’ through
“ ’ " |exponentially small ‘tail-tail’
interactions — pulses behave as

(e

[E1, Mimura, Promuslow, Sandstede, Zelik, ...]|

STRONG
interactions: the
pulse splitting
process — all

components
change.
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A pair of pulses in semi-strong interaction:
the ‘fast’ component 1s exponentially small

| | between pulses, the ‘slow’ component varies
‘at leading order’.

|| — Pulses change in amplitude & shape during
the evolution/interaction, they may even ‘push’
each other through a ‘dynamic bifurcation’.

Biology! Methods developed in context
of (the GS and) the Gierer-Meinhardt
(GM) model for morphogenesis.




SPATIAL ECOLOGY: vegetation patterns & desertification

OB — Desertification Vulnerability

“Drylands occupy approximately 40—41% of Earth's land area and are home to
more than 2 billion people. It has been estimated that 10-20% of drylands are
already degraded, and that a billion people are under threat from further
desertification.”

< Mary Silber Pattern Formation in the Drylands on Monday
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Desertification = The process by which a vegetated state
transforms — or collapses — into a bare soil state.

* (Caused by a slow change 1n the
‘environment’.
Patterns appear as ‘carly’
warning signal.
Partly discontinuous/fast —
catastrophic — partly gradual.
[rriversible — Hysteresis

Questions from ecology:

* When 1s the process
catastrophic and when is it
gradual? The mathematical perspective:
Can we predict the “collapse’? || The dynamics of singular
Can we measure ‘how far’ the patterns under slowly varying
system 1s from the desert state? || circumstances (— parameters).




.' ' = o _ |Rietkerk & van
de Koppel, ’08]:
Pattern
formation in
ecological
systems is driven
by counteracting
feedback
mechanisms on

widely different
spatial scales.

Mathematics:
The dynamics of
singular patterns.




The generalized Klausmeier-Gray-Scott model

{ U, DA @ —UVE 1A —1)
Vi

D,AV +UV4 —BV
(' =0 : Gray—>cott, U,V ~ concentrations

D, = 0 : Klausmeier, U,V ~ water and biomass

|

with

Both models are highly simplified /conceptual:

e (K) A ~ rainfall, constant in time and space??

o (K)UV? ~ f(U,V) x V uptake of water.

e (GS) UV* ~ ‘reduction’ of several reaction steps.

Singularly perturbed?!

e (GS)0< D, =<« 177

o (K) D, # 0 ~ spread of water on flat terrains.
e (K)0< D, =¢* < 1!



The generalized Klausmeier-Gray-Scott model

{ U, DA @ —UVE 1A —1)
Vi

D,AV +UV4 —BV
(' =0 : Gray—>cott, U,V ~ concentrations

D, = 0 : Klausmeier, U,V ~ water and biomass

|

with

Both models are highly simplified /conceptual:

e (K) A ~ rainfall, constant in time and space??

o (K)UV? ~ f(U,V) x V uptake of water.

e (GS) UV* ~ ‘reduction’ of several reaction steps.

Singularly perturbed?!

e (GS)0< D, =<« 177

o (K) D, # 0 ~ spread of water on flat terrains.
e (K)0< D, =¢* < 1!



SPATIAL ECOLOGY: vegetation patterns & desertification

O e Desertification Vulnerability

“Drylands occupy approximately 40—41% of Earth's land area and are home to
more than 2 billion people. It has been estimated that 10-20% of drylands are
already degraded, and that a billion people are under threat from further
desertification.”

< Mary Silber Pattern Formation in the Drylands on Monday



The generalized Klausmeier-Gray-Scott model

{ U, DAU +CU, —-UV? +A(1-TU)
Vi

D, AV £V2 —BV
(' =0 : Gray—Scott, U,V ~ concentrations

D, = 0 : Klausmeier, U,V ~ water and biomass

with

Both models are highly simplified /conceptual:

e (K) A ~ rainfall, constant in time and space??

o (K)UV?~ f(U,V) x V uptake of water.

e (GS) UV* ~ ‘reduction’ of several reaction steps.

Singularly perturbed?!
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Intermezzo: spatial ecology & singular patterns

|Rietkerk & van
de Koppel, '08]:
Pattern
formation in

ecological
systems is driven
by counteracting

feedback
mechanisms on
widely different
spatial scales.

Mathematics:
The dynamics of
singular patterns.




There 1s a remarkable — expected!? — similarity between
observed vegetation patterns and GS simulations.

Can we use our mathematical insights in systems of SP RDEs to
obtain insight in the process of desertification?

Cross-fertilization: novel mathematical theory motivated by
questions from and observations in ecology.

» Consider — for simplicity — patterns n 1
space dimension.

* Fundamental question: What kind of
patterns can be exhibited by the model?
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This question was first answered (numerically) by Fritz
Busse 1n 1978 for roll patterns in convection.

. o, The Busse balloon

— Definition: a Busse balloon = a
region in (wavenumber,
parameter)-space in which stable
spatially periodic patterns exist

In convection, the Busse balloon
is the first step from fluid-at-rest

ge—t—tlu_u—o | t(eventually) turbulence.
wave number k

bifurcation parameter R

Zig-zag R,
instability
I

i i i i

1-0




A Busse balloon for the Gray-Scott/gKGS model

- equilibrium
L by
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(Non-ecological) Observations/Questions

* Unlike m fluid dynamics, there are no stable patterns of increasing
complexity bifurcating from (the boundary of) the Busse balloon?

| From morphogenesis to morphothanatos & nothing else??]

* There 1s a fine-structure of ‘intertwining’ boundary curves near the
homoclinic tip of the Busse balloon?

| The same behavior is exhibited by the Gierer-Meinhardt model!]

" sideband

/
o :\ +1 f:f Busse—balloon
.25 g H 4
. =1 /

) 0.0 0.0 : 004D N CEDY
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I L

[s this perhaps due to the special nature of these models??
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(Non-ecological) Observations/Questions

* Unlike mn flid dynamics, there are no stable patterns of increasing
complexity bifurcating from (the boundary of) the Busse balloon?
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homoclinic tip of the Busse balloon?
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Pulse dynamics 1n slowly nonlinear SP RDEs

|[Veerman & D, ’13, ’15] Existence & stability of homoclinic pulses.

[ Veerman, ’15] A general method to construct the center manifold
reduction associated to the destabilization of a homoclinic pulse in a
slowly nonlinear SP 2-component RDE: the Hopf bifurcation may
be supercritical. (The Hopf bifurcation is subcritical in the GM RDE.)

| Veerman & D, *13, ’15] The Hopf bifurcation may be the first step
towards complex/chaotic pulse dynamics (« fluid dynamics!).

i

The dynamics

of the tip of a
“1“!“1 solitary,

’ ‘ || |standing,
|H “""[ | homoclinic
pulse

|| nw'\ml“ i

i
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Pulse dynamics in slowly nonlinear SP RDEs

[Veerman & D, '13, "15] Existence & stability of homoclinic pulses.
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be supercritical. (The Hopf bifurcation is subcritical in the GM RDE.)

| Veerman & D, *13, ’15] The Hopf bifurcation may be the first step
towards complex/chaotic pulse dynamics (« fluid dynamics!).

| |The dynamics
T
tanding,
‘Ilh‘ml |||||| ||‘| l‘ nmlh”lhh” N"h ]ic?l?]oléll?nic

pulse

10 20 30 40 50 60 70 80 ©0



e The spectrum o(V,) associated to a spatially periodic pattern
U,(x) — with wavelength ¢ — consists of (up to countably many)
‘closed loop images’ A\y(7y) of S*.

e The loops A¢(7) degenerate to ‘curved intervals’ if Ay(y) is station-
ary and (reversibly) symmetric, with v = £1 as endpoints.

o If U,(x) approaches a homoclinic limit ¥ (x) as £ — oo, then
o(V,) merges with o(V ), the spectrum associated to the ‘localized
structure lI}OC (I) |Gardner, Sandstede & Scheel]
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(Non-ecological) Observations/Questions

 Unlike n fluid dynamics, there are no stable patterns of increasing
complexity bifurcating from (the boundary of) the Busse balloon?

| From morphogenesis to morphothanatos & nothing else??]

* There 1s a fine-structure of ‘intertwining’ boundary curves near the
homoclinic tip of the Busse balloon?

[ The same behavior 1s exhibited by the Gierer-Meinhardt model!]
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Slowly linear & slowly nonlinear SP RDEs

General SP RDE (for simplicity in 2 components),

Uy
Vi
Outside the ‘fast” V-pulses (or fronts) — where, by translation,

V' =0 (4 exp. small) — the dynamics are governed by,

UI{ = Ua::,r -+ FI(Lr 05)

U,. F(U,V;e)
g4y G(U,V;e)

|

F(U,Q0;¢) is linear in U for all (77) explicit models

in the literature (GS, GM, gKGS, FH-N, Schnakenberg).

The ‘prototypical’ GS-, GM-, etc. models belong to the special class
of ‘slowly linear’ SP RDEs,

a significantly restricted (7) subclass of

the general ‘slowly nonlinear’ SP RDEs.



Pulse dynamics in slowly nonlinear SP RDEs

* [Veerman & D, 13, ’15] Existence & stability of homoclinic pulses.

* [Veerman, ’'15] A general method to construct the center manifold
reduction associated to the destabilization of a homoclinic pulse in a
slowly nonlinear SP 2-component RDE: the Hopf bifurcation may
be supercritical. (The Hopf bifurcation is subcritical in the GM RDE.)

[ Veerman & D, *13, ’15] The Hopf bifurcation may be the first step
towards complex/chaotic pulse dynamics (< fluid dynamics!).
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The spectrum associated to spatially periodic patterns

e The spectrum o(W¥,) associated to a spatially periodic pattern
U,(x) — with wavelength ¢ — consists of (up to countably many)
‘closed loop images’ \¢(7y) of S*.

e The loops A\¢(v) degenerate to ‘curved intervals’ if \y(y) is station-
ary and (reversibly) symmetric, with v = £1 as endpoints.

o If U,(x) approaches a homoclinic limit ¥ (x) as £ — oo, then
o(V,) merges with o(V ), the spectrum associated to the ‘localized
structure \I]DC (I) | Gardner, Sandstede & Scheel]



1 the semi-strong setting, o(W,) can be determined asymptotically:
In the semi-strong setting, o(W,) can be determined asymptotically

e The branch A\y(7) near A\ by decomposing the Evans function.
(|de Rijk, D. & Rademacher, '16|: a Riccatti transformation.)
e The asymptotically ‘small spectrum’ attached to A = 0.
(|de Rijk, '17]: Lin’s method & exponential trichotomies.)

e \/(7) ‘rotates’, ‘straightens’ and shrinks as function of ¢.
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N1’s conjecture and the Hopt dance

Weil-Ming N1 (on GM,’98): The homoclinic limit pattern 1s the most
stable pattern “within’ the family of spatially periodic patterns.

([D, Rademacher & vdStelt, "12]: ‘Ni’ holds for classical GM.)

e The boundary of the Busse balloon has a fine-structure of 2 inter-

twining Hopf curves, H.; and H_,: the Hopf dance.



The ‘belly dance’ L

e \(7) is weakly ‘bent’

- Im(A)
<+]
Re(A)
Im(A)
+1 -1
Re(A)

+1

Im

+1 Im(A)
/
-1
Re(A)
-1 | Im(A)
=l |
Re(A)

Fold

Im(A)
+1 -1
Re(A)
| Im(A)
‘
Re(A)

A boundary of 2
intertwining Hopf
curves, without
co-dimension 2

‘corners’?? (NO!)

The belly “flips’
to the other side
(w.r.t the
connecting
straight line

between its
endpoints) in
half a rotation
of the spectral
curve.




The dynamics of patterns under slowly varying conditions

‘mini-catastrophes’ Turing/morphogenesis

DESERTIFICATION: the final collapse/morphothanatos
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‘A game of billiards’ inside a Busse balloon (??)

‘Dynamics
under slowly
varying
parameters’
is a well-
studied — but
also quite
recent —
subject 1n
finite-dim.
ODE:s.

[t 1s a novel
subject of
study n
PDEs.
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The impact of the rate of change dA/dt

1.7 . . _ |
dA/dt=-10" dA/dt=-10"*
15 No noise _T 4 No noise b 4
<T 1
05 r
-
0.3 - : - - :
0 0.1 0.2 0.3 04 045 0 0.1 0.2 0.3 04 0.45

* If dA/dt s "too large’, then the “internal dynamics’ of the system
cannot adapt.

The first (& only) (mini-)catastrophe 1s delayed. Desertification
occurs at the initial (Turing) wavenumber. However,
‘morphotanatos’ sets in for a higher value of 4.

(<> Collapse to bare soil with “sufficient’ rainfall.)

[Siteur, Siero, D., Eppinga, Rademacher & Rietkerk, 14 & *16]



The impact of noise

1.7 . . .. ._ §
dA/dt=-10" dA/dt=-10"
1.5 | Noiselevel 10 _T | | Noise level 10 JJJ q
<< ] -
05 + 1|
R —— ____[_
0.3 - - - . |
0 0.1 0.2 03 04 0450 0.1 0.2 03 04 045

As expected from ODE-insights, noise reduces the delay effects:
the boundary of the Busse balloon becomes a(n even) better
‘predictor’.

Moreover, by increasing the noise level, the pattern sticks closer
& closer to the boundary of the Busse balloon.




(a) a = 4.5 (b) a=4.4 (c) a =35 (d) a = 2.5 (e) a = 1.5

(f) a =1 (g) a = 0.72 (h) a = 0.71 () a=0.7 (j) a = 0.65

(k) a = 0.55 (1) a=0.3 (m) a = 0.18 (n) a =0.13 (0) a=0.12

[Siero, D., Eppinga, Rademacher, Rietkerk, Siteur, ’15]



The Busse balloon perspective

Busse balloons
for systems on
hillsides with
Increasing
slopes.

‘Green’ areas:
stable stripes.

[Sewalt & D, ’17] on (gKGS): Observations
Homoclinic and spatially periodic stripes ||« flat terrains <> spots
are unstable for ‘bounded advection’. * on slopes < stripes

Conjecture: Homoclinic stripes may be
stable in (two-component) SP reaction-
diffusion-advection equations with

sufficiently large advection.




Catastrophic «<» gradual?

Some conjectures [ Bastiaansen & D.,”17] — in progress

* (Mini-)catastrophes occur in regular patterns.
 Irregular patterns follow a more gradual course.

» Systems naturally evolve towards regularity.

Follow the reduced
J— — J-k—dim.
ODE dynamics as
the pattern
‘jumps’/’falls’ over
the edge of its
invariant manifold.




Start out with 1dentical nitial conditions, but different (external)

environmental time scales & synchronize w.r.t. the external evolution.

» Regular patterns are more resilient.

* Vegetation ‘survives’ with less ramn if ‘the climate’ changes slowly.



Conclusions & Discussion

A STRONG CROSS-FERTILIZATION BETWEEN
"APPLICATIONS” AND MATHEMATICS

* Singular patterns are both realistic & suitable for analysis.
— Semi-strong interactions.
— Finite-dimensional reductions.

* The Busse balloon as central ‘concept’.
— Provides an ecological framework.
— Novel mathematical questions and insights.

« Slowly varying parameters.
— Ecologically naturally & obvious.
— Mathematically new & challenging.
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cannot adapt.
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occurs at the initial (Turing) wavenumber. However,
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‘A game of billiards’ inside a Busse balloon (??)
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Which rules are driving the reflection process?

‘Dynamics
under slowly
varying
parameters’
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also quite
recent —
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finite-dim.
ODEs.

[t 1s a novel
subject of
study n
PDEs.




‘A game of billiards’ inside a Busse balloon (??)

12.

;'ff
2 ’L =
£ . /| Desertification
0.

0.00 0.25 0.5 0.7 1.00 1.25 1.5 1.7 2.00

Which rules are driving the reflection process?

‘Dynamics
under slowly
varying
parameters’
is a well-
studied — but
also quite
recent —

subject 1n
finite-dim.
ODEs.

[t 1s a novel
subject of
study in
PDEs.




‘A game of billiards’ inside a Busse balloon (??)

10.0

D,'( |
0.00 0.25 0.50 0.7 1.00 1.25 1.50 1.7 2.00

Which rules are driving the reflection process?

‘Dynamics
under slowly
varying
parameters’
is a well-
studied — but
also quite
recent —

subject n
finite-dim.
ODEs.

[t 1s a novel
subject of
study n
PDEs.




The dynamics of patterns under slowly varying conditions

‘mini-catastrophes’ Turing/morphogenesis

DESERTIFICATION: the final collapse/morphothanatos
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Ni’s conjecture and the Hopf dance

Weil-Ming N1 (on GM,’98): The homoclinic limit pattern i1s the most
stable pattern “within’ the family of spatially periodic patterns.

e In general slowly nonlinear SP RDEs, Ni's conjecture does not
necessarily hold.

([D, Rademacher & vdStelt, "12]: ‘Ni’ holds for classical GM.)

e The boundary of the Busse balloon has a fine-structure of 2 inter-

twining Hopf curves, H., and H_;: the Hopt dance.
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e The asymptotically ‘small spectrum’ attac!

transformation.)

hed to A = 0.

(|[de Rijk, '17]: Lin’s method & exponential
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Pulse dynamics in slowly nonlinear SP RDEs

* [Veerman & D, ’13, ’15] Existence & stability of homoclinic pulses.

 [Veerman, '15] A general method to construct the center manifold
reduction associated to the destabilization of a homoclinic pulse in a
slowly nonlinear SP 2-component RDE: the Hopf bifurcation may
be supercritical. (The Hopf bifurcation is subcritical in the GM RDE.)

* [Veerman & D, ’13, 15| The Hopf bifurcation may be the first step
towards complex/chaotic pulse dynamics (« fluid dynamics!).
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(Non-ecological) Observations/Questions

 Unlike m fluid dynamics, there are no stable patterns of increasing
complexity bifurcating from (the boundary of) the Busse balloon?

| From morphogenesis to morphothanatos & nothing else??]

* There 1s a fine-structure of ‘intertwining’ boundary curves near the
homoclinic tip of the Busse balloon?

| The same behavior is exhibited by the Gierer-Meinhardt model!]

" sideband

.« o H .r':l Busse—balloon
.25 A H _.
e =13 /.

/

0.000 0.010 0.0 0.080 0.040 0,050 iy i

[s this perhaps due to the special nature of these models??
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This question was first answered (numerically) by Fritz
Busse 1n 1978 for roll patterns in convection.

M, The Busse balloon

: Definition: a Busse balloon = a
region in (wavenumber,
parameter)-space in which stable
spatially periodic patterns exist

In convection, the Busse balloon
is the first step from fluid-at-rest

o—t——a 2 |to (eventually) turbulence.
wave number k

bifurcation parameter R

Zig-2ag R,
instability

1-0




Intermezzo: spatial ecology & singular patterns

[Rietkerk & van
de Koppel, '08]:
Pattern
formation In

ecological
systems is driven
by counteracting

feedback
mechanisms on
widely different
spatial scales.

Mathematics:
The dynamics of
singular patterns.




SPATIAL ECOLOGY: vegetation patterns & desertification

-y Desertification Vulnerability

gy s L

“Drylands occupy approximately 40-41% of Earth s land area and are home to
more than 2 billion people. It has been estimated that 10-20% of drylands are
already degraded, and that a billion people are under threat from further

desertification.”

— Mary Silber Pattern Formation in the Drylands on Monday
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Weak < Strong interactions

WEAK interactions:

pulses are so far apart that they
X only ‘communicate’ through
exponentially small ‘tail-tail’
interactions — pulses behave as
‘particles’.

—_—

()

A Assumption: |[['(t)| > C > 1

[E1, Mimura, Promuslow, Sandstede, Zelik, ...]|

STRONG
interactions: the
pulse splitting
process — all
components
change.




What 1s a ‘singular pattern’?

e Multiple scale systems — or SP PDEs — appear naturally in ‘applications’.

e While exhibiting behavior of a richness comparable to general, non-SP sys-
tems, the SP nature of these systems provides a framework — based on various
¢ — 0 limits — by which the behavior of the patterns can be unraveled.

The theme of today:

The strong cross-

fertilization between

applications and the =W )
development of T R

mathematical theoryﬁ '* | Reversin desertification [Ehud Meron]
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Structure of the talk

 Autocatalytic reactions & Gray-Scott dynamics.
— Semi-strong pulse interactions.

» Spatial ecology, vegetation patterns and desertification.
— Pattern dynamics of under slowly varying circumstances.

* The Busse balloon: turbulence <« desertification.
— Slowly nonlinear singularly perturbed equations.
— A fine-structure of the boundary of the Busse balloon.

 Pattern dynamics under slowly varying conditions.
«— The impact of the speed of change.

«— Catastrophic <> gradual decline. T some
INtermezzos

e (Conclusions & Discussion.



A pair of pulses in semi-strong interaction:
the ‘fast’ component 1s exponentially small
| | between pulses, the ‘slow’ component varies

‘at leading order’.

|| — Pulses change in amplitude & shape during
the evolution/interaction, they may even ‘push’
each other through a ‘dynamic bifurcation’.

N NS ™
i 10 20 0 &0 50 &0 FiLt] B 4 100

Biology! Methods developed in context
of (the GS and) the Gierer-Meinhardt
(GM) model for morphogenesis.

| Ward, Kolokolnikov, Nishiura, ..., D., Kaper & students] n
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Desertification = The process by which a vegetated state
transforms — or collapses — into a bare soil state.

Caused by a slow change n the
‘environment’.

Patterns appear as ‘early’
warning signal.

Partly discontinuous/fast —
catastrophic — partly gradual.
[rriversible — Hysteresis

Questions from ecology:

* When i1s the process
catastrophic and when is it
gradual? The mathematical perspective:
Can we predict the ‘collapse’? || The dynamics of singular
Can we measure ‘how far’ the ||patterns under slowly varying
system 1s from the desert state? | |circumstances (— parameters).
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This question was first answered (numerically) by Fritz
Busse 1n 1978 for roll patterns in convection.

bifurcation parameter R

Zig-zag R,
instability
I

1-0 i i i i

| 240 25 30 35 40 43

wave number k
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Definition: a Busse balloon = a
region in (wavenumber,
parameter)-space in which stable
spatially periodic patterns exist

In convection, the Busse balloon
1s the first step from fluid-at-rest
to (eventually) turbulence.
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Slowly linear & slowly nonlinear SP RDEs

General SP RDE (for simplicity in 2 components),

Ut — U_‘I‘I F(U V'E)
V. e“V. .. G(U,V;e)

|

Outside the ‘fast” V-pulses (or fronts) — where, by translation,
V' =0 (4 exp. small) — the dynamics are governed by,

F(U,0;¢) is linear in U for all (77) explicit models

in the literature (GS, GM, gKGS, FH-N, Schnakenberg).

The ‘prototypical’ GS-, GM-, etc. models belong to the special class
of ‘slowly linear’ SP RDEs,

a significantly restricted (7) subclass of

the general ‘slowly nonlinear’ SP RDEs.



|[Veerman & D, ’13, "15] Existence & stability of homoclinic pulses.

[ Veerman, ’15] A general method to construct the center manifold
reduction associated to the destabilization of a homoclinic pulse in a
slowly nonlinear SP 2-component RDE: the Hopf bifurcation may
be supercritical. (The Hopf bifurcation is subcritical in the GM RDE.)

| Veerman & D, 13, ’15] The Hopf bifurcation may be the first step

towards complex/chaotic pulse dynamics (< fluid dynamics!).

| The dynamics
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il '“ Il '“
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In the semi-strong setting, o(W,) can be determined asymptotically:

e The branch Ay(7) near A\ by decomposing the Evans function.

([de Rijk, D. & Rademacher, '16]: a Riccatti transformation.)

e The asymptotically ‘small spectrum’ attached to A = 0.

(|de Rijk, '17]: Lin’s method & exponential trichotomies.)

e \/(7v) ‘rotates’, ‘straightens’ and shrinks as function of Z.
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The ‘belly dance’ *~ s "

® AE(T) 1S “’TPHkIF ‘bent’ | Im

+1
“belly’ A boundary of 2

— intertwining Hopf
curves, without
co-dimension 2
‘corners’?? (NO!)

The belly “flips’
to the other side
(w.r.t the
connecting
straight line
between its
endpoints) in
half a rotation
of the spectral
curve.




‘A game of billiards’ inside a Busse balloon (?7?)

10.0Q
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i Desertification
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Which rules are driving the reflection process?

7

‘Dynamics
under slowly
varying
parameters’
is a well-
studied — but
also quite
recent —

subject 1n
finite-dim.
ODEs.

[t 15 a novel
subject of
study in
PDEs.
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The impact of the rate of change dA/d1

1.7

o : — _
dA/dt=-10 dA/dt=-10
15 No noise _r J No noise T
|
|
< 1
05
R
0.3 : - - : :
0 0.1 0.2 03 04 045 0 0.1 0.2 0.3 04 045

* If dA/dt 1s “too large’, then the “internal dynamics’ of the system
cannot adapt.

The first (& only) (mini-)catastrophe is delayed. Desertification
occurs at the initial (Turing) wavenumber. However,
‘morphotanatos’ sets in for a higher value of 4.

.t

icient’ rainfall.)

(<> Collapse to bare soil with ‘su

[Siteur, Siero, D., Eppinga, Rademacher & Rietkerk, "14 & "16]
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Intermezzo: the dynamics of stripes

(a) a =4.5 (b)) a=4.4 ) a=3.5 (d) a=2.5 (e)a=1.5

) a=1 (g) a = 0.72 (h) a = 0.71 (i) a = 0.7 (j) a = 0.65

(k) a = 0.55 (1) a=0.3 (m) a =0.18 (n) a=0.13 (0) a = 0.12

[Siero, D., Eppinga, Rademacher, Rietkerk, Siteur, ’15]



Catastrophic «<» gradual?

Some conjectures

[ Bastiaansen & D.,”17] — in progress

* (Mini-)catastrophes occur in regular patterns.

 [Irregular patterns follow a more gradual course.

» Systems naturally evolve towards regularity.

Follow the reduced
J—— J-k—dim.
ODE dynamics as
the pattern
‘jumps’/’falls’ over
the edge of its
mvariant manifold.
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