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Problem statement

We want to characterize the distribution 7 using a sampling method

Two problems:
@ The probability density function 7(x) is computationally expensive

© Only noisy density evaluations are available 7(x) = w(x) + ¢
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Motivating example: state space modelling

Static parameter estimation—

» Given: data y;3-7 with an unobservable state z;-1

» We want to characterize the distribution over x|y;. 1
» x is low-dimensional

Marginal
of interest

(x)
e{ e - | State

(Unobserved)

® ® @ - @ omn
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Local polynomial surrogates

» Given n (potentially noisy) density evaluations at points {x{)}7_,

» Find the degree p polynomial #(x) that minimizes the weighted least
squares error

7(x) = arg min Z (p(xm) - ?r(x('-))) 2K(xm,x)

PEFp =4

» Locally supported kernel K(-, x)
» Intuition: minimize the weighted least squares difference between the
surrogate and the k nearest neighbors

Bi(x) : smallest ball centered at x with k density evaluations

1 x' € Bk(}()

0 otherwise

}C(x’,x)—{
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Local polynomial surrogates

Build a local approximation in a ball around each point ...

Ball size is determined by the prescribed number of nearest neighbors
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Markov chain Monte Carlo (MCMC) overview

How do we use local polynomial surrogates within MCMC?

Three step algorithm:
© Propose x’ ~ p
© Acceptance probability

o, m)p(x?x)
" 7 (x®)p(x'|x)

\_/

Posterior ution
© Accept/reject
W(t+1) _ x’  with probability o |
(t) g Metropolis et al., 1953
X else

Hastings, 1970
and variations . . .
Haano et al., 2006
Parno and Marzouk, 2014
Brooks et al., 2011
Davis et al.
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Over versus under refinement

» Choosing the refinement decay rate 0 < 31 < 1 has a significant effect
on the surrogate’s quality after a finite number of MCMC steps T
» Note: all 0 < 51 < 1 are exact when T — o©
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» Note: all 0 < 8; <1 are exact when T — o©

» Slow decay rate (small 3;) frequently triggers refinement and the
estimate’s error is dominated by the MCMC variance

Py =05
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Over versus under refinement

» Choosing the refinement decay rate 0 < 37 < 1 has a significant effect
on the surrogate’s quality after a finite number of MCMC steps T
» Note: all 0 < 8; < 1 are exact when T — o

» Slow decay rate (small 3;1) frequently triggers refinement and the
estimate’s error is dominated by the MCMC variance




Structural refinement strategy

» We devise a refinement strategy based on a local error estimate to
balance MCMC variance and structural error

» Divide the chain into M levels and prescribe an error threshold
¥(M) = voM~ on each level

» Explore the parameter space before refining the error threshold

» We switch to level M + 1 at step Ty, when the MCMC variance
balances the structural error

MCMC variance [Structural bias]”
Cuvcmc Ty YEM—n

Tm = @1 M™™

» The threshold decay rate must be 71 > 0.5 so the length of each level
Tm — Tpp—1 grows

We trigger refinement based on a piecewise constant error threshold
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Expected error (structural refinement)

» The expected number of refinements is the same (when v, > 0.5)
» When v; < 0.5, the surrogate is underrefined

» The error is dominated by the structural bias

Expected error

- ._ =5 -

—

Target density evaluations
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Local polynomial surrogates

» Now consider situations with noisy evaluations of the target density
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Surrogate convergence (noisy density evaluations)

In the noisy evaluation case, the surrogate 7(x) approaches 7(x) as:
© The ball size A — 0 (number of evaluations n — o0)
© A-poisedness is maintained inside each ball

© The number of nearest neighbors kK — oc (while % — 0)

Large balls Small balls
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Structural refinement (noisy density evaluations)

At x{t) reset the number of nearest neighbors k(n) = | ko + &1 log (n)]
and refine the surrogate if:

© The poisedness constant is too large AlY) > A
© If the local error indicator is greater than the level’s threshold

e(x9) = /A(MAKXD) AP (xD) > 1oM—n

s : Red dots:
s I Noisy density
': evaluations
Purple line:

Local polynomial

approximation
Grey line:

Binned MCMC

samples
Dawvis et al. MIT 27T | 32




Tracer transport example: steady state velocities

Compute the steady state hydraulic head and Darcy velocity:

u

V-(khVh)=f, and = —khVh

y coordinate
Hydraulic head h

05 =
y coordinate o O

X coordinate

Our goal is to infer k1 k2 k3 K4 k5 and kg
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Conclusions

» Building and refining a local polynomial approximations significantly
reduces computational expense
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Structural refinement (noisy density evaluations)

At x't) reset the number of nearest neighbors k(n) = | kg + s log(n)
and
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At x't) reset the number of nearest neighbors k(n) ko + K1 log(n)
and




Structural refinement (noisy density evaluations)

At x\t) reset the number of nearest neighbors k(n) = | kg + x1 log (n)
and refine the surrogate if:

@ The poisedness constant is too large Alf) > A
© If the local error indicator is greater than the level's threshold

e(x') = \/k(mA(x*)APT(x(1)) > r oM™
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Structural refinement (noisy density evaluations)

At x(t) reset the number of nearest neighbors k(n) = | ko + k1 log (n)
and refine the surrogate if:

© The poisedness constant is too large Al) > A
© If the local error indicator is greater than the level's threshold
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Compute the steady state hydraulic head and Darcy velocity:

V- -(khVh) =f, and = —xhVh

* IS
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Compute the steady state hydraulic head and Darcy velocity:

V- (khVh) =f, and = —xkhVh




samples
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Tracer transport example: steady state velocities

Compute the steady state hydraulic head and Darcy velocity:

V-(khVh)=f, and = —xkhVh

y coordinate

Hydraulic head h

] =

X coordinate



Red dots:

Noisy density
evaluations
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Local polynomial
approximation
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Tracer transport example: steady state velocities
Compute the steady state hydraulic head and Darcy veloaty:

.
V.- (xhVh) — f, and IH <hVh

y coordinate




» Now consider situations with noisy evaluations of the target density

Surrogate convergence (noisy density evaluations)

in the noisy evaluation case, the surrogate 7(x) approaches 7{x) as:
©® The ball size A — 0 (number of evaluations n — )

© A-porsedness s maintaned inside each ball

= IF =




An ideal refinement rate

» Assume the MCMC vanance decays with the number of steps

IMCMC vanance] < Cuomc T :

» The surrogate bias is bounded

[Surrogate bias] = |#{x) — =(x)| € CsumogateV KAAPT!

» |deally, we balance MCMC vanance with surrogate bias squared to
derrve an deal refinement rate

Structural refinement strategy

» We devise 3 refinement strategy based on a local error estimate to
balance MCMC vanance and structural error
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An ideal refinement rate

» Assume the MCMC vanance decays with the number of steps

1MCMC 'JarIEﬂEE] Carcrac T
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Quantifying poisedness

» Randomly chosen points form clusters
= Subsets of k nearest neighbors are poorly poised
» We swap an existing pont to improve posedness

: Page 24 of 69
Quantifying poisedness




xi{x) = argmmTI:.,r{u

£l

» Locally supported kernel K|

Local polynomial surrogates

» Given n (potentially noisy) density evaluations at points {x''/}7_,

» Find the degree p polynomial 7{x) that minimizes the weighted least
SQuUares error

"‘{x}:argmmv[,u{:

» Locally supported kernel K(-. x)

» Intuition: minimize the wgghgggi le
surrogate and the k& near@ac* =l R«

Bi(x) : smallest ball centered at x with k density evaluations
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Figure 9. One- and two-dimensional posterior marginals of the parameters in the hydrologic tracer
transport problem. Bownds on each subplot aris are the upper and lower bounds for the wniform prior om the

corresponding parameter (Table 1).
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local approximations. we also wish o compare our approach with chains that emplov exact
evaluations of the forward model. To make such compansons feasible —and also to reflect
computational practice for complex PDE models — we parallelize each forward model eval-
pation. We use [our processors. which reduces the forward model’s runtime to roughly 4
seconds ol compmtation. Thas our parallel MUOMC scheme actually emplovs two levels of
parallelism: an outer level involving parallel chains, as described in Section 3, and an inner
level within each forward model evaluation

3‘; | r..Pnt.-!'pl-r [ w9 e




" -I
' J i -y
y CoOordinatle
Fgwe 7. The tracer concentrateon c{r. gyt = 0 4), geen the condecterwty fweld m Fgue I he tracer

s rmperied froem @ well v o covRLeT

17

e 4

E:‘.:M n&; I UmeCERTARNTY QUANTFICATION T o Soowy for chatral ano Aopied Matheratcs
s -

local approximations, we also wish to compare our approach with chains that emplov exact
evaluations of the forwarnd model. To make such comparisons feasible —and also to reflect
computational practice for complex PDE models — we parallelize each lorward mode] eval-
unation. We use four processors, which reduces the forward model’s nntime to roughly 4
seconds of computation. Thus owr ].‘-rl.id..._i.t‘]. MCOCAIC scheme actually rl.l.lp[i_,-‘l.'.-u two levels of
parallelism: an outer level nvolving parallel chains. as described in Section 3. and an inner

level within each forward model evaluation
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Figuare ¢. The iracer concentration clz.y.t = 0.4), given the conductivily fieid = Figuwre 5. The tracer
is injected from a well in ench corner.
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local approximations, we also wish to compare our approach with chains that employ exact
evaluations of the forward model. To make such comparisons feasible —and also to reflect
computational practice for complex PDE models—we parallelize each forward model eval-
unation. We use four processors, which reduces the forward model’s runtime to roughly 4

seconds of computation. Thus our parallel MCMC scheme actually employvs two levels of
parallelism: an outer level involving parallel chains. as described in Section 3. and an inner
level within each forward model evaluation.
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Figure {. The itracer concentrafion cdr,y.t = 0.4}, goven the conductivily field
15 injecied from a well in eachi cormer.
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local approximations. we also wish to compare our approach with chain
evaluations of the forward model. To make such comparisons feasible
computational practice for complex PDE models—we parallelize each
nation. We use four processors. which reduces the forward model’s o
seconds of computation. Thus our parallel MCMC scheme actually es
parallelism: an outer level involving parallel chains, as described in Sec
level within each forward model evaluation.
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Local polynomial surrogates

» Given n (potentially noisy) density evaluations at points {x{’-]}?:l
» Find the degree p polynomial #(x) that minimizes the weighted least
squares error

n I. 2 .
(x) = arg min Z(p{x[‘}] — r(x”}]) K(x'7, x)
<P, ‘o

» Locally supported kemel K{(-, x)

Local polynomial surrogates

» Given n (potentially noisy) density evaluations at points {x!/)
» Find the degree p polynomial #{x) that minimizes the weighted least
squares error

{x) = arg min : xU) — w(x\") : x\_ x
#(x) = angm: ;(m ) — =(x7)) K=, x)

» Locally supported kermel K(-, x)



» Known analytic denvatives
» Easily refined within MCMUC (conrad = 2 454 2018

Local polynomial surrogates

=1k
» Find the degree p polynomial #(x) that minimizes the weighted least

SQuUAarss error

» Given n (potentially noisy) density evaluations at points {x!'}

o
g

(x) = arg min i(p{x["]] — r(x{"}])EK[xm.x}

» Locally supported kernel K{-. x)

Local polynomial surrogates

» Given n (potentially noisy) density evaluations at points {x{7}7_,

» Find the degree p polynomial #(x) that minimizes the weighted least
Squares error
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Problem statement

We want to characterize the distribution = using a sampling method
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We want to characterize the distribution 7 using a sampling method

Two problems:

© The probability density function 7(x) is computationally e:pens?ve

Problem statement

We want to characterize the distribution = using a sampling method
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© The probability density function WHT?S computationally expensive
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Motivating example: state space modelling

Static parameter estimation—
» Given: data y;.7 with an uncbservable state z; 1

» We want to characterize the distribution over x|y;. 1
» x IS low-dimensional
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Marginalizing avoids characterizing the joint density over high dimensional
parameters [x, z;. 7]

m(xlyr.r) xw(x) | w(z.7.5.7|x)dz

Postenor Prior ™ —
L kel hood

.

Example: state space modelling

w(x|y1-1) = T(K}f w211, y1:7ix) dz
Ty -~ o' P’ =z

-

Postenor Prior ™ ~
Likalihood

We only have a noisy estimate of the likelihood

N
[ aryirix)dem Y wOn(ey, yrb
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Marginalizing avoids charactenzing the joint density over high dimensional
parameters [x, z;. 7]

m(xlyr.r) xw(x) | m(z.7.0.7|x)dz

Postenor Prior ™ —
L kel hood

.

Example: state space modelling

w(x|y1-1) = 7(—“}/ m{z1 71, y1-7ix) dz
Ty -~ o' P’ =z

Postenor Prior ™ ~
Likalihood

We only have a noisy estimate of the likelihood
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N
[ aryirix)dem Y wOn(e, yrb




Example: state space modelling

m(xiyr 1) x :rr[:-r]/ m(z1. 1.1 7|x) dz
- — ’ S J Z

Poctanor Prior ™ -
L ikedihood

We only have 3 noisy estimate of the likelihood

-

N

=

e

Parameter space is partitioned into coordinates characterized by
MCMC (x) and coordinates to be “marginalized away” (z;-7)

Model evaluations are (even more) computationally expensive

We only have noisy target density evaluations

Approaches & outline

» Pseudo-marginal MCMC can charactenize the posterior marginal
dlﬁtﬂbutiﬂﬂ {Bezument. M10) and (Anores and Rooerts. 200G

» Computationally infeasibie!




» We only have noisy target density evaluations
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» Computationally infeasible!
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derive an ideal refinement rate
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Structural refinement strategy

» We devise a refinement strategy based on a local error estimate 3
balance MCMC vanance and structural error

Structural refinement strateov
rage 44 ol b
» We devise a refinement strategy based on a local error estimate to
balance MCMC varniance and structural error
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Structural refinement strategy

» We devise a refinement strategy based on a local error estimate 3
balance MCMC vanance and structural error
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Structural refinement strategy

» We devise a refinement strategy based on a local error estimate to
balance MCMC vanance and structural error

» Divide the chain into M levels and prescribe an error threshold

¥(M) = %M~ on each level

» Explore the parameter space before refining the error threshold

» We switch to level M + 1 at step Ty, when the MCMC variance
balances the structural error

MCMC variance [Structural bias]’
Crcmc Ty wBM—2n

M2M

Structural refinement strategy

» We devise a refinement strategy based on a local error estimate to
balance MCMC vanance and structural error

* Divide the chain into M lag',,_i?li;—lnbe an error threshold
v(M) = yM~" on each level

» Explore the parameter space before refining the error threshold




balance MCMC vanance and structural error

» Divide the chain into M levels and prescribe an error threshold
(M) =M on each level

» Explore the parameter space before refining the error threshold

» We switch to level M + 1 at step Ty, when the MCMC variance
balances the structural error

MCMC variance [Structural bias]’
Cucnec Ty RTM—m
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Structural refinement strategy

» We devise a refinement strategy based on a local error estimate to
balance MCMC vanance and structural error

» Divide the chain into M levels and prescribe an error threshold
(M) = oM~ on each level
» Explore the parameter space before refining the ermor threshold

» We switch to level M + 1 at step T . when the MCMC variance
balances the structural error

[Structural bias]’
"M




» We switch to level M +— 1 at step Ty, when the MCMC variance
balances the structural error

MCMC variance [Structural bias]*
Crcmc Tap oM—m

T = o1 M

» The threshold decay rate must be +; > 0.5 so the length of each level

TM — TM—'. Erows .

We trigger refinement based on a piecewise constant error threshoid

Structural refinement

At x{t) refine the surrogate if-
© The poisedness constant is too large AlY) > A

© The local error indicator is greater than the level's threshold

E{xi:}) — \IEA{IEI}].&.F_L!"(I[IH] ~ __?EM_-_:




Expected error (structural refinement)

» The expected number of refinements is the same (when v > 0.5)
» When 4 < 0.5, the surrogate is underrefined
» | he error is dominated by the structural bias

Local polynomial surrogates

» Now consider situations with noisy evaluations of the target density




In the noisy evaluation case, the surrogate 7(x) approaches 7(x) as:

© The ball size A — 0 (number of evaluations n — o0)

© A-poisedness is maintained inside each ball

© The number of nearest neighbors k — oc (while =~ — 0)
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» Now consider situations with noisy evaluations of the target den&ity

Surrogate convergence (noisy density evaluations)

In the noisy evaluation case, Wie"SHffOE4Te 7 (x) approaches m(x) as:

© The ball size A — 0 (number of evaluations n — o)




Local polynomial surrogates

» Now consider situations with
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