Membrane Rotors and Membrane Proteins

Naomi Oppenheimer and Michael J. Shelley

Flatiron Institute at the Simons Foundation

Biological Membranes

biomembrane = 2D fluid (like a soap bubble)

ATP synthase a Rotating Protein

Molecular model

Our model

Creates ATP (fuel of life)

Rotates in the membrane

Forming a Lattice - Why?

ATP synthase in a membrane Jiko, Gerle et. al, eLife. 2015

Lattice formation could be explained with just hydrodynamics!

Suggested by: Lenz, Joanny, Julicher, Prost, PRL 2003

Protein vs. Hurricane

ATP synthase protein

Hurricane Rita

Scale

10 nm

10 km

Dominated by

Viscosity

Inertia

Vorticity in a 2D Ideal Fluid

Incompressibility $\nabla \cdot \mathbf{u} = 0$

$$\nabla \cdot \mathbf{u} = 0$$

Stream Function

$$u_x = -\frac{\partial \Psi}{\partial y} \qquad u_y = \frac{\partial \Psi}{\partial x}$$

$$u_y = \frac{\partial \Psi}{\partial x}$$

Define

$$\mathbf{u} = \nabla^{\perp} \Psi$$

Vorticity

$$\omega = \nabla \times \mathbf{u} = \nabla^2 \Psi$$

For a point vortex

$$\omega = \Gamma \delta(r)$$

$$\Gamma \delta(r) = \nabla^2 \Psi$$

$$\Psi = \frac{\Gamma}{2\pi} \log r$$

The Hamiltonian

For N point vortices
$$H = \frac{1}{2\pi} \sum_{i \neq j} \Gamma_i \Gamma_j \log |r_i - r_j|$$

Equations of motion

$$\Gamma_i \dot{x}_i = -\frac{\partial H}{\partial y_i} \qquad \Gamma_i \dot{y}_i = \frac{\partial H}{\partial x_i}$$

Conservation of: H, Linear momentum, Angular momentum

100 Vortices

Sum of distances is conserved

Can't collapse to a point

can't diverge to infinity

Rotors in a membrane

 \mathbf{u} , η_{3D}

Momentum conservation

$$0 = \eta_{2D} \nabla^2 \mathbf{v} - \mathbf{\nabla} P + \mathbf{f} + \eta_{3D} \left. \frac{\partial \mathbf{u}}{\partial z} \right|_{z=0}$$

In Fourier Space
$$-\eta_{\rm 2D}q^2 ilde{f v}-\eta_{\rm 3D} ilde{f v}q+ ilde{f f}=0$$
 ($ilde{f u}= ilde{f v}e^{-|{f q}|z}$)

(
$$\tilde{\mathbf{u}} = \tilde{\mathbf{v}}e^{-|\mathbf{q}|z}$$
)

The velocity is

$$\tilde{\mathbf{v}} = rac{\mathbf{f}(\mathbf{q})}{\eta_{\mathrm{2D}}q(q+\kappa)}$$

$$\kappa = \frac{\eta_{\mathrm{3D}}}{\eta_{\mathrm{2D}}}$$

Deriving the Stream Function Ψ

$$\tilde{\mathbf{v}} = \frac{\tilde{\mathbf{f}}(\mathbf{q})}{\eta_{\mathrm{2D}}q(q+\kappa)}$$

Rotlet

$$\mathbf{f} = au_0
abla^{\perp} \delta(r)$$

We can define

$$\tilde{\mathbf{v}} = au_0 \nabla^{\perp} \tilde{\Psi}$$

$$\tilde{\mathbf{v}} = \tau_0 \nabla^{\perp} \tilde{\Psi}$$

$$\tilde{\Psi} = \frac{1}{\eta_{2D} q(q + \kappa)}$$

In real space
$$\Psi = \frac{\pi}{2} \left(H_0(\kappa r) - Y_0(\kappa r) \right) \qquad \begin{array}{c} \log(\kappa r) \\ \log(\kappa r$$

Quasi geostrophic

100 Rotors in a Membrane

Proteins + Short Ranged Repulsion

Proteins are torque free

yet they act like vortices

$$\Psi = -\frac{1}{\kappa r} + \frac{\pi}{2} \left(H_0(\kappa r) - Y_0(\kappa r) \right)$$

Proteins + Short Ranged Repulsion

Proteins are torque free

yet they act like vortices

$$\Psi = -\frac{1}{\kappa r} + \frac{\pi}{2} \left(H_0(\kappa r) - Y_0(\kappa r) \right)$$

Discrete to Continuous

Discrete — Continuous

 $\kappa r = 0.01$

 $\kappa r = 0.1$

Difference from Ideal Vorticity

Short-ranged repulsion

Brownian motion

Brownian Motion

Destroying order

The hexatic order parameter

$$\Psi_6 = \frac{1}{N} \sum_{i=1}^{N} e^{6i\theta}$$

Sokolov-Diamant Mobility Tensor

$$B_{\alpha\beta}^{12} = \frac{1}{4\pi\eta_m} \left[\left(\log \frac{2}{\kappa r} - \gamma - \frac{1}{2} + \frac{a^2}{r^2} \right) \delta_{\alpha\beta} + \left(1 - \frac{2a^2}{r^2} \right) \frac{r_{\alpha}r_{\beta}}{r^2} \right]$$

Y. Sokolov and H. Diamant JCP 2018

The Rotne-Prager analog for a membrane = positive definite mobility tensor

average over local hexagonal order

Conclusions

- At short distances membrane rotors act just like vortices in an ideal fluid
- Motor proteins self assemble into a lattice when short ranged repulsion is included
- Continuous dynamics: Hurricane in a membrane?

Next

Distribution of Velocities

Understanding the density variation

