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Problem

Let Ag, A1, ..., Ay € C"™" and consider
the parameterized linear ODE
du
E(t =)= A(e) u(t,e), u(0,2) = ug

where A is the matrix polynomial
Ale) = Ag+cA1+ -+ NAy.

Specifically considered: problems arising from spatial
semidiscretizations of partial differential equations
(i.e., the matrices Ay large and sparse).
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Series representation
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Let the coefficients of the Taylor expansion of the solution with
respect to the parameter = be denoted by ——

C()(t), Cl(t)' == i'e" Main theorem

Krylov approximation

Problem

o0
Error bounds
U(t. £~) — exp(tA(S)) UO — Z 5€C£(t) (*) Scaling of the Toeplitz
/=0 matrix

Numerical example:
Wave equation with

As exp (tA(=)) is an entire function of a matrix polynomial, s
the expansion (*) exists for all = € C.




Approximation

frroi

Consider the approximation stemming from g verewsr
the truncation of the Taylor series and By

from an approximation of the Taylor coefficients:

k—1 Problem

Uk( E: 5) — Se Cg( t) Approximation

Main theorem

=0 ( * ) Krylov approximation
k—1

~ E Eg(t) == I]k(t. L:‘:). Error bounds

Scaling of the Toeplitz
=0 matrix
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Our approach gives an explicit parameterization w.r.t. t of the
approximate coefficients ¢o(t),. .. ,ck_1(t).

On the other hand, (*) gives an explicit parametrization w.r.t. <.

As a result, we can efficiently approximate the solution u(t, =) for
different values of t and =.




Main theorem

S0,

£KTH

VETENSKAP
28 OCH KONST 9%

The Taylor coefficients ¢p(t) Ry i

Problem

Where Approximation

Main theorem
Krylov approximation
A v Error bounds

1 -

Scaling of the Toeplitz
matrix

Lm = e : ; Numerical example:
Wave equation with
damping

| Ay ... _

~

and N = min(m—1,N).




Related work

(CCase N = 1 considered in

[.Najfeld and T.F. Havel. Derivatives of the matrix exponential
and their computation. Advances in Applied Mathematics 16.3
(1995).

The main theorem can also be obtained from a theorem in

R. Mathias. A chain rule for matrix functions and applications.
SIAM Journal on Matrix Analysis and Applications 17.3
(1996).

Recent related work:

D.A. Bini, S. Dendievel, G. Latouche and B. Meini. Computing
the exponential of large block-triangular block-Toeplitz matrices

encountered in fluid queues. Linear Algebra and its Applications
(2015).

N.J. Higham and S.D. Relton. Estimating the condition number
of the Fréchet derivative of a matrix function. SIAM Journal on
Scientific Computing 36.6 (2014).
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Krylov approximation of matrix functions

The Arnoldi iteration gives an orthogonal basis Qx € R™*k
for the Krylov subspace

Ki«(A. b) = span{b, Ab, A%b, ..., A*"1b}.

and the Hessenberg matrix Hy = Q,TAQ;( e Rk

For any polynomial p, of degree n < k — 1 it holds

pn(A)b — Qkpn(Hk)Q;b == Qkpn(Hk)el-
We use the approximation

exp(A)b ~ Qi exp(Hi ) QT b.
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Bounds for the norm and logarithmic norm of L,

Recall the field of values of a matrix A € C"*"n:
F(A)={x*Ax : x € C", ||x|| = 1}.

Let L,, € C™>*™" he the block Toeplitz matrix defined by
Ag. Aq... .. Ay € C"™"  Then,

N
ILmll < [|A]
=0

and

F(lm)c{zeC: d(F <Z||Ag||}

Thus

N
(L) < i(A0) + 3 el
=1

where j1(Ag) denotes the logarithmic 2-norm of Ay.
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Matvecs for the Arnoldi iteration

A4,

s

When running the Arnoldi iteration on Ky (L. to),

we use the following:
Problem

Approximation

Suppose x = vec(x;...., 260 s 0) = vec(X) € C", where Main theorem

Xl ..... Xj E Cn and m >_/ + N T en, Krylov approximation

Error bounds

LmX = VeC(yl, DR yj+N. 6. X O) Scaling of the Toeplitz

matrix

Numerical example:

W h ere Wave equation with
min(N,f—1) damping

}: Aixp_i, ¢=1,....j+N.

i=max(0,f/—k)

Ye




Infinite Arnoldi algorithm

The Arnoldi approximation of exp(tL,,)t can be formulated as
an infinite Arnoldi algorithm, see

E. Jarlebring. W. Michiels, and K. Meerbergen. A linear
eigenvalue algorithm for the nonlinear eigenvalue problem.
Numerische Mathematik 122.1 (2012): 169-195.

The following procedures generate identical results.
(i) p iterations of the Arnoldi iteration started with vy and
Ao. S &G ANZ
(ii) p iterations of Arnoldi’s method applied to L, with
starting vector e; ® ug € C" for any m > Np;

(iii) p iterations of Arnoldi’s method applied to the infinite
matrix L., with the infinite starting vector e; ® ug € C=.
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Integral representation of the coefficients

In order to derive error bounds, we need integral formulas for the
coefficients ¢,(t). The case N =1 is given in

|.Najfeld and T.F. Havel. Derivatives of the matrix exponential
and their computation. Advances in Applied Mathematics 16.3
(1995): 321-375.

From the main theorem we see that

min(N )

= L Ad-dH

Using the variation-of-constants formula

t
u(t) = ey, —|—/ e(t="Ag(u(7))dr.
0

which gives the the exact solution at time t for the semilinear ODE

u'(t) = Aou(t) + g(u(t)),

we get an integral formula for the coefficients c(t).

U(O) = Up.
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Integral representation of the coefficients

Let / and N be positive integers such that N < /. Denote by (;
the set of compositions of 7, i.e.,

Cen:={(i,---, iP)eC :is<N forall 1<s<r}.
Then,
co(t) = e™up.
t tl'1
a(t)= ) / Bk / eltu—tln,
(i1.----ir)€Cen g 0
tir—l

. / e(ti'—l_ti' )AOA,'rCo(l','r) Clt','1 S (lt,'r for £> 0.

0
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Bound for the coefficients

Using the above integral formulas
we obtain bounds for the norms of c;(t).

For example when N = 1, we have

&
lee()ll = | / olt=t)lo g
0

ti,_,
/ o (Ge_1 =t Ao 4 ot 1(A0) o i
0

< o tuay (tl A’

where j1(Ag) denotes the logarithmic 2-norm of Ay.

Notice: |[e®|| < et(Ao) for every t > 0.

238 Clt,'f ||
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A priori error bound
After p steps, the error

erry(t.2) i=|lu(t. ) — Tp(t,2))

<[lu(t.<) = up(t. )|l + [[up(t. ) — up(t.2)]|
is bounded as (assuming ||A/|| < a for all ¢)

r .g)p+13—le G (t,e)

N-—-1
Co(t, e
errp(t. ) < et“(A°)||uo||(C1(t. )y i
- (p+¢—2)!

where
c) = |,_ﬁlsign(|5|—1) oteNa+G(t,e)-1

G (
= N
Co(t,c) = |e| " eNta,

A

and
N N
o = Z |As|  and =) ||Adl.
_ é':
and ¢(Ag) denotes the logarithmic 2-norm of Ay.
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A posteriori error estimate

A posteriori error estimates obtained using techniques given in ﬁ®&
e Y.Saad. Analysis of some Krylov subspace approximations to £ KTH

S8 OCH KONST 9%

the matrix exponential operator. SIAM .J. Numer. Anal., 29 b "W
(1992), pp. 209-228.

For the Arnoldi approximation of e#b it holds that Problem
Appraoximation
A * Main theorem
b Qp eXp(H o hp+1 2 Z € Yf e]- A qp—l-l- ( ) Krylov approximation
Error bounds
1 1 . Scali f the Toepli
where h,.; , is the subdiagonal element of the Hessenberg matrix, [
0 — ST Numerical le:
and 2e(2) = 2j~o Gror ——

damping

To construct an a posteriori estimate
we take into account the first 2 terms in (*), and use the fact that

-Hp & €
[lb 0] exp 0 0 O
i 0 1 0_

= [exp(Hp) p1(Hp)e1 + v2(Hp)er «,91(Hp)e1] .




Scaling
Let v > 0 and define ¥, := diag(1,~,..., 1) 8 L,
Then it holds

e(t) = exp(il ) =X exp(tZ;,leZm) o
—iF exp(tzm) Uo,

Related scaling can be found in:

A.H. Al-Mohy and N.J. Higham, Computing the action of the
matrix exponential, with an application to exponential integrators,
SIAM J. Sci. Comput. 33 (2011).

Thus. we see that using this scaling strategy corresponds to the
changes
e—>ve and Ay — A,._gAg
when performing the Arnoldi approximation
of the product exp(tL,,) Uo.

We scale the norms of coefficients Ay, 1 < ¢ < N, such that they
are of the order 1 or less. We use the heuristic choice

v= max [Ae||*~.
1<(<N
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2-norm errors of approximations Up(t, =) using different scalings.
The last option corresponds to the heuristic choice.




Numerical example
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Consider the damped wave equation inside the 3D unit box: KTH
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Problem

where C(‘;l- ‘;2) =1G +76.

Approximation

Main theorem

ODE obtained by finite differences with 15 discretization points in Kiglow: spprescimation
each dimension, i.e., n = 153. Error bounds

Scaling of the Toeplitz
matrix

K denotes the discretized Laplacian, —
. : p i w umerical example:
C(71.72) the damping matrix stemming from boundary conditions, REierRts

. damping
and M the mass matrix.

Reformulate the ODE by setting

0

[ 0 0
AO — _M_lK _M_qu’l Cl] . A]_ = [O _M_l Cz] i
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Figure : The solution in the plane z = 0.5, for different values of
(n,p)att=1




Numerical example

(I,t‘)“

-~

= UWUkp

|u(t, )

Figure : 2-norm errors of approximations up(t,=
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