
Feedback Particle Filter
and the Poisson Equation

Controlled Interacting Particle Systems for Nonlinear Filtering

SIAM Conference on Uncertainty Quantification

April 16–19, 2018

Sean Meyn

Department of Electrical and Computer Engineering — University of Florida

Based in part on joint research with

Anand Radhakrishnan, Amirhossein Taghvaei, and Prashant G. Mehta

Thanks to the National Science Foundation

http://ccc.centers.ufl.edu/

Outline

1 Poisson’s Equation Here, and Elsewhere

2 Monte-Carlo Techniques for Approximation

3 Numerical Examples

4 Conclusions

5 References

Poisson’s Equation

with

Optimal FPF Gain

Optimal MCMC CVOptimal Control

Poisson’s Equation

Poisson’s Equation Here, and Elsewhere

Poisson’s Equation
What is it?

All that is required here is the Langevin Diffusion with potential U :

dΦt = −∇U(Φt) dt+
√

2 dWt, Φ ∈ Rd

invariant density ρ ∝ e−U .

Function h ∈ C2 solves Poisson’s equation:

Dh = −c̃
where

c : Rd → R is the forcing function.

normalized forcing function: c̃ = c− η, η =
∫
c(x)ρ(x)dx.

Differential generator:

Df = −∇U · ∇f + ∆f, f ∈ C2

1 / 25

Poisson’s Equation Here, and Elsewhere

Poisson’s Equation
What is it?

All that is required here is the Langevin Diffusion with potential U :

dΦt = −∇U(Φt) dt+
√

2 dWt, Φ ∈ Rd

invariant density ρ ∝ e−U .

Function h ∈ C2 solves Poisson’s equation:

Dh = −c̃
where

c : Rd → R is the forcing function.

normalized forcing function: c̃ = c− η, η =
∫
c(x)ρ(x)dx.

Differential generator:

Df = −∇U · ∇f + ∆f, f ∈ C2

1 / 25

Poisson’s Equation Here, and Elsewhere Gain solution for the Feedback Particle Filter

Feedback Particle Filter

Signal: dXt = a(Xt)dt+ dBt, X0 ∼ ρ∗0
Observation: dZt = c(Xt)dt+ dWt

X := {Xt : t ≥ 0} is the state process.

Z := {Zt : t ≥ 0} is the observation process.

a(·), c(·) are C1 functions.

{Bt},{Wt} are mutually independent Wiener processes.

ρ∗t posterior distribution: P (Xt | Zs : s ≤ t)

Nonlinear filter: PDE to compute ρ∗t

2 / 25

Poisson’s Equation Here, and Elsewhere Gain solution for the Feedback Particle Filter

Feedback Particle Filter

Signal: dXt = a(Xt)dt+ dBt, X0 ∼ ρ∗0
Observation: dZt = c(Xt)dt+ dWt

X := {Xt : t ≥ 0} is the state process.

Z := {Zt : t ≥ 0} is the observation process.

a(·), c(·) are C1 functions.

{Bt},{Wt} are mutually independent Wiener processes.

ρ∗t posterior distribution: P (Xt | Zs : s ≤ t)

Nonlinear filter: PDE to compute ρ∗t

2 / 25

Poisson’s Equation Here, and Elsewhere Gain solution for the Feedback Particle Filter

Feedback Particle Filter

Approximation of posterior :

ρ∗t (A) ≈ ρ(N)
t (A) =

1

N

N∑
i=1

I{Xi
t ∈ A}, A ∈ B(Rd).

Particle dynamics

dX
(i)
t = a(Xi

t)dt+ dBi
t + dU it , i = 1 . . . , N

Xi
t ∈ R is the state of the ith particle at time t

U it is the “control input”

{Bi
t} are mutually independent Wiener processes

– statistically identical to state disturbance

3 / 25

Poisson’s Equation Here, and Elsewhere Gain solution for the Feedback Particle Filter

Feedback Particle Filter

Approximation of posterior :

ρ∗t (A) ≈ ρ(N)
t (A) =

1

N

N∑
i=1

I{Xi
t ∈ A}, A ∈ B(Rd).

Particle dynamics

dX
(i)
t = a(Xi

t)dt+ dBi
t + dU it , i = 1 . . . , N

Xi
t ∈ R is the state of the ith particle at time t

U it is the “control input”

{Bi
t} are mutually independent Wiener processes

– statistically identical to state disturbance

3 / 25

Poisson’s Equation Here, and Elsewhere Gain solution for the Feedback Particle Filter

Feedback Particle Filter

Particle dynamics

dX
(i)
t = a(Xi

t)dt+ dBi
t + dU it , i = 1 to N

dU it = Kt(X
i
t) ◦ (

dIit︷ ︸︸ ︷
dZt − 1

2 [c(Xi
t) + ĉt]dt) ,

Iit : Innovations process
Kt : FPF gain, similar in nature to the Kalman gain.

Representation: Kt = ∇h
h solves Poisson’s equation: −c̃ = Dh = −∇U · ∇h+ ∆h.

Forcing function c is the observation function, dZt = c(Xt)dt+ dWt.

Potential Ut = − log(ρt)

4 / 25

Poisson’s Equation Here, and Elsewhere Gain solution for the Feedback Particle Filter

Feedback Particle Filter

Particle dynamics

dX
(i)
t = a(Xi

t)dt+ dBi
t + dU it , i = 1 to N

dU it = Kt(X
i
t) ◦ (

dIit︷ ︸︸ ︷
dZt − 1

2 [c(Xi
t) + ĉt]dt) ,

Iit : Innovations process
Kt : FPF gain, similar in nature to the Kalman gain.

Representation: Kt = ∇h
h solves Poisson’s equation: −c̃ = Dh = −∇U · ∇h+ ∆h.

Forcing function c is the observation function, dZt = c(Xt)dt+ dWt.

Potential Ut = − log(ρt)

4 / 25

K̂ =
N∑
i=1

[
β0∗
i S(x

i, ·) +
d∑

k=1

βk∗i
∂

∂xk
S(xi, ·)

]

Monte-Carlo Techniques for Approximation

Monte-Carlo Techniques for Approximation TD-Learning

Monte-Carlo Approximation Methods

Goal of TD-Learning (in this context): for a given function class H, find
best approximation to Poisson’s equation in L2(ρ):

g := arg min
g∈H

‖h− g‖2L2

One of many challenges:

no algorithm exists for state spaces of dimension > 1 [12, 7]

5 / 25

Monte-Carlo Techniques for Approximation TD-Learning

Monte-Carlo Approximation Methods

Goal of TD-Learning (in this context): for a given function class H, find
best approximation to Poisson’s equation in L2(ρ):

g := arg min
g∈H

‖h− g‖2L2

One of many challenges:

no algorithm exists for state spaces of dimension > 1 [12, 7]

5 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning

Monte-Carlo Approximation Methods

Revisit TD-learning with our goal in mind:

g∗ := arg min
g∈H

‖∇h−∇g‖2L2

Two approaches for H have been considered:

Finitely parameterized family: [3] “differential TD Learning”

Choice of basis is not an easy task
=⇒ RKHS framework is far easier to implement.

See also the remarkable kernel approach of Taghvaei & Mehta [1].

6 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning

Monte-Carlo Approximation Methods

Revisit TD-learning with our goal in mind:

g∗ := arg min
g∈H

‖∇h−∇g‖2L2

Two approaches for H have been considered:

Finitely parameterized family: [3] “differential TD Learning”

Reproducing kernel Hilbert space (RKHS) [4]

Choice of basis is not an easy task
=⇒ RKHS framework is far easier to implement.

See also the remarkable kernel approach of Taghvaei & Mehta [1].

6 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning

Monte-Carlo Approximation Methods

Revisit TD-learning with our goal in mind:

g∗ := arg min
g∈H

‖∇h−∇g‖2L2

Two approaches for H have been considered:

Finitely parameterized family: [3] “differential TD Learning”

Reproducing kernel Hilbert space (RKHS) [4]

Choice of basis is not an easy task
=⇒ RKHS framework is far easier to implement.

See also the remarkable kernel approach of Taghvaei & Mehta [1].

6 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning

Monte-Carlo Approximation Methods

Revisit TD-learning with our goal in mind:

g∗ := arg min
g∈H

‖∇h−∇g‖2L2

Two approaches for H have been considered:

Finitely parameterized family: [3] “differential TD Learning”

Reproducing kernel Hilbert space (RKHS) [4]

Choice of basis is not an easy task
=⇒ RKHS framework is far easier to implement.

See also the remarkable kernel approach of Taghvaei & Mehta [1].

6 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning

Monte-Carlo Approximation Methods

Revisit TD-learning with our goal in mind:

g∗ := arg min
g∈H

‖∇h−∇g‖2L2

Challenge: the function h is not known,
and hence the objective function is not observable

Resolution: if h, g ∈ L2(ρ)

〈∇h,∇g〉L2 = −〈h,Dg〉L2 = −〈Dh, g〉L2 .

Applying this and Poisson’s equation Dh = −c̃:

‖∇h−∇g‖2L2 = ‖∇h‖2L2 + ‖∇g‖2L2 − 2〈∇h,∇g〉L2

= ‖∇h‖2L2 + ‖∇g‖2L2 − 2〈c̃, g〉L2

7 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning

Monte-Carlo Approximation Methods

Revisit TD-learning with our goal in mind:

g∗ := arg min
g∈H

‖∇h−∇g‖2L2

Challenge: the function h is not known,
and hence the objective function is not observable

Resolution: if h, g ∈ L2(ρ)

〈∇h,∇g〉L2 = −〈h,Dg〉L2 = −〈Dh, g〉L2 .

Applying this and Poisson’s equation Dh = −c̃:

‖∇h−∇g‖2L2 = ‖∇h‖2L2 + ‖∇g‖2L2 − 2〈∇h,∇g〉L2

= ‖∇h‖2L2 + ‖∇g‖2L2 − 2〈c̃, g〉L2

7 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning

Monte-Carlo Approximation Methods

Revisit TD-learning with our goal in mind:

g∗ := arg min
g∈H

‖∇h−∇g‖2L2

Observable objective function:

g∗ = arg min
g∈H

{
‖∇g‖2L2 − 2〈c̃, g〉L2

}

8 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning: finite dimensional function class

Monte-Carlo Approximation Methods

g∗ := arg min
g∈H

‖∇h−∇g‖2L2 = arg min
g∈H

{
‖∇g‖2L2 − 2〈c̃, g〉L2

}
Finite dimensional function class, H = {θTψ : θ ∈ R`}

:

θ∗ = M−1b,

Mij = 〈∇ψi,∇ψj〉L2

≈ 1

t

∫ t

0

∇ψ(Φs)∇ψT(Φs)ds

bi = 〈∇ψi,∇h〉L2 = 〈ψi, c̃〉L2

≈ 1

t

∫ t

0

ψ(Φs) c̃(Φs) ds

9 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning: finite dimensional function class

Monte-Carlo Approximation Methods

g∗ := arg min
g∈H

‖∇h−∇g‖2L2 = arg min
g∈H

{
‖∇g‖2L2 − 2〈c̃, g〉L2

}
Finite dimensional function class, H = {θTψ : θ ∈ R`}:

θ∗ = M−1b,

Mij = 〈∇ψi,∇ψj〉L2

≈ 1

t

∫ t

0

∇ψ(Φs)∇ψT(Φs)ds

bi = 〈∇ψi,∇h〉L2 = 〈ψi, c̃〉L2

≈ 1

t

∫ t

0

ψ(Φs) c̃(Φs) ds

9 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning: finite dimensional function class

Monte-Carlo Approximation Methods

g∗ := arg min
g∈H

‖∇h−∇g‖2L2 = arg min
g∈H

{
‖∇g‖2L2 − 2〈c̃, g〉L2

}
Finite dimensional function class, H = {θTψ : θ ∈ R`}:

θ∗ = M−1b,

Mij = 〈∇ψi,∇ψj〉L2

≈ 1

t

∫ t

0

∇ψ(Φs)∇ψT(Φs)ds

bi = 〈∇ψi,∇h〉L2 = 〈ψi, c̃〉L2

≈ 1

t

∫ t

0

ψ(Φs) c̃(Φs) ds

9 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning: RKHS & ERM

Monte-Carlo Approximation Methods

RKHS provides a basis independent approach to function approximation
within a (potentially) richer function class.

Assumptions:

• Symmetric : S(x, y) = S(y, x) for any x, y ∈ Rd

• Positive definite: For any finite subset {xi} ⊂ Rd, the matrix
{Mij := S(xi, xj)} is positive definite.

• Smooth: S is C2.

10 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning: RKHS & ERM

Monte-Carlo Approximation Methods

Vector space H◦: all finite linear combinations

gα(y) =

m∑
i=1

αiS(xi, y), y ∈ Rd ,

scalars {αi} ⊂ R and {xi} ⊂ Rd arbitrary.

Inner product: for gα, gβ ∈ H◦,

〈gα, gβ〉H :=
∑
i,j

αiβjS(xi, zj)

Reproducing property: gα(x) = 〈gα, S(x, ·)〉 , x ∈ Rd.

Assume H◦ admits a completion H

11 / 25

Monte-Carlo Techniques for Approximation Differential TD-Learning: RKHS & ERM

Monte-Carlo Approximation Methods

Recall goal:

g∗ = arg min
g∈H

{
‖∇g‖2L2 − 2〈c̃, g〉L2

}
Approximation via empirical risk minimization (ERM):

arg min
g∈H

1

N

N∑
i=1

[
‖∇g(xi)‖2 − 2c̃N (xi)g(xi)

]
+ λ‖g‖2H

where c̃ is also approximated:

c̃N (x) = c(x)− 1

N

N∑
i=1

c(xi) , x ∈ Rd .

Regularization parameter λ > 0 introduced to avoid overfitting.

12 / 25

Monte-Carlo Techniques for Approximation Extended Representer Theorem for Differential Loss

Monte-Carlo Approximation Methods

Extended Representer Theorem [Zhou 08]

If loss function L(x, · , ·) is convex on Rd+1 for each x ∈ Rd, then the
optimizer g∗ over g ∈ H exists, is unique and has the form

g∗(·) =

N∑
i=1

[
β0∗i S(xi, ·) +

d∑
k=1

βk∗i
∂

∂xk
S(xi, ·)

]
,

where {βk∗i : i = 1, · · · , N, k = 0, · · · , d} are real numbers.

Our loss function is convex: L(x, g,∇g) = ‖∇g(x)‖2 − 2c̃(x)g(x)

13 / 25

Monte-Carlo Techniques for Approximation Extended Representer Theorem for Differential Loss

Monte-Carlo Approximation Methods

Extended Representer Theorem [Zhou 08]

If loss function L(x, · , ·) is convex on Rd+1 for each x ∈ Rd, then the
optimizer g∗ over g ∈ H exists, is unique and has the form

g∗(·) =

N∑
i=1

[
β0∗i S(xi, ·) +

d∑
k=1

βk∗i
∂

∂xk
S(xi, ·)

]
,

where {βk∗i : i = 1, · · · , N, k = 0, · · · , d} are real numbers.

Our loss function is convex: L(x, g,∇g) = ‖∇g(x)‖2 − 2c̃(x)g(x)

13 / 25

Monte-Carlo Techniques for Approximation Extended Representer Theorem for Differential Loss

Monte-Carlo Approximation Methods

Solution in one dimension:

g∗ = arg min
g∈H

1

N

N∑
i=1

{
(g′(xi))2 − 2c̃N (xi)g(xi)

}
+ λ‖g‖2H

g∗(y) =

N∑
i=1

{
β0∗i S(xi, y) + β1∗i Sx(xi, y)

}
, y ∈ R

Computation: β∗ = M−1b

M =
1

N

[
Sy

Sxy

]
[Sx |Sxy] + λ

[
S Sy

Sx Sxy

]
b =

1

N

[
S
Sx

]
ς , ςT = [c̃N (x1), . . . , c̃N (xN)]

βT = [β0
1 , . . . , β

0
N , β1

1 , . . . , β
1
N]

14 / 25

Monte-Carlo Techniques for Approximation Extended Representer Theorem for Differential Loss

Monte-Carlo Approximation Methods

Solution in one dimension:

g∗ = arg min
g∈H

1

N

N∑
i=1

{
(g′(xi))2 − 2c̃N (xi)g(xi)

}
+ λ‖g‖2H

g∗(y) =

N∑
i=1

{
β0∗i S(xi, y) + β1∗i Sx(xi, y)

}
, y ∈ R

Computation: β∗ = M−1b

M =
1

N

[
Sy

Sxy

]
[Sx |Sxy] + λ

[
S Sy

Sx Sxy

]
b =

1

N

[
S
Sx

]
ς , ςT = [c̃N (x1), . . . , c̃N (xN)]

βT = [β0
1 , . . . , β

0
N , β1

1 , . . . , β
1
N]

14 / 25

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

2

4

6

8

x

Exact gain K ∇g∗ , N = 5000

∇g◦ , N = 5000

∇g∗ , N = 500

∇g∗ , N = 200

Numerical Examples

Numerical Examples

Application to Nonlinear filtering

Test the gain approximation:

min
K̂∈K
‖K− K̂‖2L2 = min

g∈H
‖∇h−∇g‖2L2

Using differential TD learning:

Finite dimensional function space

RKHS

For comparison: KBE∗ = ∇h◦,

h◦ = arg min
g∈H

‖c̃+Dg‖2L2

15 / 25

Numerical Examples

Application to Nonlinear filtering

Test the gain approximation:

min
K̂∈K
‖K− K̂‖2L2 = min

g∈H
‖∇h−∇g‖2L2

Using differential TD learning:

Finite dimensional function space

RKHS

For comparison: KBE∗ = ∇h◦,

h◦ = arg min
g∈H

‖c̃+Dg‖2L2

15 / 25

Numerical Examples Differential TD learning with basis

Application to Nonlinear filtering

Example: ρ mixture of two Gaussian densities
c(x) ≡ x
Basis: “Polynomial×Gauss densities” {ψi,j(x) = xipj(x)}

-3 -2 -1 0 1 2 3
-8

-6

-4

-2

0

2

4

6

8

10

12

K

Kθ∗

KBE∗

Bellman error optimal is very poor in this example

16 / 25

Numerical Examples Differential TD learning with basis

Application to Nonlinear filtering

Example: ρ mixture of two Gaussian densities
c(x) ≡ x
Basis: “Polynomial×Gauss densities” {ψi,j(x) = xipj(x)}

-3 -2 -1 0 1 2 3
-8

-6

-4

-2

0

2

4

6

8

10

12

K

Kθ∗

KBE∗

Bellman error optimal is very poor in this example

16 / 25

Numerical Examples Differential TD learning with basis

Application to Nonlinear filtering

Example: ρ mixture of two Gaussian densities
c(x) ≡ x
Basis: “Polynomial×Gauss densities” {ψi,j(x) = xipj(x)}

-3 -2 -1 0 1 2 3
-8

-6

-4

-2

0

2

4

6

8

10

12

K

Kθ∗

KBE∗

Bellman error optimal is very poor in this example

16 / 25

Numerical Examples Differential TD learning using RKHS

Application to Nonlinear filtering

Example: ρ mixture of five Gaussians densities
c difference of indicator functions

RKHS : standard Gaussian kernel

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

2

4

6

8

x

Exact gain K

200

500

5,000

K∗ N

17 / 25

Numerical Examples Differential TD learning using RKHS

Applications to Nonlinear filtering

Example: Parameter Estimation with bimodal prior
Observations: parameter plus additive noise

0 5 10 15

-1

-0.5

0

0.5

1

1.5

2

Actual state Cond. Mean estimate
ML estimate

t

State estimates (Maximum likelihood and conditional mean) from the FPF

18 / 25

Numerical Examples Differential TD learning using RKHS

Applications to Nonlinear filtering

Example: Parameter Estimation with bimodal prior
Observations: parameter plus additive noise

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

100

200

300

Histograms
t

x

= 0

t = 1.5

Histograms of the particles at t = 0 and t = 1.5

19 / 25

Poisson’s Equation

with

Optimal FPF Gain

Optimal MCMC CVOptimal Control

Conclusions

Conclusions

Conclusions

Every paper in this domain raises more questions than answers:

The representation K = ∇h remains a deep mathematical mystery.

20 / 25

Conclusions

Conclusions

Every paper in this domain raises more questions than answers:

The representation K = ∇h remains a deep mathematical mystery.

Absent are mathematical techniques to understand filter robustness

20 / 25

Conclusions

Conclusions

Every paper in this domain raises more questions than answers:

The representation K = ∇h remains a deep mathematical mystery.

Absent are mathematical techniques to understand filter robustness

Myriad of algorithmic questions:

Kernel choices (see poster of Taghvaei last night)
Reduced complexity differential loss algorithms

all with the goal of a more “plug and play” architecture

20 / 25

Conclusions

Conclusions

Every paper in this domain raises more questions than answers:

The representation K = ∇h remains a deep mathematical mystery.

Absent are mathematical techniques to understand filter robustness

Myriad of algorithmic questions:

Kernel choices (see poster of Taghvaei last night)
Reduced complexity differential loss algorithms

all with the goal of a more “plug and play” architecture

Applications beyond nonlinear filtering:

Variance reduction using control variates
Reinforcement learning / approximate dynamic programming

20 / 25

Conclusions

Thank You
21 / 25

References

Control Techniques
FOR

Complex Networks

Sean Meyn

Pre-publication version for on-line viewing. Monograph available for purchase at your favorite retailer
More information available at http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521884419

Markov Chains
and

Stochastic Stability

S. P. Meyn and R. L. Tweedie

August 2008 Pre-publication version for on-line viewing. Monograph to appear Februrary 2009

π
(f
)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, ·)− π‖f → 0

su
p

C
E
x [S

τ
C
(f
)]
<

∞

References

22 / 25

http://www.meyn.ece.ufl.edu/archive/spm_files/CTCN/CTCN.html
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html

References

Selected References I
More at www.meyn.ece.ufl.edu

[1] A. Taghvaei and P. G. Mehta. Gain function approximation in the feedback particle filter.
In IEEE Conference on Decision and Control, pages 5446–5452, Dec 2016.

[2] A. Taghvaei, P. G. Mehta, and S. P. Meyn. Error estimates for the kernel gain function
approximation in the feedback particle filter. In Proc. of the American Control Conference
and arXiv, 2017.

[3] A. Radhakrishnan, A. Devraj and S. Meyn, Learning techniques for feedback particle filter
design. 55th Conference on Decision and Control, Las Vegas, NV, 2016.

[4] A. Radhakrishnan, S. Meyn, Feedback particle filter design using a differential-loss
reproducing kernel Hilbert space. 2018 American Control Conference, Milwaukee, WI,
2018.

[5] T. Yang, P. Mehta, and S. Meyn. Feedback particle filter. IEEE Trans. Automat. Control,
58(10):2465–2480, Oct 2013.

[6] T. Yang, R. S. Laugesen, P. G. Mehta, and S. P. Meyn. Multivariable feedback particle
filter. Automatica, 71:10–23, 9 2016.

23 / 25

http://www.meyn.ece.ufl.edu/publications/current/

References

Selected References II
More at www.meyn.ece.ufl.edu

[7] S.P.Meyn, Control Techniques for Complex Networks. Cambridge University Press, Dec
2007.

[8] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge
University Press, Cambridge, second edition, 2009. Published in the Cambridge
Mathematical Library. 1993 edition online.

[9] P. W. Glynn and S. P. Meyn. A Liapounov bound for solutions of the Poisson equation.
Ann. Probab., 24(2):916–931, 1996.

[10] A. Devraj, I. Kontoyiannis, and S. Meyn. Geometric Ergodicity in a Weighted Sobolev
Space. ArXiv e-prints, and Submitted for publication, November, 2017.

[11] A. Devraj, I. Kontoyiannis, and S. Meyn. Geometric Ergodicity in a Weighted Sobolev
Space: Part 2, Markovian diffusions. In preparation, 2018.

[12] J. N. Tsitsiklis and B. Van Roy. On average versus discounted reward Temporal-Difference
Learning. Machine Learning, 49(2):179–191, 2002.

24 / 25

http://www.meyn.ece.ufl.edu/publications/current/

References

Selected References III
More at www.meyn.ece.ufl.edu

[13] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis. Volume
57 of Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2007.

[14] S. Henderson. Variance Reduction Via an Approximating Markov Process. PhD thesis,
Stanford University, Stanford, California, USA, 1997.

[15] S. Kim and S. G. Henderson. Adaptive control variates for finite-horizon simulation.
Math. Oper. Res., 32(3):508–527, 2007.

[16] S. G. Henderson, S. P. Meyn, and V. B. Tadić. Performance evaluation and policy
selection in multiclass networks. Discrete Event Dynamic Systems: Theory and
Applications, 13(1-2):149–189, 2003. Special issue on learning, optimization and decision
making (invited).

[17] A. M. Devraj and S. P. Meyn, Differential TD learning for value function approximation.
55th Conference on Decision and Control (CDC), Las Vegas, NV, 2016.

[18] D.X. Zhou, Derivative reproducing properties for kernel methods in learning theory.
Journal of Computational and Applied Mathematics, Vol. 220, Issues 1–2, 2008.

25 / 25

http://www.meyn.ece.ufl.edu/publications/current/

	Poisson's Equation Here, and Elsewhere
	Gain solution for the Feedback Particle Filter

	Monte-Carlo Techniques for Approximation
	TD-Learning
	Differential TD-Learning
	Differential TD-Learning: finite dimensional function class
	Differential TD-Learning: RKHS & ERM
	Extended Representer Theorem for Differential Loss

	Numerical Examples
	Differential TD learning with basis
	Differential TD learning using RKHS

	Conclusions
	References

