Identification and Protection Against Critical Contingencies in Power Systems

Kostya Turitsyn

Mechanical Engineering, MIT

Power system fragility and resiliency

Power system is inherently fragile:

- Absorbs weak disturbances (N-1 contingencies)
- Loses stability after strong ones
 - Finite power line capacity + constant power controls
 - Inherently nonlinear phenomenon
- Resiliency: ability to recover after losing stability
 - Power interruptions: \$80B/year damage to US economy

(i.5 -						
Power (p.	/				/	
0.5						
0	30	60	90	120	150	180
		Load a	ngle (d	egrees)		

Power systems	Interpretation		
Feasibility	Violation of constraints		
Voltage stability	No equilibrium point		
Small signal stability	Lack of asymptotic stability		
Transient stability	Convergence to equilibrium		

Dy Liaccio classification

Normal State Technical constraints (voltage, current, frequency) satisfied High Stability margins N-1 security **Restorative state Alert State** Recovering islanded system Low Stability margins N-1 insecure Cold/Warm start problems In Extremis State **Emergency State** Unstable/constraints violated System collapsing Needs fast corrective actions Cascading blackout

- Proposed after 1965 blackout
- Foundation for:
 - Federal regulations
 - Emergency control system architecture

Fun dynamics problems

Normal State Technical constraints (voltage, current, frequency) satisfied High Stability margins N-1 security **Alert State Restorative state** Recovering islanded system Low Stability margins Cold/Warm start problems N-1 insecure In Extremis State **Emergency State** Load served but unstable System collapsing Cascading blackout Needs fast corrective actions

"Fun" problems:

- Rich in dynamics
- Finite-time collapse
- Infection-like cascades

However:

- Mostly "fantasy grid" studies
- Super-sensitive to details
- Not complex but complicated
- Huge role of human factor
- 2 year long post-mortem analysis of 1996 blackout

Relevant dynamics problems

Normal State Technical constraints (voltage, current, frequency) satisfied High Stability margins N-1 security **Alert State Restorative state** Recovering islanded system Low Stability margins N-1 insecure Cold/Warm start problems **In Extremis State Emergency State** Unstable/constraints violated System collapsing Cascading blackout Needs fast corrective actions

Relevant problems

- Potential for industrial and societal impact
- Considered hard but important by engineers

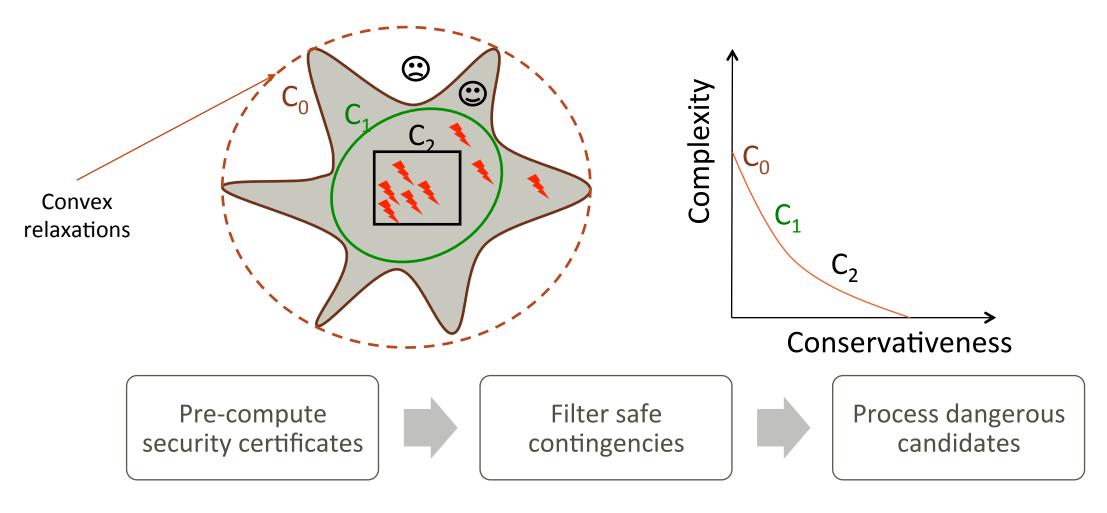
Specifically:

- Identification of dangerous contingencies
- Remedial action schemes
- Cold/warm start restoration
- Real-time topology control

Operational security: state of the art

- Offline screening and protection against some pre-selected contingencies
- Reliance on engineering judgement and heuristic algorithms
- Can we do better?

Security certificates



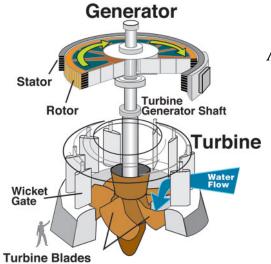
Reduce computational burden by offline pre-screening

Transient Stability

with Thanh Long Vu, Spyros Chatzivasileadis, Elena Gryazina

Swing equation

 $d\delta/dt = \omega$



 $Md\omega/dt = p - D\omega - \nabla \uparrow T B \sin(\nabla \delta)$

δ,ω \in \mathbb{R} ↑n: Generator rotor angles and velocities

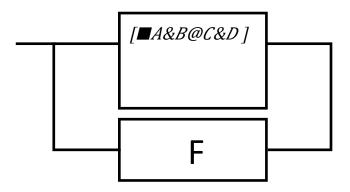
 $p \in \mathbb{R} \uparrow n$: Mechanical power (torque)

 $M = \operatorname{diag}(m) \in \mathbb{R} \uparrow n \times n$: Turbine inertia

 $D=\operatorname{diag}(d)\in\mathbb{R}$ $fn\times n$: damping/governor droop

 $B=\operatorname{diag}(b)\in\mathbb{R}$ $\uparrow m\times m$: line susceptance (normalized)

 $\nabla \in \mathbb{R} \uparrow m \times n$: network incidence matrix



State-Space ``Lur'e'' Representation

$$dx/dt = Ax + BF(Cx)$$

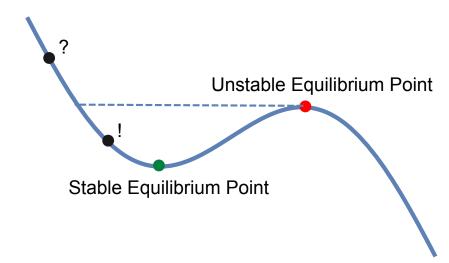
$$x = [\blacksquare \delta - \delta \iota * @\omega]$$

$$F(z)=\sin(z)-z$$

Energy function

 $E=1/2 \omega \uparrow T M\omega - b \uparrow T \cos(\nabla \delta) - p \uparrow T \delta$

$$dE/dt = -\omega \uparrow T D\omega < 0$$



Stability certificate:

 $E(\delta,\omega) < E \downarrow CUEP$

Many other Lyapunov functions out there!

 $V = [\blacksquare \delta - \delta \downarrow * @\omega] \uparrow T Q [\blacksquare \delta - \delta \downarrow * @\omega] - 1 \uparrow T P(\cos(V\delta) - V\delta \sin(V\delta \downarrow *))$

Long history:

- Lur'e and Postnikov '44
- Willems '71
- Pai '81
- Kamenetsky '87
- Hill '89
- Boyd '94
- Hiskens '97
- Rapoport '05

• ...

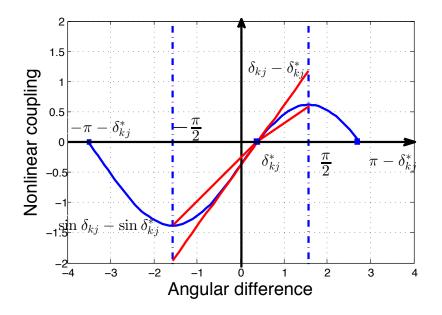
Considered largely a theoretical possibility due to computational complexity

Lyapunov function family method

Bound nonlinearity around equilibrium

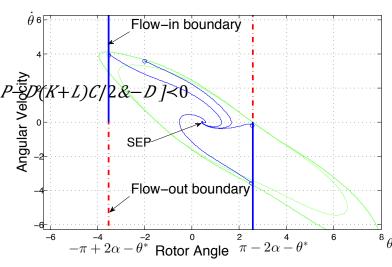
Construct Lyapunov Function

Certify invariance of bounded nonlinearity region



 $V = [\blacksquare \delta - \delta \downarrow * @\omega] \uparrow T P [\blacksquare \delta - \delta \downarrow * @\omega]$ $[\blacksquare A \uparrow T P + PA - C \uparrow T DKLC \& PB - C \uparrow T D(K + L)/2 @B \uparrow T P = D(K + L)C/2 \& - D] < 0$

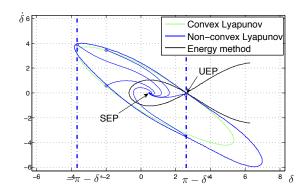
dV/dt < 0



 $V(\delta,\omega) < V \downarrow min$

Key features

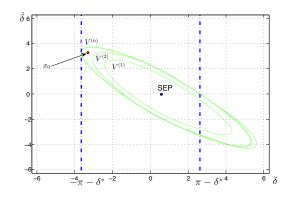
Tractable



Relies on convex optimization

Scalable to 1000s of buses

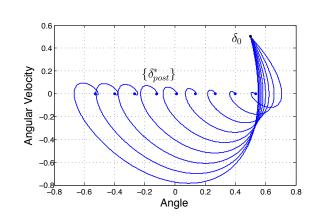
Adaptive



Huge set of certificates

Algorithms for adaptation to specific contingencies

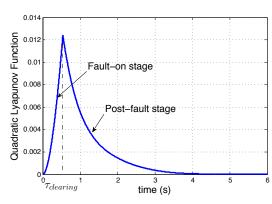
Robust



Allows for uncertainty in equilibrium point

Fast variations of wind

Simulation-free



No need in fault-on dynamics simulation

(reachability bounds)

TPWRS '15, PES GM '15 ACC '15, TAC '16 TPWRS '16, TAC '16

Emergency control

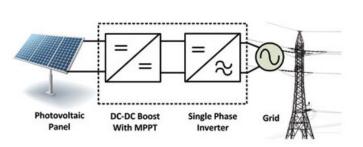
Key idea: adjust system dynamics in emergencies to restore stability

 $[\blacksquare A \uparrow T P + PA - C \uparrow T DKLC \& PB - C \uparrow T D(K+L)/2 @B \uparrow T P - D(K+L)C/2 \& - D \not \downarrow \downarrow 0]$

 $[\blacksquare A \uparrow T P + PA - C \uparrow T DKLC \& PB - C \uparrow T D(K+L)/2 @B \uparrow T P - D(K+L)C/2 \& - D(K+L)/2 \\$

Virtual inertia and droop

 $Md\omega/dt = p - D\omega - V \uparrow T B \sin(V \delta)$

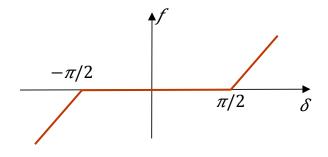


FACTS

 $Md\omega/dt = p - D\omega - \nabla \uparrow T B \sin(\nabla \delta)$

Fast Demand Response

 $Md\omega/dt = p - D\omega - V \uparrow T B \sin(V \delta) + f(\delta)$



ACC '16

PES GM '16

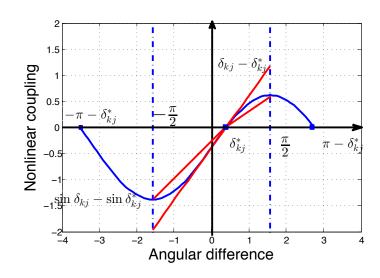
(ongoing)

Challenges & Opportunities: conservativeness

Sector bounds can be adapted as well

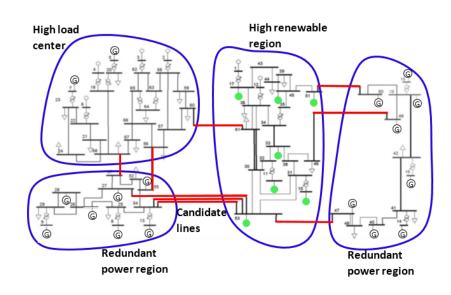
 $[\blacksquare A \uparrow T P + PA - C \uparrow T DKLC \& PB - C \uparrow T D(K+L)/2 @B \uparrow T P - D(K+L)C/2 \& \qquad \Leftrightarrow \\ -D] < 0 \qquad \qquad \Leftrightarrow$

 $[\blacksquare A \uparrow T P + PA - C \uparrow T DKLC \& PB - C \uparrow T D(K+L)/2 @B \uparrow T P - D(K+L)C/2 \& - D(K+L)/2 @B \uparrow T P - D(K+L)C/2 \& - D(K+L)/2 @B \uparrow T P - D(K+L)/2 \& - D(K$

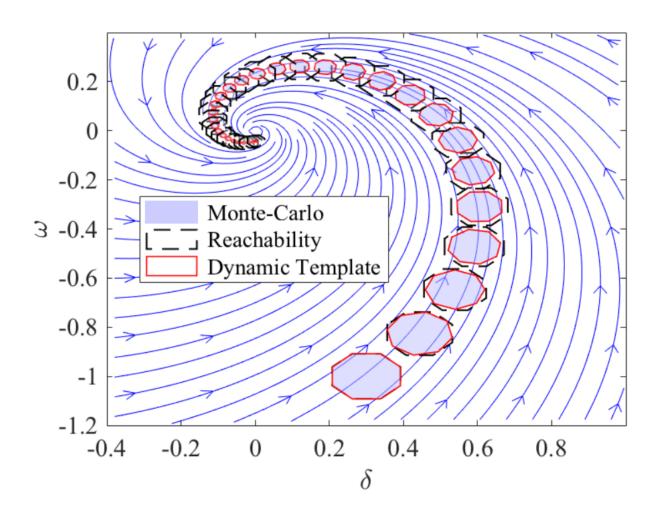


Ongoing project with Lena Gryazina

- Bilinear matrix inequality, hard to solve
- Only few angles oscillate strongly during contingencies
- Data-driven approaches combined with first-order methods



Beyond swing equation



Dynamic template algorithm:

- Represent a trajectory as a sequence of nonlinear equations (arbitrary complicated models)
- Use linear programming to characterize reachability sets
- Construct the uncertainty regions around any trajectory

Data-driven approaches:

- Millions of simulated trajectories accumulated by system operators. Can this data be utilized in a non-heuristic way?
- Hierarchical certificate database (ongoing with LANL)