THE POCKET GUIDE TO NEUROCRITICAL CARE:

A concise reference for the evaluation and management of neurologic emergencies

by the

NEUR CRITICAL

Editors-in-Chief: Marin E. Darsie, MD Asma M. Moheet, MD MHDS FNCS

> Edition Editor: Winnie Lau, MD

THE POCKET GUIDE TO NEUROCRITICAL CARE:

A concise reference for the evaluation and management of neurologic emergencies

NEUR CRITICAL

Marin E. Darsie, MD

Assistant Professor of Emergency Medicine and Neurosurgery University of Wisconsin School of Medicine and Public Health Madison, WI, USA

Asma M. Moheet, MD MHDS FNCS

Neurointensivist Ohio Health Riverside Methodist Hospital Columbus, OH, USA

Winnie Lau, MD

Assistant Professor of Neurology and Neurosurgery University of North Carolina Chapel Hill, NC, USA

For our families, our patients, and their families. Thank you for teaching us.

Copyright © 2020 by Neurocritical Care Society

NEUR CRITICAL

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author.

Disclaimer:

This content was developed by the Neurocritical Care Society (NCS) and is intended to be used as an educational tool and should not be construed as medical advice. The editors and authors have made every effort to present accurate and complete information at the time of publication, however new information on any of the topics contained in this book may emerge. The authors, editors, publisher, or any party involved in the production of this work cannot guarantee that all data presented herein is complete or accurate, and these parties are not responsible for any omissions or errors in this text or liable for outcomes due to use of this text. Note that this includes drug information. The information in this text cannot replace independent evaluation by a qualified medical professional. Except when otherwise cited, the views expressed by the authors and editors are their own and are not necessarily the views of any institution with which the authors or editors are affiliated. Practitioners should refer to institutional policies and practices where appropriate. References have been provided by chapter authors at the end of each chapter. NCS respects the intellectual property rights of others and prohibits users from reproducing content that violates another party's intellectual property rights. If you believe that any material infringes upon any copyright which you own or control, you may send a

ISBN-13: 978-1-943909-04-9

written notification of such infringement to NCS.

Library of Congress Control Number: 2019950961

Printed in the United States of America

PREFACE

The Pocket Guide to Neurocritical Care was first conceived by NCS members in training in 2016 after recognizing a need for a succinct reference that reviewed the basics of neurologic emergencies and neurocritical care. Spearheaded by the NCS Resident and Fellow Committee with support from the Educational Products Committee, 40+ resident, fellow, and APP authors were recruited to develop the product with the guidance of established leaders in the neurocritical care field. This publication has become a recognizable part of NCS courses, as well as some subspecialty training courses.

The success of *The Pocket Guide* can be attributed to the original mission of "written by trainees, for trainees." This unique characteristic ensures the content is high-yield, comprehensive, and readily accessible to multiple levels of learning. With this edition, we have continued that mission, taking feedback from trainees, and adding new authors in training including those in pharmacy training. We hope that this will be just the first of their many future publication opportunities.

This book compiles 18 chapters of the highest-yield information as suggested and recommended by providers and trainees across multiple disciplines who all have a common interest in caring for neurocritical care patients. It is not meant to be an exhaustive reference, but to give readers a strong fund of knowledge in neurocritical care to support their practice.

ACKNOWLEDGEMENTS

Special thanks go to our editorial team: Anand Venkatraman, Justin Barr, Kassi Kronfeld, Megan Barra, and Pouya Ameli.

We would like to recognize the members of the NCS Educational Products Committee for their oversight and support in developing this project, as well as their time spent editing and reviewing its content for accuracy.

A special thank you to Angel Gindele who coordinated all the authors, timeline, and editorial needs of this edition. Without her, this could not be the comprehensive and refined product before you.

Finally, we would like to thank our families. We are the best versions of ourselves because of your love and support.

Marin Darsie, Asma Moheet, and Winnie Lau May 2020

ABBREVIATIONS

+	positive
-	decreased
↑	increased
AAN	American Academy of Neurology
Ab	antibody
ABCs	airway, breathing, circulation
ABG	arterial blood gas
AC	assist control
ACA	anterior cerebral artery
ACh	acetylcholine
AChEI	acetylcholinesterase inhibitor(s)
AChR	acetylcholinesterase receptor(s)
ACEI	angiotensin-converting enzyme inhibitor(s)
ACLS	Advanced Cardiac Life Support
AComm	anterior communicating artery
ADR	alpha delta ratio
AED	anti-epileptic drug
AF	atrial fibrillation
AG	anion gap
AHA	American Heart Association
AICA	anterior inferior cerebellar artery
AIDS	acquired immune deficiency syndrome
AIS	acute ischemic stroke
ALS	amyotrophic lateral sclerosis
AKA	also known as
ARDS	acute respiratory distress syndrome
aSAH	aneurysmal subarachnoid hemorrhage
ASIA	American Spinal Injury Association
ASV	adaptive support ventilation
ATLS	Advanced Trauma Life Support

AVDO ₂	arterio-venous difference of oxygen consumption
AVM	arteriovenous malformation
BAL	broncheoalveolar lavage
BCx	blood culture
BBB	blood-brain barrier
BID	twice daily
BiPAP	bi-level positive airway pressure
BMP	basic metabolic panel
BP	blood pressure
BTF	Brain Trauma Foundation
BSAS	Bedside ShiveringAssessment Scale
С	Celsius
Ca ²⁺	calcium
CAA	cerebral amyloid angiopathy
CABG	coronary artery bypass graft
CAS	carotid artery stenting
СВС	complete blood count
CBF	cerebral blood flow
ССМ	cerebral cavernous malformation
CEA	carotid endarterectomy
cEEG	continuous EEG
CHF	congestive heart failure
CI	continuous infusion
CIDP	chronic inflammatory demyelinating polyneuropathy
COPD	c hronic obstructive pulmonary disease
CIM	critical illness myopathy
CIWA	Clinical Institute Withdrawal Assessment
СКД	chronic kidney disease
СМР	comprehensive metabolic panel
CMRO ₂	cerebral metabolic rate of oxygen

CMV	cytomegalovirus	ЕСМО	extracorporeal membrane oxygenation
CN	cranial nerve	ЕСТ	electroconvulsive therapy
CNS	central nervous system	ED	emergency department
со	cardiac output	EDH	epidural hematoma
CPAP	continuous positive pressure ventilation	EEG	electroencephalogram
CPP	cerebral perfusion pressure	EKG	electrocardiogram
CPR	cardiopulmonary resuscitation	EMG	electromyography
CrCl	creatinine clearance	EMSE	epidemiology based mortality
CSE	convulsive status epilepticus		score
CSF	cerebrospinal fluid	EN	enteral nutrition
CSWS	cerebral salt wasting syndrome	ENLS	Emergency Neurologic Life Support
ст	computerized tomography	ENT	ear/nose/throat or
СТА	CT angiography		otolaryngology
сти	CT venogram	EOM	extraocular muscles
CVR	cerebral vascular resistance	ETT	endotracheal tube
CVST	cortical vein sinus thrombosis	EVD	external ventricular drain
CXR	chest x-ray	FDA	Federal Drug Administration
D	day	FFP	fresh frozen plasma
DAI	diffuse axonal injury	FiO ₂	fraction of inspired oxygen
dAVF	dural arteriovenous fistula	FOUR	Full Outline of UnResponsiveness
DBP	diastolic blood pressure	FVC	forced vital capacity
DCD	donation after circulatory death	GBS	Guillain-Barré syndrome
DCI	delayed cerebral ischemia	GCS	Glasgow Coma Scale
DDAVP	desmopressin	GI	gastrointestinal
DH	decompressive hemicraniectomy	GOS-E	Glasgow Outcome Scale-
DI	diabetes insipidus	603-E	Extended
DKA	diabetic ketoacidosis	GPD	generalized periodic discharge
DNI	do not intubate	GRE	gradient echo
DNR	do not resuscitate	GTC	generalized tonic-clonic
DOAC	direct oral anticoagulant	н	hour
DSA	digital subtraction angiography	HCG	human chorionic gonadotropin
DTR	deep tendon reflexes	HD	hemodialysis
DVT	deep vein thrombosis	Hgb	hemoglobin
EBV	Epstein-Barrvirus	HIT	heparin-induced thrombocytopenia

HIV	human immunodeficiency virus	LOS	length of stay
нов	head of bed	LP	lumbar puncture
HSV	Herpes simplex virus	LR	Lindegaard ratio
HTLV-1	Human T-lymphotropic virus type 1	LR	Ringer's lactate
HTN		MAP	mean arterial pressure
	hypertension	MCA	middle cerebral artery
HTS	hypertonic saline	MCS	minimally conscious state
IBW	ideal body weight	MEP	maximal expiratory pressure
ICA	internal carotid artery	MFV	mean flow velocity
ICH	intracerebral hemorrhage	MG	myasthenia gravis
ICP	intracranial pressure	МН	malignant hyperthermia
ICU	intensive care unit	MHS	malignant hemispheric stroke
IDSA	Infectious Disease Society of America	МІ	myocardial infarction
lgA	immunoglobulin A	Min	minute
IIC	ictal-interictal continuum	mL	milliliter
ІМ	intramuscular	MMR	measles, mumps, rubella
INR	international normalized ratio	MOA	mechanism of action
ю	intraosseous	MRI	magnetic resonance imaging
1&0	input and output	mRS	modified Rankin Scale
IV	intravenous	MRV	magnetic resonance venogram
IVC	inferior vena cava	MV	mechanical ventilation
IVF	intravenous fluids	NCCU	Neurocritical Care Unit
IVH	intraventricular hemorrhage	NCS	nerve conduction study OR Neurocritical Care Society
IVP	intravenous push	NCSE	nonconvulsive status epilepticus
IVIg	intravenous immunoglobulin	NG	nasogastric
IVP	intravenous push	NIF	negative inspiratory force
IV tPA	intravenous tissue plasminogen activator	NIPPV	noninvasive positive pressure
KCI	potassium chloride	NM	neuromuscular
LE	lower extremity	NMBA	neuromuscular blockade agent
LCMV	lymphocytic choriomeningitis virus	NMJ	neuromuscular junction
LDH	lactate dehydrogenase	NMO	neuromyelitis optica
LFTs	liver function tests	NMS	neuroleptic malignant syndrome
LKWT	last known well time	NORSE	new onset status epilepticus
LMWH	low-molecular-weight heparin	NPi	neurologic pupillary index

NS	normal saline	PTT	partial thromboplastin time
NSAID	nonsteroidal anti-inflammatory	PVS	persistent vegetative state
_	drugs	QID	four times daily
O ₂	oxygen	QOD	every otherday
OG	orogastric	RA	rheumatoid arthritis
OHCA	out-of-hospital cardiac arrest	RAAS	renin-angiotensin-aldosterone
OOB	out of bed		system
OSA	obstructive sleep apnea	RAS	renin-angiotensin system
OSM	osmolar	RAS	reticular activating system
от	occupational therapy or therapist	RASS	Richmond Agitation and Sedation Scale
PbtO ₂	brain tissue oxygen tension	R/O	rule out
PCA	posterior cerebral artery	RCT	randomized control trial
PCC	prothrombin complex concentrate	RN	registered nurse
PComm	posterior communicating artery	ROM	range of motion
PCR	polymerase chain reaction	ROSC	return of spontaneous circulation
PD	periodic discharge	RR	respiratory rate
PE	pulmonary embolus	RSE	refractory status epilepticus
PEEP	positive end expiratory pressure	RSI	rapid sequence intubation
PEG	percutaneous endoscopic	RT	respiratory therapy or therapist
	gastrostomy	RTA	renal tubular acidosis
PFO	patent foramen ovale	RVR	rapid ventricular response
PICA	posterior inferior cerebellar artery	SAH	subarachnoid hemorrhage
PICC	peripherally inserted central catheter	SBP	systolic blood pressure
PIP	peak inspiratory pressure	SC	subcutaneous
PIV	peripheral intravenous line	SCA	superior cerebellar artery
PLEX	plasmapheresis	SCD	sequential compression device
P _{plat}	plateau pressure	SCI	spinal cord injury
PRBCs	packed red blood cells	SDH	subdural hematoma
PRES	posterior reversible encephalopathy syndrome	Se	sensitivity
		SE	status epilepticus
PRIS	propofol infusion syndrome	Sec	second
PRN	pro re nata, as needed	SIADH	syndrome of inappropriate
PRVC	pressure regulated volume control	SIMV	antidiuretic hormone secretion synchronized intermittent
РТ	physical therapy or therapist		mechanical ventilation
		SLE	systemic lupus erythematosus

s/p	status post		management
Sp	specificity	U	units
SpO ₂	peripheral capillary oxygen	UA	urinalysis
	saturation	UCx	urine culture
SRSE	super refractory status epilepticus	UE	upper extremity
SSEPs	somatosensory evoked potentials	UFH	unfractionated heparin
		UMN	upper motor neuron
SSRI	selective serotonin reuptake inhibitor	US	ultrasound
SSS	sick sinus syndrome	UTI	urinary tract infection
ST	speech therapy or therapist	VALI	ventilator associated lung injury
STESS	status epilepticus severity score	VBG	venous blood gas
SWI	susceptibility-weighted imaging	VC	volume control
тв	tuberculosis	VF	ventricular fibrillation
тві		VPA	valproic acid
	traumatic brain injury	vs	vegetative state
TCA	tricyclic antidepressant	VT	tidal volume
TCD	transcranial doppler ultrasound	VT	ventricular tachycardia
тн	therapeutic hypothermia	VTE	venous thromboembolism
TIA	transient ischemic attack	VZV	Varicella zoster virus
тмј	temporomandibularjoint	w/	with
TMP-SM	X trimethoprim-sulfamethoxazole	WFNS	World Federation of Neurological
TOF	train-of-four	millo	Surgeons
tPA	tissue plasminogen activator	WNV	West Nile virus
TPN	total parenteral nutrition	w/o	without
тѕн	thyroid stimulating hormone	уо	years old
ттм	targeted temperature		

х

CONTENTS

COMPONENTS OF THE COMA EXAM Anand Venkatraman, MD Edward Manno, MD MS	1
ACUTE SPINAL CORD INJURY Shola Aluko, MD Ribal Bassil, MD	13
Deborah M. Stein, MD MPH FACS FCCM	
NEUROMUSCULAR EMERGENCIES Marin Darsie, MD J. Dedrick Jordan, MD PhD FNCS	24
STATUS EPILEPTICUS Alexis Steinberg, MD Anh Nguyen, MD Jan Claassen, MD PhD FNCS	33
MENINGITIS AND ENCEPHALITIS Tachira Tavarez, MD Maria Muzammil, MD MBBS Barnett Nathan, MD	45
NEUROLOGIC CARE AFTER CARDIAC ARREST Christian Hernandez, MD Romergryko Geocadin, MD FNCS	57
ACUTE ELEVATED INTRACRANIAL PRESSURE & HYDROCEPHALUS Deepa Malaiyandi, MD Lori Shutter, MD FNCS FCCM	65
SUBARACHNOID HEMORRHAGE. Jennifer A. Kim, MD PhD Ashutosh Mahapatra, MD Paul Vespa, MD FCCM FAAN FANA FNCS	77
INTRACEREBRAL HEMORRHAGE Tobias Kulik, MD J. Claude Hemphill III, MD FNCS	92

ACUTE ISCHEMIC STROKE
TRAUMATIC BRAIN INJURY
BRAIN DEATH IN ADULTS
MULTIMODAL MONITORING
HIGH-YIELD MEDICATIONS IN NEUROCRITICAL CARE 149 Yasmin Ali O'Keefe, MD Feras Akbik MD PhD Gretchen M. Brophy, PharmD BCPS FCCP FCCM FNCS
MECHANICAL VENTILATION
ACID-BASE & ELECTROLYTE DISTURBANCES
TOXIDROMES
INTERDISCIPLINARY PATIENT CARE IN THE NCCU

CHAPTER 1

COMPONENTS OF THE COMA EXAM

Anand Venkatraman & Edward Manno

The examination of a comatose patient is one of the most important responsibilities in the care of neurocritically ill patients. We describe key components of the coma exam and review common findings.

.....

DISORDERS OF CONSCIOUSNESS

Consciousness is comprised of 2 components: arousal and awareness. Two connected anatomic pathways coordinate consciousness: the ascending RAS within the brainstem, and arousal centers in the bilateral thalami which project diffusely to cortical neurons. Impairment of awareness can lead to a spectrum of disorders, which include MCS and VS. Coma, on the other hand, is caused by impaired arousal which leads to impaired awareness. Consciousness is not an all-or-nothing phenomenon, and gradations do exist. Newer technologies, such as functional MRI, are beginning to provide the ability to image and interpret brain processing in a more advanced and high-resolution fashion. This is shedding light on the gradations of consciousness and may alter how we evaluate and treat patients that may be "functionally locked-in" or have Unresponsive Wakefulness Syndrome, but the bedside neurologic exam remains a highly valuable standard assessment tool for all clinicians.

DIFFERENTIAL DIAGNOSIS

It is important to differentiate coma from other disorders of consciousness, including VS, MCS, and locked-in syndrome (Table 1). The prognosis of disorders of consciousness varies widely, and depends on clinical factors, cause of brain injury, and the duration of the consciousness impairment. For patients with PVS (defined as vegetative state with duration of > 1 month), the prognosis is poorest. Some patients with MCS will show recovery over time. Locked-in syndrome usually results from a lesion that interrupts the descending motor pathways, leaving cognitive function and consciousness intact, but with severe limitations on the patient's ability to interact with the examiner.

POSSIBLE CAUSES OF COMA

Bihemispheric phenomena: medication or drug toxicities, SE or NCSE, metabolic disorders, meningoencephalitides (w/ or w/o focal neurologic findings).

Focal anatomic brain lesions: affecting the thalamus or brain stem which contain crucial arousal-supporting neurons. May be associated with focal neurologic findings.

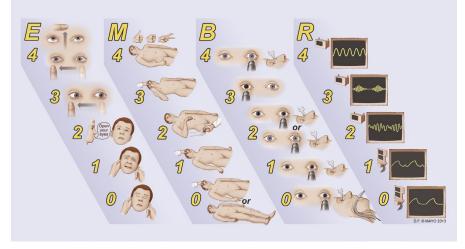
It is essential to rule out reversible causes of coma in cases when the etiology is not known (Table 2).

NEUROLOGIC EXAM IN COMA

The initial exam is important for localization and identifying the cause of coma. Serial exams to assess interval change are equally important. Acute neurologic deterioration can signal AIS, ICH, seizure, worsening edema, hydrocephalus, or elevated ICP. Hourly vital sign assessments and neurologic checks are the norm in newly-admitted NCCU patients. In some, such as those admitted after surgical or endovascular procedures, the frequency of assessments may need to be more often.

We recommend the use of standardized scales to assess disorders of consciousness. The best known is the GCS, of which the arbitrary definition of coma is GCS \leq 8 (E2V2M4). See Table 3 for reference.

Limitations of GCS:


- Can miss locked-in states and subtle changes in consciousness
- Does not assess pupillary and other brainstem reflexes
- Patients with similar scores may go on to have different outcomes
- Assigns greater weight to motor response than eye opening and verbal responses
- Intubated patients default to a T score on the verbal component and aphasic patients have a low verbal score, each of which make the total GCS less reliable
- Some studies suggest only moderate inter-rater reliability, especially for motor response

FOUR score can also be used, and addresses some shortcomings of the GCS:

- Incorporates brainstem function and respiratory pattern, allowing for better localization
- Can help recognize a locked-in state
- Can recognize various stages of herniation

The calculation of the FOUR Score is illustrated in Figure 1 and is also described in Table 4.

Figure 1. Calculation of the FOUR Score (used with permission from the Mayo Foundation for Medical Education and Research)

SPECIFIC STEPS OF THE COMA EXAM

The patient's mental status, cranial nerve exam, motor exam (including response to noxious stimulus), tone, and reflexes should be assessed.

Cranial Nerves (CN)

Pupils:

- Afferent: CN II, Efferent: CN III
- Observe pupils in low light. Then, shine a light into both pupils alternately and observe for briskness of response. Assess for both direct and consensual light reflexes. A pupillometer is a useful adjunct, especially with abnormal pupils

Asymmetric pupils: consider compressive lesions of CN III, such as due to herniation and/or PComm aneurysms

- Unilateral dilated, non-reactive pupil: CN III dysfunction (rule out compression) vs unilateral medication effect or post-surgical pupil
- Nonreactive, dilated pupils: consider severe brainstem damage or medication side effect(Table 5)
- Pinpoint pupils: consider opioid use, pontine stroke or hemorrhage, organophosphate poisoning, clonidine overdose, pilocarpine eye drop use, and occasionally mirtazapine and olanzapine
- Sluggish pupils: NMBA, recent mydriatic administration, or albuterol use

Corneal responses:

- Afferent: CN V, Efferent: CN VII
- Gently hold the patient's eyelids open and drop 1-2 saline drops onto the cornea of each eye
- Cotton swabs can be used with caution as repeated testing with this method can lead to corneal ulceration

There is a blinking response if this pathway is intact

Blink to threat:

- Afferent: CN II, Efferent: CN VII
- Briskly move your hand into the patient's visual field while holding his/her eyelid open. The patient should blink

Gaze:

- Hold eyes open and observe direction of gaze in neutral head position
- Eye movements involve coordinated functioning of multiple CN, frontal lobe and brainstem centers
- Gaze deviation also occurs due to involvement of frontal eye fields in each hemisphere: destructive lesions cause ipsilateral gaze deviation, stimulation causes contralateral deviation
 - □ Cortical ischemic stroke patients demonstrate gaze directed towards hemisphere of the stroke
 - □ Seizure patients demonstrate gaze directed away from seizing hemisphere, and may have gaze towards the hemisphere post-ictally
- Brainstem strokes can cause impaired gaze towards the side of the stroke
- Forced downgaze may be seen in thalamic hemorrhages, pineal mass lesions, and severe hydrocephalus
- Bilateral CN VI palsy seen in ↑ ICP

EOMs:

- Innervation of extraocular muscles: Lateral Rectus CN VI, Superior Oblique CN IV, All others CN III
- Fixation and tracking are normal findings
- Fixation: eyes looking at an object and not moving from that position
- Tracking: eyes moving as the object or the examiner moves, to follow them
- Roving eye movements: slow and conjugate to-and-fro movements
 - □ Can be seen in toxic and metabolic conditions where brainstem is intact. Light stages ofsleep and lighter coma also cause this
- Nystagmus: fast, beating movements to one side (may indicate ongoing seizures)
 - Other causes: phenytoin toxicity, brain lesions like those seen in stroke or multiple sclerosis, inner ear disorders, and metabolic disorders like thiamine deficiency
 - Down-beating nystagmus may be seen in disorders of the craniocervical junction or cerebellar flocculus
 - □ Up-beating nystagmus may be seen in cerebellar vermis involvement, and sometimes in lesions of the medulla
 - □ Acute lesions in the pons can cause rapid downward jerking of the eyes with slow return to normal position, called ocular bobbing

Fundoscopy:

- Evaluate optic disc and nerve
- Blurring of optic disc margins is indicative of ↑ ICP, but absence of blurring does not automatically indicate normal ICP. Subhyaloid hemorrhages can also be seen with ↑ ICP. The presence of spontaneous venous pulsations implies a normal ICP, but the absence of these pulsations is uninformative
 - □ Terson syndrome: subhyaloid hemorrhage in SAH

Oculocephalic reflex or "doll's eyes":

- Afferent: CN VIII and proprioceptive pathways from the cervical level, Efferent: CN III and VI
- Confirm stability of cervical spine, then move head briskly in one direction and then the other with the eyelids held open
- Interpretation of OCR responses in a comatose patient:
 - □ In a normal OCR, eyes move conjugately in the direction opposite to head movement
 - □ In abnormal OCR, eyes stay in fixed position in the head, implying brainstem disease

Oculovestibular reflex or "cold calorics":

- Afferent: CN VIII, Efferent: CN III and VI
- Do this if OCRs are absent; also useful in cases where cervical spine instability is suspected
- Ensure patency of ear canal and ability of water to reach tympanic membrane
- Instill 50-60 mL of ice-cold water into each ear over 1 minute using a syringe
- Test each side individually with several minutes between testing each side
- Normal: slow conjugate deviation towards the irrigated side and fast horizontal nystagmus to the contralateral ear
- Abnormal: no fast nystagmus in patients with cerebral damage but intact brainstem reflexes. No slow deviation and no fast nystagmus imply brainstem damage

Gag reflex:

- Afferent: CN IX, Efferent: CN X
- Tested by stimulating the back of the patient's throat with a tongue depressor or suction catheter
- Gag reflex is of limited utility since many patients with normal brainstem lack a gag reflex. If a gag reflex is present, and on subsequent testing it is lost, that might be of clinical value

Cough reflex:

- Afferent: CN X, Efferent: CN X
- In an intubated patient can be tested by touching the carina with a suction catheter passed through the patient's ETT or tracheostomy tube

Motor

A normal patient should follow commands. In a comatose patient it is often necessary to administer noxious stimuli, which may include sternal rub or supraorbital ridge pressure. Do not perform supraorbital ridge pressure in the presence of facial fractures. If there is no response to this noxious stimulus, peripheral stimulus (such as application of nailbed pressure) should be performed. There is a range of movements which may be seen.

- Patients may localize to the stimulus, withdraw away from the stimulus, flex, extend, or have no response at all. Grimacing may also be observed
- Spinal reflexes may lead to lower extremity movements even in patients with severe brain damage or brain death (e.g. <u>triple flexion</u> response of hip, knee, and ankle flexion)
- Decorticate posturing: upper extremity flexion and lower extremity extension, typically from a lesion above the red nucleus of the midbrain
- Decerebrate posturing: upper and lower extremity extension is typically from a lesion below the red nucleus
- Unilateral or bilateral posturing may be seen based on location of lesion causing it
- Post-anoxic myoclonus is common in patients following cardiac arrest.
 Occasionally it may indicate ongoing seizure activity, and EEG is recommended

Tone and reflexes

Increased tone, brisk reflexes, and upgoing toes are indicative of a lesion in the spinal cord or brain.

- If unilateral, usually indicates a lesion on the opposite side
- Symmetric hyperreflexia can be normal, especially in young patients, but may also indicate bilateral lesions, especially in the brainstem and spinal cord. In rare instances, symmetric hyperreflexia might indicate conditions like serotonin syndrome
- Neuro-intact people with brisk reflexes usually do not have upgoing toes, so this can be a good way to differentiate pathological cases from physiologic hyperreflexia
- Brisk reflexes and ↑ tone in lower extremities but not upper extremities are indicative of lesion below the level of the cervical spinal cord
- Very early on, brain and spinal cord lesions might present with flaccid paralysis

RESPIRATORY PATTERNS IN COMATOSE PATIENTS

Medication side effects should be ruled out first. Sedating medications tend to cause slow regular breathing, whereas salicylate overdose can cause rapid breathing. In intubated patients, assess synchrony with the ventilator and degree of effort, including actual vs set respiratory rate. Abnormal breathing may manifest more prominently on spontaneous ventilator modes.

Types of abnormal breathing include:

<u>Cheyne-Stokes</u>: oscillation between fast and slow breathing (multiple causes including bilateral hemispheric lesions, heart failure, etc.)

- Apneustic: rapid breathing with inspiratory pauses (pontine lesions)
- <u>Biot's</u>: quick shallow breaths followed by pause after four to five cycles (medullary damage). Also known as ataxic breathing
- <u>Cluster</u>: regular cycles of deep breaths with variable periodicity
- <u>Kussmaul</u>: rapid, deep and labored breaths (metabolic acidosis)

USEFUL ANCILLARY TESTS IN COMATOSE PATIENTS

- Laboratory tests: serum electrolytes, glucose, hormone levels (such as TSH), ammonia, and toxicology tests should be considered to evaluate for potentially reversible causes of coma (see Table 2)
- <u>CT</u>: primary value is to rule out ICH or large mass, and to assess for edema, hydrocephalus, and herniation
- <u>MRI</u>: requires significantly more time than CT and can be contraindicated or difficult to obtain in unstable patients, but is helpful in diagnosis of demyelinating lesions, meningoencephalitides, small strokes (especially evaluation of posterior fossa), and some metabolic disorders
- <u>EEG</u>: should be performed in all patients who are unresponsive without a clear etiology to evaluate for nonconvulsive or electrographic seizures. Most common finding in coma is "generalized slowing." Focal slowing can indicate a structural lesion. Triphasic waves are often seen in metabolic encephalopathies (classically in liver failure). Cefepime is another common cause of triphasic-like waves on EEG and alteration of consciousness in ICU patients, especially those with impaired renal function
- <u>LP</u>: measurement of opening pressure and diagnostic evaluation of CSF for infectious or inflammatory etiologies may assist in narrowing the differential diagnosis