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Majorization

Let x,y € R".  x;: the jth largest component in x.

Definition: x is majorized by y, denoted x < y, if

Zjl'(=1x[j] < Y=y (k<n)
D=1 X = a1V

Interpretation: “x is less spread out than y": (7,5,3) < (9,4,2).

Generalizations: ordering matrices, measure families, group-major. etc.

e Hardy, Littlewood, Pélya, Schur, Muirhead, Dalton,...

e Arnold, Marshall and Olkin: Inequalities: Theory of Majorization and
Its Applications, (2011) (First ed., 1979)

o Steele: The Cauchy-Schwarz Master Class: An Introduction to the Art
of Mathematical Inequalities, (2004)
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Basic properties

@ permutation invariant: : x < Px < x for every permutation matrix P
@ Transitive, reflexive, < is a preorder on R".

@ Majorization is a partial order on the (polyhedral) cone

D'={xeR":x1 22> 2}

Actually a lattice (min and max operations).

@ Weak majorization: x <, y
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Characterizations

Theorem

Let x,y € R". Equivalent:

(i) x =Xy

(i) >7_, g(x;)) <57, g(y;) for all convex functions g : R — R
(iii) x = Ay for some doubly stochastic matrix A

(iv) Y _;xi=)_.yiand ) .(xi—a)" <) .(yi—a)" forall aeR.
(V) Zi Ix; —a| < Z,‘ ly; — a| forall ae R

(vi) x lies in the convex hull of the orbit of y under the group of
permutation matrices.
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Examples

@ Majorization and existence results

Theorem (Schur-Horn (1923, 1954))

If A= [ajj] is a Hermitian matrix, with diagonal (dy, d>,...,d,) and
eigenvalues (A1, Aa, ..., A,), then

Conversely, if such a majorization holds in R", then there exists a
real symmetric matrix A with diagonal elements dy, d>, ..., d, and
eigenvalues A1, A2, ..., Ap.

Kaftal, Weiss (2009): extension to infinite sequences, matrices.
Atiyah (1982): generalization in algebraic geometry.
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Combinatorics:

The Gale-Ryser theorem: There exists a (0, 1)-matrix with row sum (1)
vector R and column sum vector S if and only S < R*. |

Convexity: Doubly stochastic matrices, inequalities
Probability: Stochastic order/dominance

Economics: The Lorenz curve: income distribution, the Gini index:

Shannon information entropy: E(p) = — > . p;In p;

Quantum physics: entanglement
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e Majorization and min/max of certain symmetric functions

A function f : R” — R is Schur-convex whenever x < y implies
f(x) < f(y). So: monotone. Then f must be symmetric.

A bounding principle: Assume f is Schur-convex on S and that S C R"

contains a unique minimal element x* and a unique maximal element x? in
the majorization order. Then

min f(x) = f(x') and maxf(x) = f(x?).

xeS xES

Sometimes this gives interesting bounds; the trick is to discover an
underlying majorization.

Examples: Arithmetic-geometric mean ineq., Kantorovich ineq.

And: next eigenvalues of certain Laplacian matrices ...
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Laplacian energy

Discretizing the Laplace equation (a PDE)
0%u  6%u

— 6—x12 + 6—x22 -

gives a linear system with variables on a grid. More generally, we can

consider heat flow in a graph.

Au 0

Let G be a simple undirected graph with n vertices, m edges.
Laplacian matrix:
L(G) = D(G) — A(G)

where A(G): adjacency matrix, D(G): diagonal matrix with vertex degrees.

So: (L(G))jj = —1 when vertices i # j are adjacent, otherwise 0, and
degrees on the diagonal. Studied in Spectral graph theory.

L(G): real, symmetric, positive semidefinite, with eigenvalues

p1 2 p2 2 -+ 2 pp=0.
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@ Dahl, The Laplacian energy of threshold graphs and majorization
(LAA, 2015). See also Helmberg, Trevisan, Threshold graphs of
maximal Laplacian energy (Disc. Math, 2015). Different approaches.

Laplacian energy: LE(G) = )_"_, |pti — 2m/n|; distance of L. eigenvalues
from average degree.

@ Then LE(G) is a Schur-convex function of u = (g1, 2, ..., ln), i.€.,
increasing w.r.t. the majorization order.

e Grone-Merris conjecture, proved by Bai: u < d*, where d” is the
conjugate sequence of degree vector d; d; = |{i : d; > k}|.

® So: LE(G) <> ! ,|d*—2m/n|.
@ Combining Grone-Merris-Bai with Schur-Horn gives:

Equality: = d* if and only if G is a threshold graph. So: integral!!
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@ Goal: Find a threshold graph which maximizes the Laplacian energy

@ A main message: finding underlying majorization gives nice analysis

Threshold graph: repeatedly add either an isolated vertex or a dominating
vertex, which is a vertex that is connected to all vertices previously added.

Trace of G: the number of dominating vertices. Here 2.
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Degree vector of a graph G with n vertices, m edges: d = (d1,d>,...dp) is
a monotone, nonnegative and integral vector with > . d; = 2m. Let

k(d) = max{i: d; > i}.

From graph theory (Ruch and Gutman): d is the degree sequence of a
graph if and only if

k k
> o< 3 -1) (k< (d))

Threshold graphs: Equality here, so d; = d* — 1 (i < k(d)).
This makes is easy to construct all threshold graphs, and
see Laplacian eigenvalues.

Example: Letn=6 and m=7.

Here the Laplacian eigenvalue
vector is u = (6,4,2,1,1,0).
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We fix n, m and k(G). Remember: LE(G) =>_"_, |d* —2m/n|.
Lemma: LE(G)=25_"_,(d" —a)T where @ =2m/n.
Example: n=6, m=7 and a =2m/n = 7/3. Move the blocks!

u(G) = (6,4,2,1,1,0) u(G") = (5,5,2,2,0,0)
LE(G) = 32/3 LE(G') = 32/3
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Connection to majorization: integer partitions.

Let p,g > 0 and N > 0 be three integers with N < pgq.

Let P,',\fq be the set of all integer partitions of N where each part x; is
bounded by g, i.e., nonincreasing integral vectors x = (x1,x2,...,Xp) € RP
satisfying

=N and 0< x; < q (i <p).

Majorization on P”,Vq, poset: x < y means that 3., x; < S~ yi for
k < p. Define:

@ X = (q, q,...,q,r,0,...,0) where the number of g'sis | N/q| and
r=N-—|N/qlq.

o 52=(v+1,...,v+l,v,...,v), where v = | N/p| and the number of
components being v+ 1is N — pv.
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Example: p=qg=4and N=6. Then X =(4,2,0,0) and X = (2,2,1,1)
and their Ferrers diagrams are

Lemma

X Is the unique maximal element and X is the unique minimal element in

the poset (P,’,\fq, =<). Therefore,

X<x<R fora/lePQ_’q.
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Minimal and maximal threshold degree vectors. Let n=7, m=8. So2 < k < 3.

Moreover
=(6,3,2,2,1,1,1), d?) = (5,4,2,2,2,1,0),

= (5,3,3,3,1,1,0), d3) = (4,4,3,3,2,0,0),
=(7,4,2,1,1,1,0), i? = (6,5,2,2,1,0,0),
= (6,4,4,1,1,0,0), i) = (5,5,4,2,0,0,0).
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Inequalities for Laplacian energy for minimal /maximal threshold graphs:

L(J(kl)) > L(d“(k1+1)) o s o L(d“(LaJ)) < L(J(fa])) & iii & L(a(kz)),
L(d~(k1) > /_(c'](k1+1)) 55 5 L(J(LaJ)) < /_(g(fcﬂ)) < --- < L(dR),
L(d¥) > L(d¥) (ki <k<a)),

L(d(k) < L(d(k)) ([a] <k < k).

Theorem

Let n and m be positive integers. Then

ALE = 2max{L(d" ), L(d*))},

so the Laplacian energy in Tnm is maximized by one of the two
(n, m)-extreme threshold degree vectors d\¥1) and d(*2).

Extensions: minimize, or min/max among connected threshold graphs
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Qualitative matrix theory deals with matrix properties that only depend on
the signs on the entries of the matrix. Motivation from economic models
(P. Samuelson). See Brualdi and Shader: Matrices of Sign-Solvable Linear
Systems, (1995).

The qualitative class of a matrix A consists of those matrices with same
signs on its entries as A.

@ Brualdi and Dahl, Strict sign-central matrices, SIAM Matrix Analysis
Appl. (2015).




Strict sign-centrality JESEUILTGLE

Let A be a real matrix. Define:

@ A is strict central: A has a positive vector in its null space.

@ A is strict sign-central (SSC-matrix): each matrix in the qualitative
class of A is strict central.

Related work:
@ Ando and Brualdi, Sign-central matrices, (1994).

@ Lee and Shader, Sign-consistency and solvability of constrained linear
systems, (1998).

A matrix A is central whenever it has a nonzero nonnegative vector in its
null space.

Geometrically: the origin is in the convex hull of the columns of A.

Sign-central: each matrix in the qualitative class of A is central.
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Motivation: discrete financial market

@ a matrix P = [p;;]: rows correspond to scenarios, columns to assets.

pij: rel. change in the value of asset j for scenario i (one time step).

portfolio: a vector x € R"” where Xx; is the quantity of asset j an
investor holds from time ty to tj.

Px the payoff of x for each of the scenarios.
arbitrage: Px is nonnegative, but nonzero.

The fundamental theorem of asset pricing/mathematical finance:
there is no arbitrage if and only if there is a probability measure on the
set of scenarios which makes each asset price process a martingale.
This means that there is a positive vector in the null space of PT, i.e.,
PT is strict central.
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So:

@ PT is a strict central matrix iff the market is arbitrage-free

o PT is strict sign-central iff all markets in the qualitative class of P are
arbitrage-free.

This is a robustness question, motived by uncertainty in the data pj;.

Example: An SSC matrix:

o

1 -1
0 1
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Farkas' lemma/duality gives:

Theorem

Let A € M, ,. Then the following statements are equivalent:

(i) A is a strict central matrix.

(ii) The only nonnegative vector in the row space of A is the zero vector.

A diagonal matrix D is called a strict signing if its diagonal entries are +1.

Theorem (Ando and Brualdi (94))

For every m x n (0, +1)-matrix A, the following are equivalent:
(i) A is a sign-central matrix.

(ii) For every strict signing D of order m, the matrix DA contains a
nonnegative column.
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The next theorem contains a characterization of the SSC property, see also
Lee and Shader.

A diagonal matrix D is called a signing if its diagonal entries are 0, —1, 1.

Theorem

Let A be an m x n (0,+1)-matrix with no zero rows or columns.
Then the following are equivalent:

(i) A is an SSC-matrix.

(ii) For every signing D # O, the matrix DA contains a nonzero
nonnegative column.

This may be interpreted in the model of a financial market: For each
simple nonzero portfolio x there is a scenario i < m such that its payoff
vector is nonpositive and nonzero.
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The next result gives an upper bound on the number of columns of a
minimal SSC matrix, i.e., an SSC matrix where no column can be deleted
without destroying the SSC property.

Theorem

Let A be an m x n (0, £1)-matrix which is minimal SSC.
Then n < 2™,

If n=2", then A equals (up to column permutations) the matrix Ep,.




Majorization for partially ordered sets

Brualdi and Dahl, Majorization for partially ordered sets, Discrete Math.,
2013




Conclusion

Majorization extensions:

o Choquet ordering: u, v probability measures on a topological vector
space X: v is a dilation of p if [ ¢ du < [ @ dv for all cont. convex
functions on X. Phelps (1966), Meyer (1966), Alfsen (1971, 2008)

e Majorization for measure families: Blackwell (1951), Karlin, Rinott
(1983), Torgersen (1968, 1985, 1991)

@ Majorization induced by convex cones and groups: Marshall, Walkup,
Wets (1977), Niezgoda (1998, 2007), Eaton (1984), Eaton, Perlman
(1977), Lewis (1996), Tam (2000)

@ Matrix majorization, polytopes etc: Hwang, Pyo (2001), Brualdi
(1984), Brualdi, Hwang (1996), Dahl (1999, 2001, 2008)






