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How to identify a function

Typically, one identifies functions within a finite
dimensional space either by

assigning the values of certain parameters.
Ex: In two dimensions, a linear function f can be identified by the values of
a, b, c in the general form f = ax + by + c

or by

assigning its values at some given points .
Ex. Always in two dimensions, a linear function f is identified by its values
f (P1), f (P2), f (P3), where P1, P2, P3 are three given points (not aligned)

This corresponds to use either a basis or a dual basis
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The Difference

Most of the times, the difference is just psychological.
You can think of a piecewise linear function

or of its nodal
values
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Fourier and Wavelets

A trigonometric polynomial could be identified by its
Fourier Coefficients. In other cases one might use Wavelet
Coefficients, or Legendre Coefficients, and so on.

Valuable instruments are often available in order to pass
from one way of identification (e.g. the point values) to
another (e.g. the Fourier Coefficients). For instance the
Fast Fourier Transform (FFT), the Fast Wavelet
Transform (FWT), etc.
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Dual bases

On a given triangle T with vertices P1, P2, P3, in the
space of linear functions, one could identify three basis
functions λ1, λ2, λ3 such that

3

1

2
P P

P

λi(Pj) = δi
j
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Other types of values

Always in two dimensions, a constant vector v can be
identified by

the values of its coefficients a, b in the form
v = a(1, 0) + b(0, 1)

or by

the values of the integral of its normal components on
two given edges (non parallel)∫

e1

v · n1de

∫
e2

v · n2de
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The RT Spaces
A vector v of the form

RT ≡ span{(1, 0), (0, 1), (x , y)}

could be identified by

the values of its coefficients in the expansion
v = a(1, 0) + b(0, 1) + c(x , y) ≡ (a + cx , b + cy)

or by

the values of the integral of its normal components on
the edges of a given triangle.∫

e1

v · n1de,

∫
e2

v · n2de,

∫
e3

v · n3de
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Dual bases
On a given triangle T with edges e1, e2, e3, in the space
of RT vectors, one could identify three basis functions
τ 1, τ 2, τ 3such that

e

n2

1n

n3

(1,0)(0,0)

(0,1)

e3 e
2

1

∫
ej

τ i · n j de = δi
j

τ 1 = (x , y − 1), τ 2 = (x , y), τ 3 = (x − 1, y)
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The Mixed Zoo
(Arnold-Falk-Winther, Acta Numerica 2006)
In the literature on Mixed FEM, the finite dimensional
spaces are made (in 3 dimensions) by four types of basic
ingredients:

• scalars given by nodal values f (pointj)

• vectors given by face fluxes
∫

facej
τ · nj

• vectors given by edge works
∫

edgej
τ · tj

• scalars given by element integrals
∫

elementj
f
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Two Philosophies - Unknowns

We can identify two different philosophies:

The unknown is a function, to be chosen within a given
finite dimensional space (Ex: Finite Elements, Spectral
Methods, Wavelets,...)

The unknown is a set of values (point values, fluxes,
works, volume integrals) (Ex: Finite Differences, Finite
Volumes,....)

Once a finite dimensional space has been chosen, the
difference in the two approaches is just psychological. But
this is not always the case.
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Nodal Functions
In finite difference methods, the unknowns are the nodal
values. We do not assume to have an underlying finite
dimensional space
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Differential Operators on Nodal
Functions

How can we write differential operators on nodal
functions?
For instance, the second derivative at C can be
approximated as

CL R
d2f

dx2
(C ) ' f (R)− 2f (C ) + f (L)

|R − C |2

and the approximation is exact whenever f is a polynomial
of degree ≤ 3.
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The Five-point Scheme

Similarly, the famous five point method reads

EO

N

S

W
−h2 ∆hf (O) =

4f (O)−f (N)−f (S)−f (W )−f (E )
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Finite Volumes-1
In other situations one can mix, e.g., fluxes and volume
integrals. For instance, in Finite Volumes, one applies the
divergence theorem to get (exactly) the integral of the
divergence on each cell, given the fluxes on every edge.
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Finite Volumes-2

However, the fluxes can be expressed as a function of the
nodal values at the centers of the cells only in an
approximate way

A

C

D
B

p(B)− p(A) '
∫ 1B

11A

∂p

∂x
'

' |B − A|
|C − D|

∫
[C ,D]

∂p

∂n
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Approximating the space

Revisiting the Two Philosophies we can say that typically
function-based methods use integral (weak) formulations.
For instance the problem −∆p = f in Ω with p = 0 on
∂Ω becomes: find ph ∈ Lh such that∫

Ω

∇ph · ∇qh =

∫
f qh ∀qh ∈ Lh

where Lh is the space of piecewise linear functions
vanishing on ∂Ω.
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Approximating the operator

Revisiting the Two Philosophies we can say that, on the
other hand, value-based methods use a discretization of
the differential operator. For instance the problem
−∆p = f in Ω with p = 0 on ∂Ω will be approximated
by: Find a nodal function ph such that

−∆hph = fh and ph = 0 on ∂Ω

where fh is made by the nodal values of f .

Franco Brezzi (IMATI-CNR & IUSS, Pavia) Compatible discretizations of PDE’s Denver, July 6-10, 2009 18 / 42



Fundamental Laws

curl H=j
H=Magnetic field j=current density

n

e

e

1

2e3 3∑
k=1

∫
ek

H · tk =

∫
face

j · n
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Fundamental Laws

div D= ρ
D=Electric Displacement ρ=Charge density

6∑
k=1

∫
facek

D · nk =

∫
element

ρ
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Fundamental Laws

curl E = 0 E = −∇V
E=Electric Field V =Electric Potential

P

1

2

e

P

V (P1)− V (P2) =

∫
edge

E · t
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Less Fundamental Laws

D = εE

B = µ(H)

σ = Cε

Compatible Methods (as Mixed FEM)
try, as much as possible, to reproduce
exactly the Fundamental Laws
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The Mixed Zoo - Compatible
Animals

In the literature on Mixed FEM, the finite dimensional
spaces are made (in 3 dimensions) by four types of basic
ingredients:

• scalars given by nodal values f (pointj)

• vectors given by face fluxes
∫

facej
τ · nj

• vectors given by edge works
∫

edgej
τ · tj

• scalars given by element integrals
∫

elementj
f
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From edges to faces

curl H=j

n

e

e

1

2e3 3∑
k=1

∫
ek

H · tk =

∫
face

j · n

∫
edge H · tk on each edge ⇒

∫
face j on each face
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From faces to elements

div D= ρ

6∑
k=1

∫
facek

D · nk =

∫
element

ρ

∫
face D · n on each face ⇒

∫
ele ρ on each element
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From vertices to edges

curl E = 0 E = −∇V

P

1

2

e

P

V (P1)− V (P2) =

∫
edge

E · t

V on each node ⇒
∫

e

E · t on each edge
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An Ideally Compatible Scheme

Ideally, the most compatible scheme should be:

Minimize ||B−H||

under the constraints

curlH = j and divB = 0

(J.Rikabi, A. Bossavit, I. Perugia)

But it is very expensive...
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Other Compatible Schemes
The Marker and Cell (MaC) scheme (Harlow & Welch,
1965) for Darcy flows uses horizontal velocities on the
vertical edges, vertical velocities on horizontal edges, and
pressure at the center of each cell.

−∇p = u ≡ (u, v)

div u = source
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The Conservation equation in MaC

The conservation equation, e.g., div u = 0, is satisfied in
a strong sense. This is the compatible part of the scheme.
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The constitutive equation in MaC

On a regular grid (like ours) the fluxes are easily
computed as functions of the pressure

On a general geometry one needs all sorts of tricks in
order to do it. All in a quite incompatible way!
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General geometries

On the other hand also for Mixed Finite Element
Methods, it is very hard to find the proper finite
dimensional spaces in General geometries

Two examples of pata-hedral elements
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Mimetic Finite Differences

(Hyman-Scovel 1988)
Let us consider the most simple example of a nodal
function on a quadrilateral.

3

(x  ,y  )

(x  ,y  )

(x  ,y  )
2 2

(x  ,y  )

1 1

Q

3

44
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Towards a local Scalar Product

We want to mimic the scalar product∫
Q

∇u · ∇v dQ

but we lack the proper finite dimensional space (of
dimension four, in a one-to-one correspondence with the
nodal values at the vertices).

Actually, we would like that such a finite dimensional
space contain all the linear functions.

Hence besides the functions ”1”, ”x”, ”y” we would need
a fourth function Ψ.
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The nodal values of linear functions

We work on nodal functions. Hence, in our world (a copy
of R4), the linear functions are represented by the
three-dimensional subspace generated by:

the nodal values of the function ”1”: (1, 1, 1, 1)

the nodal values of the function ”x”: (x1, x2, x3, x4)

the nodal values of the function ”y”: (y1, y2, y3, y4)
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The local matrix-1

0

"1" 0 0 0 0

0 0

0

0

|Q|

|Q|

"1" "X" "Y"

"X"

"Y"

If both u and v are one of the functions 1, x , or y the
scalar product

∫
Q ∇u · ∇v dQ is easy to compute.
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The local matrix-2

We make the further assumption that: On each edge
of ∂Q all the functions of our four-dimensional local space
are integrated exactly by the trapezoidal rule∫ b

a

f ' b − a

2
[f (a) + f (b)]

It follows that, for p1 linear, the integral∫
Q

∇p1 · ∇v dQ =

∫
∂Q

∂p1

∂n
v

depends only on the nodal values of v.
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The Local Matrix-3

At this point, for every vector (Ψ1,Ψ2,Ψ3,Ψ4) of nodal
values (of an ideal function Ψ that we don’t have), we
can compute∫

Q

∇x · ∇Ψ dQ and

∫
Q

∇y · ∇Ψ dQ

using only the nodal values (Ψ1,Ψ2,Ψ3,Ψ4).
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The Local Matrix-4

4

Q

P1

P
2

P3

P
4

e

ee

e 1

23

∫
Q

∇x ·∇Ψ dQ =

∫
∂Q

nxΨ =

= |e1|n1
x(Ψ1 + Ψ2)/2 + ...

... + |e4|n4
x(Ψ4 + Ψ1)/2
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The Local Matrix-5

4

Q

P1

P
2

P3

P
4

e

ee

e 1

23

Taking ΨA := (1, −1, 1, −1)

we have

∫
Q

∇x · ∇ΨA dQ =∫
Q

∇y · ∇ΨA dQ = 0
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The Local Matrix-6

0

ΨA

"    "ΨA

"1" 0 0 0 0

0 0

0

0

|Q|

|Q|

"1" "X" "Y"

"X"

"Y"

0

0

00

"    "

We are left with the evaluation

of

∫
Q

|∇ΨA|2 dQ =: α

which depends on the values

of ΨA inside
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The Miracle

α

ΨA

"    "ΨA

"1" 0 0 0 0

0 0

0

0

|Q|

|Q|

"1" "X" "Y"

"X"

"Y"

0

0

00

0

"    "

Believe it or not, you can take any positive value for α,
and there will be a function ΨA such that your scheme
actually comes from a function-based approach (using
linear functions plus ΨA)
In a more general geometry, the role of α is played by a
symmetric and positive definite matrix.
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MFD in a nutshell

You start with nodal functions.

You try to define, on every element, a scalar product
among nodal functions

.

You write properly the scalar product of the nodal
functions that come from linears

.

You shamelessly cook up the remaining part of the
local matrix

.

You find that you are using a function based approach

.
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