# Aggregate Behaviors of Heterogeneous, Delay-Coupled Swarms

Klimka Szwaykowska<sup>1</sup>, Luis Mier-y-Teran-Romero<sup>1,2</sup> and Ira B. Schwartz<sup>1</sup>

<sup>1</sup>Nonlinear Systems Dynamics Section, U.S. Naval Research Laboratory
<sup>2</sup>Bloomberg School of Public Health, Johns Hopkins University

Research supported by the Office of Naval Research





# Swarms in Natural and Engineered Systems









#### Outline

### I. Delay-coupled swarms with heterogeneous dynamics

- Dynamical model of the swarming system
- Mean-Field dynamics
- Motion patterns
- Bifurcation diagram

#### II. Additional extensions

### III. Experimental Verification of Results

# Model of a globally-coupled swarm with heterogeneous dynamics

- Say  $\mathbf{r}_i \in \mathbb{R}^2$  denotes the position of the  $i^{th}$  agent in the swarm<sup>1</sup>.
- ▶ Agents are distinguished by an acceleration factor,  $\kappa_i$ .

$$\ddot{\mathbf{r}}_i = \kappa_i (1 - |\dot{\mathbf{r}}_i|^2) \dot{\mathbf{r}}_i - \frac{a\kappa_i}{N} \sum_{\substack{j=1\\j \neq i}}^{N} (\mathbf{r}_i(t) - \mathbf{r}_j(t - \tau)) + \boldsymbol{\eta}_i(t)$$

N - number of particles

a - particle interaction coupling parameter

au - time delay

D - intensity of noise

$$\langle \eta_i^{(\ell)}(t) \rangle = 0$$
 and  $\langle \eta_i^{(\ell)}(t) \eta_j^{(k)}(t') \rangle = 2D\delta(t-t')\delta_{ij}\delta_{\ell k}$  for all  $i,j \in \{1,\ldots,N\}$  and  $\ell,k \in \{1,2\}$ 

<sup>&</sup>lt;sup>1</sup>These results can be easily extended to  $\mathbb{R}^3$ .

#### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

#### Rotating state

agents move as a group about a fixed center of rotation N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

#### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

#### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

#### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity

#### Translating state

agents move in a group with constant velocity

#### Ring state

agents form counter-rotating rings about a fixed center of mass

### Rotating state

agents move as a group about a fixed center of rotation



N = 100 number of agents

a = 1 coupling parameter

 $\kappa_i = 1 \ (\forall i)$  acceleration factor

D = 0.3 noise intensity