Why Do Math?

Martin Golubitsky Mathematical Biosciences Institute Ohio State University

Three Interpretations of Whydomath

Personal: Why do we do math?

SIAM provides infrastructure — through publications and conferences — to carry out research projects

- Societal: Government supports math sciences: Why?
 SIAM has an extensive Washington advocacy role
- Educational: Why should students study math?

SIAM runs math competitions for high school students supports student chapters has a careers section has an Education Committee

Personal

- Adrenaline rush of the light bulb effect
 It's addictive
- Unexpected relationship of abstract with applied
 - Symmetric Chaos

Pascal Chossat (Luminy) Michael Dellnitz (Paderborn) Mike Field (Houston) Ian Melbourne (Surrey)

Planar Dynamics; Symmetric Chaos

• Let
$$f : \mathbf{R}^2 \to \mathbf{R}^2$$

• Choose a point
$$z_0$$
 in the plane

• Let
$$z_1 = f(z_0)$$
, $z_2 = f(z_1)$, $z_3 = f(z_2)$...

- View attractors by throwing away transients
- What kinds of attractors appear for symmetric f?

Finite Symmetries on the Plane

 $\mathbf{D}_3 =$ symmetries of an equilateral triangle $D_4 =$ symmetries of a square $D_5 =$ symmetries of a regular pentagon

Four Rotations

Four Reflections

Symmetric Maps

A planar map has D_m symmetry if for every $g \in D_m$

$$f(gz) = gf(z)$$
 $z \in \mathbf{C} \cong \mathbf{R}^2$

• Example of map with D_m -symmetry is

 $\mathbf{f}(\mathbf{z}) = (\lambda + \alpha \mathbf{z}\overline{\mathbf{z}} + \beta \mathsf{Re}(\mathbf{z}^{\mathbf{m}})) \mathbf{z} + \gamma \overline{\mathbf{z}}^{\mathbf{m}-1}$

m	λ	lpha	eta	γ
5	-2.34	2	0.2	0.1
5	-1.806	1.806	0	1
5	2.6	-2	0	-0.5

Sanddollar

Emperor's Cloak

Pentagon Attractor

Consequence of Attractor Symmetry

- Let u(x,t) be a time series
- Ergodic Theorem: Time Average = Space Average
- Time average has same symmetries as attractor
 - Let U(x) = average of u(x,t) over t
 - Then $U(\sigma x) = U(x)$ for every symmetry σ

Faraday Surface Wave Experiment

- Vibrate a fluid layer at fixed frequency and amplitude
- At small amplitude surface is flat
- At large amplitudes surface deforms
- Take picture at each period of forcing
- Light is transmitted through the fluid
 - Dark areas: surface is concave up
 - Bright areas: surface is concave down

The Faraday Experiment (2)

Gollub, Gluckman, Marcq, & Bridger (1993)

The Faraday Experiment (3)

Gollub, Gluckman, Marcq, & Bridger (1993)

The Faraday Experiment (4)

Gollub, Gluckman, Marcq, & Bridger (1993)

Societal: Why Fund Math?

Education: Need for a technically trained work force

Research: Has proved useful

NSF Mission Statement

...advance the national health, prosperity, and welfare, and secure the national defense by funding

- basic and applied scientific research and research fundamental to the engineering process,
- science and engineering education programs,

Math Funding Data: FY2006

DoD			76.2
	AFOSR	32.1	
	ARO	10.0	
	ONR	13.6	
	DARPA	16.5	
	NSA	4.0	
DOE			29.4
NSF			199.3
NIH			79.1
	NIGMS	38.0	
	NIBIB	41.1	
TOTAL			\$384M

NSF Funding

Ten-Year Funding History

MPS Subactivity Funding

(Dollars in Millions)

1 January - 0. 18/

Rising Above the Gathering Storm-2007

- As percentage of GDP federal funding of research in physical sciences was 45% less in 2004 than in 1976.
- Increase funding of long-term science and math basic research by 10% each year over the next 7 years.
- Increase number of US citizens who earn bachelor's degrees in science, engineering, and math.

Rising Above the Gathering Storm-2007

- As percentage of GDP federal funding of research in physical sciences was 45% less in 2004 than in 1976.
- Increase funding of long-term science and math basic research by 10% each year over the next 7 years.
- Increase number of US citizens who earn bachelor's degrees in science, engineering, and math.
- American Competitiveness Initiative and America Competes Act respond to Gathering Storm
- The role of the mathematical sciences in competitiveness must be explained

Why Study Math?

Number of U.S. citizens receiving degrees in math has decreased.

Need for a technically trained workforce

Why should students who do not want to teach math take math?

How do we transmit the excitement & utility of math?

Can most teachers in first year courses answer the question Why study math?

Can we describe the breadth of careers that benefit from math?

http://dev.whydomath.org/

- A website of many nodes each node a success story of mathematics or computational science
- Aimed at freshman/sophomore/popular science level
- Provide a community resource to help answer the questions "Why study math?" and "Why fund math?"
- Highlight the exciting and varied possibilities of mathematics and computational science

Features of Whydomath

- Nodes
 - Mathematics constructs interplanetary superhighway
 - Mathematics helps win America's Cup
 - Mathematics revolutionizes theoretical neuroscience
 - Mathematics helps save lives
 - Mathematics helps enable the internet
 - And much much more ...
- Reading Room
 - Ian Stewart's math columns from Scientific American
 - Articles from SIAM News
- Links to Other Math Websites
- Links to Career Sites

New Nodes

- Nodes in preparation
 - JPEG and wavelets
 - Option pricing
 - Search engines, pagerank, and Google
- Nodes wish list
 - global positioning systems
 - human genome and the shotgun method
 - motion picture special effects
 - cryptography
 - crowd dynamics
 - car bodywork, design and manufacture
 - oil recovery

People Involved

Katherine Socha; Jessica Stephenson; Donna Witzleben Chris Budd; John Burns; Rob Ghrist; Peter Turner Mary Huang; Shannon Slaughter; Jonathan Holm Dave Marshall; Michelle Montgomery; Ted Kull; Jim Crowley Shane Ross; Brent Doiron; Eric Shea-Brown Cathryn Mitchell, Mike Jones, Joe Skufca, Pat Van Fleet Roger Lee; Ronnie Sircar; Gil Strang; Justin Court Alfio Quarteroni; Nick Hieb; Ian Stewart; Barry Cipra

Whydomath is a Community Effort

- Do you have a success story to tell? Volunteer
- Are you an excellent writer? Volunteer
- Do you have excellent web skills? Volunteer
- Do you know good articles for Reading Room? Tell us
- CAVEAT: Whydomath nodes are history lessons not grant proposals

Email: whydomath@siam.org