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Motivation

• Extinction of some (or all) species is very common in stochastic
reaction networks. What is the long-term behavior before
extinction?

• The quasi-stationary distribution (QSD) is the likely distribution of
the state variable, if the system has been running for a "long” time
and is not extinct.

• Today, I will focus on the connection with the corresponding
deterministic reaction network. In particular, to what extend do we
have the following dichotomy, and how are they related?

Deterministic Stochastic
Attractor QSD
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Motivation - Keizer’s paradox
Consider the logistic network

/0
α1← S

α2


α3

2S,
dx
dt

= (α2−α1)x−α3x2.

Modeled with deterministic mass-action, this has an unstable steady
state x∗1 = 0 and a stable x∗2 =

α2−α1
α3

.

The corresponding stochastic system on {0}tN reaches extinction
with probability 1; {0} is a trap; limiting distribution is π = (1,0, . . . ,0).
This may, however, take a very long time. . .
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Figure : X(0) = 1, α1 = 0.05, α2 = 5, α3 = 0.05.
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Main Result - In (CRNT-)Layman Terms

Let a reaction network be given. Under the "classical scaling", with ε

being the inverse of system size, we may consider the family of Markov
processes {Xε

t }ε>0 associated to the network, as a random
perturbation of the corresponding deterministic system. Under
appropriate assumptions the weak∗ limit of the quasi-stationary
distributions µε will have support contained in the union of positive
attractors of the deterministic system.

In particular, for Keizer’s paradox, µε⇒ δx∗2
, where x∗2 was the only

stable fixed point for the deterministic rate equation.
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General Setup of Quasi-Stationarity

Consider a time-homogenous Markov process (Xt : t ≥ 0) evolving in
a domain D with a set of absorbing states, A, constituting a trap.

The process is killed when it hits the trap - assume that this happens
almost surely, Px(τA < ∞) = 1, where τA = inf{t ≥ 0 : Xt ∈ A} is the
hitting time of A

.

We investigate the behavior of the process before being killed.

D A

E
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Definition
A probability measure ν on E = D\A is called a quasi-stationary
distribution (QSD) for the process killed at A if for every measurable
set B⊂ E

Pν(Xt ∈ B |τA > t) = ν(B), t ≥ 0

or equivalently, if there exists a probability measure µ on E such that

lim
t→∞

Pµ(Xt ∈ B |τA > t) = ν(B)

D A

B
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Random Perturbations of Reaction Networks
Let D⊆ Rd

+ be the state space of a deterministic reaction network.
The solution of the associated ODE yields a semi-flow ϕt(x).

D = D0tD1,

where D0,D1 are positively ϕ-invariant and D0 is a closed and
absorbing subset of D,

pε(t,x,D1) = 0 ∀ε > 0, t > 0,x ∈ D0.

Definition
A random perturbation of a semi-flow ϕt is a family of homogeneous
Markov processes

{(Xε
t : t ≥ 0)}ε>0 on D⊆ Rd

+

where pε(t,x,Γ) satisfy that for any δ > 0,T > 0 and K ⊂D1 compact,

βδ,K(ε) := sup
t∈[0,T ]

sup
x∈K

pε

(
t,x,D\Nδ(ϕt(x))

)
→ 0 for ε→ 0.
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Random Perturbations of Reaction Networks

In reaction networks for ε > 0 we may embed the stochastic process
(Xε

t : t ≥ 0) on εNd
0 satisfying the stochastic equation

Xε
t = Xε

0 + ∑
k∈R

Yk

(∫ t

0
λ

ε

k(X
ε
s )ds

)
εξk

into D⊆ [0,∞)d by allowing Xε
0 to be any point in D and update with

the jump rates

λ
ε

k(x) = αkε
‖yk‖1−1

d

∏
i=1

(
bxi/εc

yki

)
yki!,

In other words, we consider the classical scaling (fluid limit,
thermodynamic limit. . . ). Kurtz allows us to view these processes as
random perturbations of the corresponding deterministic system.
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Random Perturbations of Reaction Networks

Given a reaction network, we may for each ε > 0 automatically split the
state space for (Xε

t : t ≥ 0) into the disjoint union EεtAε.

Lemma

The state space can be written D = D0tD1 ⊆ [0,∞)d where

(i) D0 = limε→0 Aε is a closed subset of D;

(ii) D1 = limε→0 Eε is an open subset of D;

(iii) D0 and D1 are positively ϕ-invariant;

(iv) D0 is absorbing for the random perturbations,

pε(t,x,D1) = 0 ∀ε > 0, t > 0,x ∈ D0.

We assume that for each ε > 0 there exists at least one QSD µε and,
for simplicity, that Eε is irreducible.
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Assuming a Positive Attractor

From a modeling point of view, the applicability of the QSD depends on
the expected time to extinction. This scales exponentially in system
size ε.

Proposition

Assume that the flow {ϕt} admits an attractor K ⊂ D1. Then, starting
according to the QSD, µε, the probability of being absorbed by time
t > 0 is O(εe−γ/ε) while the mean time to extinction is O(εec/ε), where
γ,c > 0.

Proposition

Suppose the flow {ϕt} admits an attractor K ⊂ D1. Then the set of
limit points of {µε} for the weak∗ topology is a subset of the set of
invariant measures for the flow {ϕt}.
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Metastability

We assume µε converges weakly to a Borel probability measure µ for
ε→ 0. By the Poincaré recurrence theorem, one may conclude

suppµ⊆ BC(ϕ) := {x ∈ D : x ∈ ω(x)}.

Our main result aims to refine this statement.

Based on a sample path
large deviations result, one may obtain the preliminary proposition

Proposition
Suppose the flow {ϕt} admits an attractor K ⊂ D1. Then there exists a
neighborhood V0 of D0 such that µ(V0) = 0.

We also have a complimentary statement excluding metastability

Proposition
Assume that D0 is a global attractor. Then µ is supported by D0.
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Morse Decomposition
To refine these results further, we introduce some terminology.
Assume that the flow allows a global attractor given by

G =
⋂
t≥0

ϕt(D). (1)

Definition
A Morse decomposition of the dynamics of ϕt is a collection of
non-empty ϕ-invariant pairwise disjoint compact sets {M1, . . . ,Mm},
called Morse sets, such that

• Mi is isolated,

• for every x ∈ G\
⋃m

i=1 Mi, there exists i > j such that ω(x)⊆Mi
and α(x)⊆M j.

Morse sets contain all limit sets, and no cycles between Morse sets
are allowed. Modulo replacing each Mi with points one may think of ϕ

as being gradient-like, with the flow moving from lower to higher
indexed morse sets.
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Morse Decomposition

A Morse decomposition {M1, . . . ,Mm} is called finer than a Morse
decomposition {M′1, . . . ,M′m′} if for all j ∈ {1, . . . ,m′} there is
i ∈ {1, . . . ,m} with Mi ⊂M′j.

Theorem (Main)
Let M1, . . .Mm be the finest Morse decomposition for ϕt such that
M j, . . . ,Mm are attractors. If

• Mi ⊂ D0 or Mi ⊂ D1,

• Mi ⊂ D1 for some i≥ j.

then any weak∗-limit point of {µε}ε>0 is ϕt -invariant and is supported
by the union of attractors in D1.

The proof is based on so called absorption preserving pseudo-orbits,
introduced by Schreiber et al. and a large deviations result,
generalizing the work of Kifer and Conley.
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Resolving Keizer’s Paradox

Returning to network,

/0
α1← S

α2


α3

2S
dx
dt

= (α2−α1)x−α3x2.

for each ε > 0 there exists a unique QSD.

The state space is

D = {0}t (0,∞).

The finest Morse decomposition of the dynamics is

M1 = {0}, M2 =

{
α2−α1

α3

}
where M2 is an attractor. Thus, any weak∗ limit point of {µε}ε>0 is
supported by M2.
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Resolving Keizer’s Paradox

Figure : ε = 1,1/2,1/4,1/8,1/16,1/32,1/64.
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A 2D-example

2S1
α1 // 3S1

α2

  
S1 +2S2

α3

$$

/0

2S2
α4 // 3S2

α5

>>
d
dt

(
x1
x2

)
=

(
α1x2

1−α2x3
1−α3x1x2

2
α3x1x2

2 +α4x2
2−α5x3

2

)

For each ε > 0 there exists a unique QSD.

The state space is

D = ∂R2
+t (0,∞)2
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Figure : ε = 1/2,1/4,1/8,1/16,1/32,1/64.
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Multiple Positive Attractors

/0 S
α1 // 2S

α2

kk 3S
α3 ))

4S
α4

ii

dx
dt

= α1x−α2x2 +α3x3−α4x4.

For each ε > 0 there exists a unique QSD.

The state space is

D = {0}t (0,∞).

With parameters α1 = 900,α2 = 320,α3 = 33,α4 = 1, the finest
Morse decomposition is

M1 = {0}, M2 = {10}, M3 = {5}, M4 = {18}

with M3,M4 being attractors. Thus

suppµ⊆ {5}∪{18}. (2)
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Figure : ε = 1/2,1/4,1/8,1/32,1/64,1/128,1/256,1/512.
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Future (ongoing) work

• When will there exist a QSD for a given reaction network? (Hard)

• When will the limit converge to a single positive attractor? Which
one will it be? (Friedlin-Wentzel theory for absorbing processes?)

• If there are no positive attractors, are all the weak∗ limit points
supported by D0?

• Can we determine the rate of convergence to µ (in the total
variations norm say)?

• Can we describe the QSDs far away from equilibrium?
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Thanks!

Mads Christian Hansen
University of Copenhagen
mads@math.ku.dk
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