
Non-smooth dynamics perspectives
for designing large scale optimization

algorithms in stochastic settings

Emmanouil Daskalakis (UBC/VCC)
Felix Herrmann (Georgia Tech)
Andre Wibisono (Georgia Tech)

In Collaboration with:

Rachel Kuske, Georgia Tech

Non-smooth dynamics in optimization algorithms:
Example: look for solution of Ax=b,

Linearized Bregman (LB):

Draft
Emmanouil Daskalakis

1*
, Rachel Kuske

2
and Felix J. Herrmann

1
1
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

2
School of Math, Georgia Institute of Technology

Part I

1. Introduction

In compressive sensing, a hot field in applied mathematics for the last fifteen years, the key assumption
is that the unknown solution vector x œ Rn, is sparse (most of its entries are zero). Given a data vector
b œ Rm and a sensing matrix A œ Rm◊n with (m π n) such that Ax = b, recovering x is non-trivial because
it is a underdetermined problem. However, this problem can be solved using the assumed sparsity, under
certain conditions on the matrix A, via a ¸1≠norm minimization procedure [Donoho, 2006, Candes and
Romberg [2007], Candès et al. [2006]]. While there are many options for solving an ¸1≠ norm minimization
problems, we focus on a modification of the linearized Bregman iterations given below (cf. equation 1), a
method well-suited for ¸1≠norm optimization problems with convergence guarantees [Cai et al., 2009].

The linearized Bregman (LB) method [Yin et al., 2008] follows a simple iterative scheme involving

zk+1 = zk ≠ tkA
€(Axk ≠ b)

xk+1 = S⁄(zk+1), (1)

where S⁄(zk) = max(|zk| ≠ ⁄, 0) sign(zk) is a thresholding or shrinkage nonlinearity and tk is the steplength
or time step. These iterations converge in the limit ⁄ ø Œ to the solution of the well known Basis Pursuit
(BP) problem—i.e.,

min
x

ÎxÎ1 subject to Ax = b . (BP)

While convergence of LB for consistent (noise-free) ¸1≠norm minimization problems has been established
[Cai et al., 2009], we are interested in large inconsistent and overdetermined problems for which exact recovery
is not possible. Since our problems are large and overdetermined, we study the behavior of iterations that
involve (random) subsets of data—i.e., we follow Yang et al. [2016] and write

zk+1 = zk ≠ tkA
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1), (2)

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from A and the corresponding
data points bk extracted from b. As a result, we solve a sequence of sub-problems involving sub-matrices
Ak = Ar(k) that consist of randomly subsampled rows r(k) taken from the tall matrix A (see Figure 1) and
redrawn with replacement during each kth iteration. We follow Lorenz et al. [2014b] and use “dynamic time
steps” tk’s given by

tk = ÎAkxk ≠ bkÎ2
2

ÎA€
k (Akxk ≠ bk)Î2

2
. (3)

For consistent systems, the above iterations with dynamic time steps tk converge to the following strongly
convex optimization problem:

min
x

⁄ÎxÎ1 + 1
2ÎxÎ2

2 subject to Ax = b . (EL⁄)

1

Yin, et al, 2008

is a shrinkage or thresholding operator - removes
elements below threshold

Sλ

is a time steptk

λ

Non-zero entries in solution xi = zi ± λ

Found in algorithms seeking sparse solutions, e.g.
compressed sensing, underdetermined problems

Draft
Emmanouil Daskalakis

1*
, Rachel Kuske

2
and Felix J. Herrmann

1
1
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

2
School of Math, Georgia Institute of Technology

Part I

1. Introduction

In compressive sensing, a hot field in applied mathematics for the last fifteen years, the key assumption
is that the unknown solution vector x œ Rn, is sparse (most of its entries are zero). Given a data vector
b œ Rm and a sensing matrix A œ Rm◊n with (m π n) such that Ax = b, recovering x is non-trivial because
it is a underdetermined problem. However, this problem can be solved using the assumed sparsity, under
certain conditions on the matrix A, via a ¸1≠norm minimization procedure [Donoho, 2006, Candes and
Romberg [2007], Candès et al. [2006]]. While there are many options for solving an ¸1≠ norm minimization
problems, we focus on a modification of the linearized Bregman iterations given below (cf. equation 1), a
method well-suited for ¸1≠norm optimization problems with convergence guarantees [Cai et al., 2009].

The linearized Bregman (LB) method [Yin et al., 2008] follows a simple iterative scheme involving

zk+1 = zk ≠ tkA
€(Axk ≠ b)

xk+1 = S⁄(zk+1), (1)

where S⁄(zk) = max(|zk| ≠ ⁄, 0) sign(zk) is a thresholding or shrinkage nonlinearity and tk is the steplength
or time step. These iterations converge in the limit ⁄ ø Œ to the solution of the well known Basis Pursuit
(BP) problem—i.e.,

min
x

ÎxÎ1 subject to Ax = b . (BP)

While convergence of LB for consistent (noise-free) ¸1≠norm minimization problems has been established
[Cai et al., 2009], we are interested in large inconsistent and overdetermined problems for which exact recovery
is not possible. Since our problems are large and overdetermined, we study the behavior of iterations that
involve (random) subsets of data—i.e., we follow Yang et al. [2016] and write

zk+1 = zk ≠ tkA
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1), (2)

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from A and the corresponding
data points bk extracted from b. As a result, we solve a sequence of sub-problems involving sub-matrices
Ak = Ar(k) that consist of randomly subsampled rows r(k) taken from the tall matrix A (see Figure 1) and
redrawn with replacement during each kth iteration. We follow Lorenz et al. [2014b] and use “dynamic time
steps” tk’s given by

tk = ÎAkxk ≠ bkÎ2
2

ÎA€
k (Akxk ≠ bk)Î2

2
. (3)

For consistent systems, the above iterations with dynamic time steps tk converge to the following strongly
convex optimization problem:

min
x

⁄ÎxÎ1 + 1
2ÎxÎ2

2 subject to Ax = b . (EL⁄)

1

Cai et al, 2009

Context + Disclaimer:
Many different options for iterative methods in
optimization:

First order methods (e.g. GD), Accelerated (higher order),
stochastic, hybrids, non-smooth (projections, thresholds,
etc)

Assumptions for any one method: sparsity, noise,
matrix

Convex, non-convex:

Recently, more work from dynamics (and
control) perspectives

Methods motivated by sparsity

BPDN

Appended constraint for data match

Families of methods, e.g. close cousin of LB

Draft
Emmanouil Daskalakis

1*
, Rachel Kuske

2
and Felix J. Herrmann

1
1
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

2
School of Math, Georgia Institute of Technology

Part I

1. Introduction

In compressive sensing, a hot field in applied mathematics for the last fifteen years, the key assumption
is that the unknown solution vector x œ Rn, is sparse (most of its entries are zero). Given a data vector
b œ Rm and a sensing matrix A œ Rm◊n with (m π n) such that Ax = b, recovering x is non-trivial because
it is a underdetermined problem. However, this problem can be solved using the assumed sparsity, under
certain conditions on the matrix A, via a ¸1≠norm minimization procedure [Donoho, 2006, Candes and
Romberg [2007], Candès et al. [2006]]. While there are many options for solving an ¸1≠ norm minimization
problems, we focus on a modification of the linearized Bregman iterations given below (cf. equation 1), a
method well-suited for ¸1≠norm optimization problems with convergence guarantees [Cai et al., 2009].

The linearized Bregman (LB) method [Yin et al., 2008] follows a simple iterative scheme involving

zk+1 = zk ≠ tkA
€(Axk ≠ b)

xk+1 = S⁄(zk+1), (1)

where S⁄(zk) = max(|zk| ≠ ⁄, 0) sign(zk) is a thresholding or shrinkage nonlinearity and tk is the steplength
or time step. These iterations converge in the limit ⁄ ø Œ to the solution of the well known Basis Pursuit
(BP) problem—i.e.,

min
x

ÎxÎ1 subject to Ax = b . (BP)

While convergence of LB for consistent (noise-free) ¸1≠norm minimization problems has been established
[Cai et al., 2009], we are interested in large inconsistent and overdetermined problems for which exact recovery
is not possible. Since our problems are large and overdetermined, we study the behavior of iterations that
involve (random) subsets of data—i.e., we follow Yang et al. [2016] and write

zk+1 = zk ≠ tkA
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1), (2)

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from A and the corresponding
data points bk extracted from b. As a result, we solve a sequence of sub-problems involving sub-matrices
Ak = Ar(k) that consist of randomly subsampled rows r(k) taken from the tall matrix A (see Figure 1) and
redrawn with replacement during each kth iteration. We follow Lorenz et al. [2014b] and use “dynamic time
steps” tk’s given by

tk = ÎAkxk ≠ bkÎ2
2

ÎA€
k (Akxk ≠ bk)Î2

2
. (3)

For consistent systems, the above iterations with dynamic time steps tk converge to the following strongly
convex optimization problem:

min
x

⁄ÎxÎ1 + 1
2ÎxÎ2

2 subject to Ax = b . (EL⁄)

1

Basis Pursuit

 - norm often used for sparse solutions, e.g.
compressed sensing, underdetermined problems

Draft
Emmanouil Daskalakis

1*
, Rachel Kuske

2
and Felix J. Herrmann

1
1
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

2
School of Math, Georgia Institute of Technology

Part I

1. Introduction

In compressive sensing, a hot field in applied mathematics for the last fifteen years, the key assumption
is that the unknown solution vector x œ Rn, is sparse (most of its entries are zero). Given a data vector
b œ Rm and a sensing matrix A œ Rm◊n with (m π n) such that Ax = b, recovering x is non-trivial because
it is a underdetermined problem. However, this problem can be solved using the assumed sparsity, under
certain conditions on the matrix A, via a ¸1≠norm minimization procedure [Donoho, 2006, Candes and
Romberg [2007], Candès et al. [2006]]. While there are many options for solving an ¸1≠ norm minimization
problems, we focus on a modification of the linearized Bregman iterations given below (cf. equation 1), a
method well-suited for ¸1≠norm optimization problems with convergence guarantees [Cai et al., 2009].

The linearized Bregman (LB) method [Yin et al., 2008] follows a simple iterative scheme involving

zk+1 = zk ≠ tkA
€(Axk ≠ b)

xk+1 = S⁄(zk+1), (1)

where S⁄(zk) = max(|zk| ≠ ⁄, 0) sign(zk) is a thresholding or shrinkage nonlinearity and tk is the steplength
or time step. These iterations converge in the limit ⁄ ø Œ to the solution of the well known Basis Pursuit
(BP) problem—i.e.,

min
x

ÎxÎ1 subject to Ax = b . (BP)

While convergence of LB for consistent (noise-free) ¸1≠norm minimization problems has been established
[Cai et al., 2009], we are interested in large inconsistent and overdetermined problems for which exact recovery
is not possible. Since our problems are large and overdetermined, we study the behavior of iterations that
involve (random) subsets of data—i.e., we follow Yang et al. [2016] and write

zk+1 = zk ≠ tkA
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1), (2)

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from A and the corresponding
data points bk extracted from b. As a result, we solve a sequence of sub-problems involving sub-matrices
Ak = Ar(k) that consist of randomly subsampled rows r(k) taken from the tall matrix A (see Figure 1) and
redrawn with replacement during each kth iteration. We follow Lorenz et al. [2014b] and use “dynamic time
steps” tk’s given by

tk = ÎAkxk ≠ bkÎ2
2

ÎA€
k (Akxk ≠ bk)Î2

2
. (3)

For consistent systems, the above iterations with dynamic time steps tk converge to the following strongly
convex optimization problem:

min
x

⁄ÎxÎ1 + 1
2ÎxÎ2

2 subject to Ax = b . (EL⁄)

1

Draft
Emmanouil Daskalakis

1*
, Rachel Kuske

2
and Felix J. Herrmann

1
1
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

2
School of Math, Georgia Institute of Technology

Part I

1. Introduction

In compressive sensing, a hot field in applied mathematics for the last fifteen years, the key assumption
is that the unknown solution vector x œ Rn, is sparse (most of its entries are zero). Given a data vector
b œ Rm and a sensing matrix A œ Rm◊n with (m π n) such that Ax = b, recovering x is non-trivial because
it is a underdetermined problem. However, this problem can be solved using the assumed sparsity, under
certain conditions on the matrix A, via a ¸1≠norm minimization procedure [Donoho, 2006, Candes and
Romberg [2007], Candès et al. [2006]]. While there are many options for solving an ¸1≠ norm minimization
problems, we focus on a modification of the linearized Bregman iterations given below (cf. equation 1), a
method well-suited for ¸1≠norm optimization problems with convergence guarantees [Cai et al., 2009].

The linearized Bregman (LB) method [Yin et al., 2008] follows a simple iterative scheme involving

zk+1 = zk ≠ tkA
€(Axk ≠ b)

xk+1 = S⁄(zk+1), (1)

where S⁄(zk) = max(|zk| ≠ ⁄, 0) sign(zk) is a thresholding or shrinkage nonlinearity and tk is the steplength
or time step. These iterations converge in the limit ⁄ ø Œ to the solution of the well known Basis Pursuit
(BP) problem—i.e.,

min
x

ÎxÎ1 subject to Ax = b . (BP)

While convergence of LB for consistent (noise-free) ¸1≠norm minimization problems has been established
[Cai et al., 2009], we are interested in large inconsistent and overdetermined problems for which exact recovery
is not possible. Since our problems are large and overdetermined, we study the behavior of iterations that
involve (random) subsets of data—i.e., we follow Yang et al. [2016] and write

zk+1 = zk ≠ tkA
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1), (2)

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from A and the corresponding
data points bk extracted from b. As a result, we solve a sequence of sub-problems involving sub-matrices
Ak = Ar(k) that consist of randomly subsampled rows r(k) taken from the tall matrix A (see Figure 1) and
redrawn with replacement during each kth iteration. We follow Lorenz et al. [2014b] and use “dynamic time
steps” tk’s given by

tk = ÎAkxk ≠ bkÎ2
2

ÎA€
k (Akxk ≠ bk)Î2

2
. (3)

For consistent systems, the above iterations with dynamic time steps tk converge to the following strongly
convex optimization problem:

min
x

⁄ÎxÎ1 + 1
2ÎxÎ2

2 subject to Ax = b . (EL⁄)

1

Draft
Emmanouil Daskalakis

1*
, Rachel Kuske

2
and Felix J. Herrmann

1
1
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

2
School of Math, Georgia Institute of Technology

Part I

1. Introduction

In compressive sensing, a hot field in applied mathematics for the last fifteen years, the key assumption
is that the unknown solution vector x œ Rn, is sparse (most of its entries are zero). Given a data vector
b œ Rm and a sensing matrix A œ Rm◊n with (m π n) such that Ax = b, recovering x is non-trivial because
it is a underdetermined problem. However, this problem can be solved using the assumed sparsity, under
certain conditions on the matrix A, via a ¸1≠norm minimization procedure [Donoho, 2006, Candes and
Romberg [2007], Candès et al. [2006]]. While there are many options for solving an ¸1≠ norm minimization
problems, we focus on a modification of the linearized Bregman iterations given below (cf. equation 1), a
method well-suited for ¸1≠norm optimization problems with convergence guarantees [Cai et al., 2009].

The linearized Bregman (LB) method [Yin et al., 2008] follows a simple iterative scheme involving

zk+1 = zk ≠ tkA
€(Axk ≠ b)

xk+1 = S⁄(zk+1), (1)

where S⁄(zk) = max(|zk| ≠ ⁄, 0) sign(zk) is a thresholding or shrinkage nonlinearity and tk is the steplength
or time step. These iterations converge in the limit ⁄ ø Œ to the solution of the well known Basis Pursuit
(BP) problem—i.e.,

min
x

ÎxÎ1 subject to Ax = b . (BP)

While convergence of LB for consistent (noise-free) ¸1≠norm minimization problems has been established
[Cai et al., 2009], we are interested in large inconsistent and overdetermined problems for which exact recovery
is not possible. Since our problems are large and overdetermined, we study the behavior of iterations that
involve (random) subsets of data—i.e., we follow Yang et al. [2016] and write

zk+1 = zk ≠ tkA
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1), (2)

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from A and the corresponding
data points bk extracted from b. As a result, we solve a sequence of sub-problems involving sub-matrices
Ak = Ar(k) that consist of randomly subsampled rows r(k) taken from the tall matrix A (see Figure 1) and
redrawn with replacement during each kth iteration. We follow Lorenz et al. [2014b] and use “dynamic time
steps” tk’s given by

tk = ÎAkxk ≠ bkÎ2
2

ÎA€
k (Akxk ≠ bk)Î2

2
. (3)

For consistent systems, the above iterations with dynamic time steps tk converge to the following strongly
convex optimization problem:

min
x

⁄ÎxÎ1 + 1
2ÎxÎ2

2 subject to Ax = b . (EL⁄)

1

λ → ∞

ℓ1

ISTA - Iterative shrinkage (soft) thresholdingxk

Draft
Emmanouil Daskalakis

1*
, Rachel Kuske

2
and Felix J. Herrmann

1
1
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

2
School of Math, Georgia Institute of Technology

Part I

1. Introduction

In compressive sensing, a hot field in applied mathematics for the last fifteen years, the key assumption
is that the unknown solution vector x œ Rn, is sparse (most of its entries are zero). Given a data vector
b œ Rm and a sensing matrix A œ Rm◊n with (m π n) such that Ax = b, recovering x is non-trivial because
it is a underdetermined problem. However, this problem can be solved using the assumed sparsity, under
certain conditions on the matrix A, via a ¸1≠norm minimization procedure [Donoho, 2006, Candes and
Romberg [2007], Candès et al. [2006]]. While there are many options for solving an ¸1≠ norm minimization
problems, we focus on a modification of the linearized Bregman iterations given below (cf. equation 1), a
method well-suited for ¸1≠norm optimization problems with convergence guarantees [Cai et al., 2009].

The linearized Bregman (LB) method [Yin et al., 2008] follows a simple iterative scheme involving

zk+1 = zk ≠ tkA
€(Axk ≠ b)

xk+1 = S⁄(zk+1), (1)

where S⁄(zk) = max(|zk| ≠ ⁄, 0) sign(zk) is a thresholding or shrinkage nonlinearity and tk is the steplength
or time step. These iterations converge in the limit ⁄ ø Œ to the solution of the well known Basis Pursuit
(BP) problem—i.e.,

min
x

ÎxÎ1 subject to Ax = b . (BP)

While convergence of LB for consistent (noise-free) ¸1≠norm minimization problems has been established
[Cai et al., 2009], we are interested in large inconsistent and overdetermined problems for which exact recovery
is not possible. Since our problems are large and overdetermined, we study the behavior of iterations that
involve (random) subsets of data—i.e., we follow Yang et al. [2016] and write

zk+1 = zk ≠ tkA
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1), (2)

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from A and the corresponding
data points bk extracted from b. As a result, we solve a sequence of sub-problems involving sub-matrices
Ak = Ar(k) that consist of randomly subsampled rows r(k) taken from the tall matrix A (see Figure 1) and
redrawn with replacement during each kth iteration. We follow Lorenz et al. [2014b] and use “dynamic time
steps” tk’s given by

tk = ÎAkxk ≠ bkÎ2
2

ÎA€
k (Akxk ≠ bk)Î2

2
. (3)

For consistent systems, the above iterations with dynamic time steps tk converge to the following strongly
convex optimization problem:

min
x

⁄ÎxÎ1 + 1
2ÎxÎ2

2 subject to Ax = b . (EL⁄)

1

LB + dynamic time step
Lorentz et al 2014

Motivating applications
Large scale problems, with sparse representation:

 e.g. Recent results in compressed sensing in seismic imaging

Large number of source experiments

Large ill-conditioned system

Linearized - gives error/inconsistencies:
 Ax= b+

Solution: curvelet transform coefficients x

Background model parameters

miss the small entries in x that are of interest to us, given the relaxed data-fit constraint; (iii) in practice, our
“noise” is not incoherent random noise, thus violating the assumptions behind the additional projections. Add
additional comments depending on the additional results discussed around the figure with the
Pareto curve- see end of section 3

Under these assumptions, one could argue that LB iterations would make the most progress because
well-tuned thresholding should be able to separate the interference noise from spiky signal. Because our
matrices of interest are “compressive sensing like” to a limited degree, the above ideal “denoising” scenario
of LB does not hold. This shortfall explains, at least in part, why the LB algorithm struggles to converge
rapidly to a solution in these cases.

Many attempts have been made in the literature to speed up the convergence of ¸1-norm minimization
problems. For first order methods—i.e., methods that use first-order derivative information on the objective
only, these range from relaxing the constraints, known as a homotopy [van den Berg and Friedlander, 2011] , to
techniques derived from belief propagation or from dynamical systems. The former is known as approximate
message passing [Donoho et al., 2009, Herrmann [2012]] and relies on a delicate and therefore impractical set
of assumptions on the pairs {Ak, bk} [Montanari, 2012]. The latter involves the inclusion of an additional
memory term as proposed by Nesterov. Unfortunately, we found empirically that none of these approaches
are adequate to handle our problems of interest that are large, inconsistent, and mildly ill-conditioned.

Because of its relative simplicity and connection to the Kaczmarz method [Strohmer and Vershynin, 2008,
Needell [2010]], we take LB iterations as a starting point and we empirically study these iterations from the
perspective of a nonlinear non-smooth dynamical system with noise. In particular, we associate the observed
and reported stalling behavior of LB or iterative shrinkage thresholding algorithm (ISTA) iterations for
inconsistent systems with the phenomenon of chatter well-known in non-smooth dynamics. We demonstrate
that chattering is responsible for relatively strong fluctuations in the model iterates xk preventing the smaller
entries of x to enter into the solution.

0.1 Organization

After briefly providing a mathematical motivation for our problem in Section 2. Mathematical motivation, we
discuss this phenomenon of chatter in detail by describing a series of carefully selected numerical experiments
in Section [3. Dynamics of a small scale problem] including a simple counter measure reducing the chatter.
In Section [4. Acceleration with support detection], we propose and discuss a more sophisticated method to
reduce chatter by exploiting additional structure sparsity-promoting problems o�er. We conclude with Section
[5. Implications for large scale problems], where we study the impact of our chatter reducing algorithm.

Part II

2. Mathematical motivation

While there has been significant progress in the design and implementation of ¸1-norm minimization problems,
first-order methods including LB become challenging when x becomes large and the data misfit constraint
becomes expensive to evaluate. A good example of such a problem is Sparsity-Promoting Least-Square Reverse
Time Migration (SPLS-RTM). This problem involves the minimization of a separate data misfit constraint for
each source experiment, which in itself requires the solution of a large ill-conditioned but invertible system
of equations that discretize a partial di�erential equation (PDE). After linearization, wave-equation based
geophysical sparsity-promoting imaging problems take the form

min
x

ÎxÎ1 subject to
nsÿ

i=1
ÎJi[m0, qi]Cú

x ≠ biÎ2 Æ ‡. (SPLS‡)

In this expression, the unknown vector x contains complex-valued curvelet transform coe�cients of the
image; the matrices Ji, i = 1 · · · ns with ns the number of source experiments or “shots”, correspond to the

3

discretized linearized Born modelling operator for the i
th source experiment; the vector m0 is the background

model for the compressional wavespeed; the qi and bi are the source wavelet and observed data for the i
th

shot; and C
ú is the conjugate transpose of the Curvelet transform. Solving problem SPLS‡ is challenging for

the following reasons: (i) the system is inconsistent because the derivation of the Jacobians Ji(m0) is based on
a linearization with respect to the background model (m0) and this means that the system is inconsistent; (ii)

evaluations of actions with Ji and J
€
i are expensive because they involve at least two wave-equation (PDE)

solves for each source; (iii) there are many source experiments—i.e., ns is large making iterative solutions
that involve all source ns experiments unfeasible; (iv) the system of equations in SPLS‡ is ill conditioned due
to physical constraints on the acquisition geometry and the frequency content of the sources; and (v) earth
images are not strictly sparse but compressible and the challenge is to capture as many as possible small
curvelet coe�cients as possible.

To provide a concrete example of the challenges that arise in this context, we plot imaging results for
iterations k = 21 · · · 23 in figure 2 . Even though the LB iterations produce a reasonable image after making
approximately two passes through the data (i.e., we touched 10% of the shots 20 times), we observe a cyclic
behavior where the solutions are hopping between two di�erent solutions. This type of behavior is consistent
with chatter and leads to undesired stalling. Unfortunately, this stalling can lead to serious deterioration of
the resulting image because we are typically only allowed to make a limited number of passes through the
data.

Remark. While chatter is a problem that needs to be addressed, working with sub-problems Ak has
advantages when the condition number of the sub-matrix Ak is better than the condition number of the full
matrix A and when fast matrix multiplies are available for each block of rows [Needell and Tropp, 2014]. The
latter is certainly the case for Problem SPLS‡ and there are also indications that the conditioning of the
sub-problems is better. This means we are in the right regime.

(a) Iteration 21 (b) Iteration 22 (c) Iteration 23

Figure 2: The resulting migration image for three consecutive iterations

Before we study the behavior of tall inconsistent problems of a realistic size and complexity, we first
consider the dynamics of small scale problems in order to expose the source of the chatter. We do this by
looking at the relative model error as a function of k for strictly sparse problems. This relative error measures
how close xk is to the exact solution xsol and is defined as

Me(xk) = Îxsol ≠ xkÎ2
ÎxsolÎ2

. (4)

Unfortunately, the model error requires prior knowledge on the exact solution xsol. For this reason, we also
consider the normalized residual. This normalized residual is given by

R(xk) = ÎAxk ≠ bÎ2
ÎbÎ2

. (5)

Regrettably, it is computationally infeasible to calculate this normalized residual for large matrices A

that encode imaging problems with PDEs so we compute the normalized residuals for each sub-problem
instead—i.e., we compute

Rk(xk) = ÎAkxk ≠ bkÎ2
ÎbkÎ2

. (6)

4

ε Var[ε] = σ2

Witte, et al, 2015

Motivating applications Large scale problems, with
sparse representation:

Figure 1: The subsampling process

The combination of the ¸1- and ¸2-norms makes the above problem strictly convex and is in the machine
learning literature referred to as an elastic net [Zou and Hastie, 2005]. The above iterations correspond to a
sparse block-Kaczmarz method that is connected to the linearized Bregman method. When the iterations use
a single row at each step and ⁄ = 0, the iterations become Kaczmarz iterations [Strohmer and Vershynin,
2008, Needell [2010]] as shown by Lorenz et al. [2014a]. These authors also demonstrated that irrespective
of the batch size (number of rows in the Ak), the iterations in Equation 2 converge to the solution of the
original BP problem when ⁄ ø Œ. By including projections onto a ¸2-norm ball of size ‡ [Lorenz et al., 2014b]
that equals the ¸2-norm of the noise, the above iterations can be used to solve inconsistent problems of the
type

min
x

ÎxÎ1 subject to ÎAx ≠ bÎ2 Æ ‡ , (BPDN‡)

known as Basis Pursuit DeNoise (BPDN). Since Ax = b is not fit exactly, this formulation avoids fitting the
noise, and thus small coe�cients are not captured.

Even though the above extension to include noisy problems allows for solutions of inconsistent underde-
termined systems, its behavior is much less well studied and understood in situations where A is tall and
the size of the problem dictates that we can use only a limited number of pairs of {Ak, bk}, because these
row blocks are expensive to evaluate. That is, we have to work under the condition that (i) we can only
a�ord a few passes (epochs) through the data; (ii) the condition number of the matrix may not be good as is
generally the case in compressive sensing problems by design; (iii) unknown vectors x are compressible rather
than sparse, meaning that the size distribution of the entries of x includes small values. Then we can hope
to approximate the solution only up to small coe�cients remaining in the tail of this distribution. state
that in essence we are carrying out iterations that solve EL⁄ for finite ⁄ for a limited number
of iterations. This needs to be checked throughout the paper, where we say we solve BP, it is
really approximate BP or EL. With this we look to capture small coe�cients without fitting the
noise.

Given the focus on large, inconsistent systems, we seek to approximately invert systems of this type by
allowing only a limited number of passes through the data and restricting our attention to systems that also
behave “compressive sensing like”. Specifically, we mean that x is strictly sparse or can be well approximated
by a small number of non-zero entries and A

€
k bk = –Ix + nk where the Ak’s are flat, – Æ 1 and nk Gaussian

like noise. The size of this noise depends on the number of rows in Ak and on the level of inconsistency of
the system of equations. Even though the systems of interest are inconsistent, we study the above iterations
without including projections onto the ¸2 norm ball. We justify this choice by the following arguments: (i)

we are only allowed to make a very limited number of passes through the data, which limits the risk of fitting
the “noise” which is a common concern in BPDN‡; (ii) we know from experience that solutions of BPDN‡

2

Focus on LB:

Straightforward implementation
Capitalize on sparsity - rapid progress to sparse solution
Combine with subsampling for large problems

Draft
Emmanouil Daskalakis

1*
, Rachel Kuske

2
and Felix J. Herrmann

1
1
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

2
School of Math, Georgia Institute of Technology

Part I

1. Introduction

In compressive sensing, a hot field in applied mathematics for the last fifteen years, the key assumption
is that the unknown solution vector x œ Rn, is sparse (most of its entries are zero). Given a data vector
b œ Rm and a sensing matrix A œ Rm◊n with (m π n) such that Ax = b, recovering x is non-trivial because
it is a underdetermined problem. However, this problem can be solved using the assumed sparsity, under
certain conditions on the matrix A, via a ¸1≠norm minimization procedure [Donoho, 2006, Candes and
Romberg [2007], Candès et al. [2006]]. While there are many options for solving an ¸1≠ norm minimization
problems, we focus on a modification of the linearized Bregman iterations given below (cf. equation 1), a
method well-suited for ¸1≠norm optimization problems with convergence guarantees [Cai et al., 2009].

The linearized Bregman (LB) method [Yin et al., 2008] follows a simple iterative scheme involving

zk+1 = zk ≠ tkA
€(Axk ≠ b)

xk+1 = S⁄(zk+1), (1)

where S⁄(zk) = max(|zk| ≠ ⁄, 0) sign(zk) is a thresholding or shrinkage nonlinearity and tk is the steplength
or time step. These iterations converge in the limit ⁄ ø Œ to the solution of the well known Basis Pursuit
(BP) problem—i.e.,

min
x

ÎxÎ1 subject to Ax = b . (BP)

While convergence of LB for consistent (noise-free) ¸1≠norm minimization problems has been established
[Cai et al., 2009], we are interested in large inconsistent and overdetermined problems for which exact recovery
is not possible. Since our problems are large and overdetermined, we study the behavior of iterations that
involve (random) subsets of data—i.e., we follow Yang et al. [2016] and write

zk+1 = zk ≠ tkA
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1), (2)

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from A and the corresponding
data points bk extracted from b. As a result, we solve a sequence of sub-problems involving sub-matrices
Ak = Ar(k) that consist of randomly subsampled rows r(k) taken from the tall matrix A (see Figure 1) and
redrawn with replacement during each kth iteration. We follow Lorenz et al. [2014b] and use “dynamic time
steps” tk’s given by

tk = ÎAkxk ≠ bkÎ2
2

ÎA€
k (Akxk ≠ bk)Î2

2
. (3)

For consistent systems, the above iterations with dynamic time steps tk converge to the following strongly
convex optimization problem:

min
x

⁄ÎxÎ1 + 1
2ÎxÎ2

2 subject to Ax = b . (EL⁄)

1

Under-determinedOver-determined

subsampling on each iteration

Under-determined systems (sub-samples):

Benefit from the presence of “noise”, fluctuations, thresholds

Usual gradient descent: may not find sparse solution

Stochastic gradient descent: escape local minima (ML)

Drawback: does not converge unless noise vanishes

Simple Kaczmarz

Randomized block Kaczmarz
- subsampling size m, with
bounds on condition numbers

A is nxd

2 DEANNA NEEDELL AND JOEL A. TROPP

The minimum singular value is positive if and only if W W
§ or W

§
W is nonsingular. We define the con-

dition number ∑(W) := æmax(W)/æmin(W). The dagger † denotes the Moore–Penrose pseudoinverse.
When W has full row rank, its pseudoinverse is determined by the formula W

† :=W
§(W W

§)°1.

1.2. The Simple Kaczmarz Method. The Kaczmarz method is an iterative algorithm that produces an
approximation to the minimizer x? of the least-squares problem (1.1). The method commences with an
arbitrary guess x0 for the solution. At the j th iteration, we select a row index t = t (j) of the matrix A, and
we project the current iterate x j°1 onto the solution space of the equation hat , xi= bt . That is,

x j = x j°1 +
bt °

≠
at , x j°1

Æ

katk2
2

at . (1.3)

This process continues until it triggers an appropriate convergence criterion.
To develop a complete algorithm, we also need a control mechanism that specifies how to select rows.

For example, the most classical approach cycles through the rows in order. Instead, we focus on a mod-
ern formulation that uses a randomized control mechanism. Randomization has several benefits: the
resulting algorithm is easy to analyze, it is simple to implement, and it is often effective in practice.

Our primary reference is the randomized Kaczmarz algorithm recently proposed by Strohmer and Ver-
shynin [SV09b]. When A is standardized, their method operates as follows. At iteration j , independently
of all previous random choices, the algorithm draws the row index t (j) uniformly at random from the set
{1, . . . ,n} of all row indices. Then the current iterate is updated using the rule (1.3). The paper [SV09b]
provides a short, elegant proof that this iteration converges at an expected linear rate to the solution x?

of a consistent least-squares problem (i.e., where the residual e is zero).
Needell [Nee10] has extended the argument of [SV09b] to the case of an inconsistent least-squares

problem. For a standardized matrix A, Needell’s error estimate reads

Ekx j °x?k2
2 ∑

"

1°
æ2

min(A)

n

j

kx0 °x?k2
2 +

nkek2
1

æ2
min(A)

. (1.4)

In words, the randomized Kaczmarz method converges in expectation at a linear rate1 until it reaches a
fixed ball about the true solution x?, at which point the error may cease to decay. The radius of this ball
roughly equals the second term in (1.4), while the convergence rate is controlled by the bracket. When
the residual e is zero, the bound (1.4) reduces to the error estimate from [SV09b].

When A is an n £d standardized matrix whose columns are well conditioned, the minimum singular
value æ2

min(A) ∏ const ·n/d . In this case, the error bound (1.4) simplifies to

Ekx j °x?k2
2 .

∑
1° const

d

∏ j

kx0 °x?k2
2 + d

const
kek2

1.

It follows that O(d) iterations of the Kaczmarz method suffice to reduce the error by a constant fraction,
provided that the squared error is substantially larger than dkek2

1.

1.3. The Block Kaczmarz Method. In some situations [EHL81], practitioners prefer to use a block ver-
sion of the Kaczmarz method to solve the least-squares problem (1.1). We consider a formulation due
to Elfving [Elf80]. This procedure begins with an initial guess x0 for the solution. At each iteration j , we
select a subset ø= ø(j) of the row indices of A, and we project the current iterate x j°1 onto the solution
space of Aøx = bø, the set of equations listed in ø. That is,

x j = x j°1 + (Aø)†(bø° Aøx j°1). (1.5)

1Mathematicians often use the term exponential convergence for the concept numerical analysts call linear convergence.

e = ε

Needell and Tropp, 2012
(overdetermined, inconsistent, least squares minimization)

4 DEANNA NEEDELL AND JOEL A. TROPP

The number m of blocks is called the size of the paving. The numbersÆ and Ø are called lower and upper
paving bounds. The ratio Ø/Æ gives a uniform bound on the squared condition number ∑2(Aø) for each
ø. Note that Æ= 0 unless each submatrix Aø is fat.

Every partition T of the rows of a matrix A has associated paving parameters (m,Æ,Ø). In a moment,
we will see how these quantities play a role in the performance of the algorithm. Roughly speaking, it
is best that the size m, the upper bound Ø, and the conditioning Ø/Æ of the paving are small. Later, in
Sections 1.7 and 3, we will discuss what kind of bounds we can expect on the paving parameters, as well
as computational methods for producing good pavings. Note that, for a row paving to be useful in our
context, the cost of producing the paving must not exceed the cost of solving the least-squares problem
by other means!

1.5. Convergence of Randomized Block Kaczmarz. The main result of this paper provides information
about the convergence properties of the randomized block Kaczmarz method, Algorithm 1.1, in terms of
the parameters of the row paving T .

Theorem 1.2 (Convergence). Suppose A is a matrix with full column rank that admits an (m,Æ,Ø) row
paving T . Consider the least-squares problem

minimize kAx °bk2
2.

Let x? be the unique minimizer, and define the residual e := Ax?°b. For any initial estimate x0, the ran-
domized block Kaczmarz method, Algorithm 1.1, produces a sequence {x j : j ∏ 0} of iterates that satisfies

Ekx j °x?k2
2 ∑

"

1°
æ2

min(A)

Øm

j

kx0 °x?k2
2 + Ø

Æ
·

kek2
2

æ2
min(A)

. (1.6)

Turn to Section 2 for the proof of Theorem 1.2.
The expression (1.6) states that the block Kaczmarz method exhibits an expected linear rate of conver-

gence until it reaches a ball about the true solution. The radius of this ball, which we call the convergence
horizon, is comparable with the second term on the right-hand side of (1.6). The bracket controls the
convergence rate. The minimum singular value of A affects both the rate of convergence and the con-
vergence horizon. In each case, we prefer æmin(A) to be as large as possible.

The properties of the row paving play an interesting role in Theorem 1.2. Curiously, the rate of con-
vergence depends only on the upper paving bound Ø and the number m of blocks in the paving. On the
other hand, the convergence horizon reflects the conditioning Ø/Æ of the paving. Thus, the condition-
ing of the paving only affects the error bound when the least-squares problem is inconsistent (i.e., e is
nonzero). Nevertheless, as Section 1.4 suggests, we usually want the paving to be well conditioned to
ensure that we can apply the block update rule (1.5) efficiently.

1.6. Simple Kaczmarz versus Block Kaczmarz. First, notice that Theorem 1.2 improves on the earlier
result (1.4) for the simple Kaczmarz method. Indeed, the simple Kaczmarz method is equivalent to using
a row paving with n blocks, where each block contains exactly one of the n rows. When A is standardized,
the paving constants satisfy Æ=Ø= 1, and we reach the error bound

Ekx j °x?k2
2 ∑

"

1°
æ2

min(A)

n

j

kx0 °x?k2
2 +

kek2
2

æ2
min(A)

.

The convergence horizon kek2 ∑ nkek2
1, so the displayed bound beats (1.4) when A is standardized.

More generally, suppose A is a standardized matrix with an (m,Æ,Ø) row paving T . Let us compare the
simple Kaczmarz algorithm with uniformly random control (Section 1.2) to the block Kaczmarz method,
Algorithm 1.1. Both methods satisfy an error bound of the form

Ekx j °x?k2
2 ∑ e° jΩ ·kx0 °x?k2

2 + h

Connection with non-smooth dynamics:

Subsampling:

Inconsistencies: error due to linearization (data
mis-match)

Sources of noise/error/variation/fluctuation:

discretized linearized Born modelling operator for the i
th source experiment; the vector m0 is the background

model for the compressional wavespeed; the qi and bi are the source wavelet and observed data for the i
th

shot; and C
ú is the conjugate transpose of the Curvelet transform. Solving problem SPLS‡ is challenging for

the following reasons: (i) the system is inconsistent because the derivation of the Jacobians Ji(m0) is based on
a linearization with respect to the background model (m0) and this means that the system is inconsistent; (ii)

evaluations of actions with Ji and J
€
i are expensive because they involve at least two wave-equation (PDE)

solves for each source; (iii) there are many source experiments—i.e., ns is large making iterative solutions
that involve all source ns experiments unfeasible; (iv) the system of equations in SPLS‡ is ill conditioned due
to physical constraints on the acquisition geometry and the frequency content of the sources; and (v) earth
images are not strictly sparse but compressible and the challenge is to capture as many as possible small
curvelet coe�cients as possible.

To provide a concrete example of the challenges that arise in this context, we plot imaging results for
iterations k = 21 · · · 23 in figure 2 . Even though the LB iterations produce a reasonable image after making
approximately two passes through the data (i.e., we touched 10% of the shots 20 times), we observe a cyclic
behavior where the solutions are hopping between two di�erent solutions. This type of behavior is consistent
with chatter and leads to undesired stalling. Unfortunately, this stalling can lead to serious deterioration of
the resulting image because we are typically only allowed to make a limited number of passes through the
data.

Remark. While chatter is a problem that needs to be addressed, working with sub-problems Ak has
advantages when the condition number of the sub-matrix Ak is better than the condition number of the full
matrix A and when fast matrix multiplies are available for each block of rows [Needell and Tropp, 2014]. The
latter is certainly the case for Problem SPLS‡ and there are also indications that the conditioning of the
sub-problems is better. This means we are in the right regime.

(a) Iteration 21 (b) Iteration 22 (c) Iteration 23

Figure 2: The resulting migration image for three consecutive iterations

Before we study the behavior of tall inconsistent problems of a realistic size and complexity, we first
consider the dynamics of small scale problems in order to expose the source of the chatter. We do this by
looking at the relative model error as a function of k for strictly sparse problems. This relative error measures
how close xk is to the exact solution xsol and is defined as

Me(xk) = Îxsol ≠ xkÎ2
ÎxsolÎ2

. (4)

Unfortunately, the model error requires prior knowledge on the exact solution xsol. For this reason, we also
consider the normalized residual. This normalized residual is given by

R(xk) = ÎAxk ≠ bÎ2
ÎbÎ2

. (5)

Regrettably, it is computationally infeasible to calculate this normalized residual for large matrices A

that encode imaging problems with PDEs so we compute the normalized residuals for each sub-problem
instead—i.e., we compute

Rk(xk) = ÎAkxk ≠ bkÎ2
ÎbkÎ2

. (6)

4

Threshold: search for sparse solution

Evidence of sustained chatter:

Dynamics for real systems:

Want an algorithm that makes fast progress
towards the solution

In practice, the features that may aid rapid progress may
also impede convergence in later interactions

Can not reach exact solution: noise + large/
expensive system with finite number of
iterations

Computing stops during a transient in the
algorithm

Not necessarily sparse : compressed sensing-like
(violate certain assumptions for convergence)

ı

Chatter:
Search for a virtual equilibrium:

Ex: Thermostat set below ambient temperature

Some delay in feedback, otherwise have sliding on switch
time

Temp
switch

exp { ltð Þb
h i

, where bw1. The mean stick balancing time, t1=2,

calculated using a minimum of 25 consecutive trials, was used as a
measure of skill level. Participants for this study were selected from
a group of subjects who had practiced stick balancing for a few
days. We selected those subjects who had achieved a low to
moderate skill level (t1=2v40s;Figure 3). Approximately 50% of
subjects achieve much higher skills levels within 10 days of
practice, e.g. t1=2§10 min) and were excluded since the time to
complete the required §50 trials would have been so long (e.g. at
least 8 hours) that fatigue would have become a factor.
Vibrating platforms were commercially available: Physio-

plate (Globus Sport and Health technologies, LLC), iTonic
(Freemotion Fitness), Powerplate (Powerplate North America,
Northbrook, Illinois) and Soloflex (Soloflex, Inc.). The frequency
and vertical amplitude of the vibrations were measured at the
platform surface and at the fingertip using a three camera motion
capture system (Qualisys Oqus 300, sampling frequency 500 Hz).
Reflective markers were firmly attached to the vibrating platform
and to each each of the stick using Epoxy cement. Measurements
of the vibration amplitude were made while the stick was held in
the outstretched hand and at the fingertip during stick balancing.
These measurements are summarized in Table 1. The range of
frequencies and amplitudes of the fingertip vibration are well
within the range of responses recorded for human mechano–
receptors [59]. We allowed the subjects to adjust their comfort
level by self–selecting the degree of flexion at their knee (Figure 1).
Virtual stick balancing measurements involved using a

paradigm developed previously that involves the interplay between
a human and a computer [60,61]. Briefly, the subject views a
target and a dot on a computer screen. The dot reflects the

movements controlled by the computer mouse and the movements
of the target are controlled by the computer. The task is for the
subjects to keep the dot and target as close together as possible
while avoiding escape of either off the screen. The analogy to real
stick balancing is made by programming the computer to move
the target within a parabolic potential that is centered on the
mouse position (see [60,61] for more details). Computer programs
were written in Python using VisionEgg, a high level interface
between Python and OpenGL [62].
Mechanical stick balancing measurements involved

using a paradigm that incorporates a dc–motor–operated plotter
[15]. The pendulum is attached to a slider by means of a pivot:the
pendulum can rotate freely in the x,y–plane and the cart is
confined to move along the plotter rail in the x–direction. A
potentiometer placed at the fulcrum of the pendulum detects h. A
dc servomotor drives the slider on the rail using a timing belt, and
the position of the slider is detected by using a second
potentiometer. Although it is possible to use separate proportion-
al–integral–derivative (PID) controllers to stabilize h and the
position of the slider, we controlled only h (see [15] for more
details). The time delay was introduced by first digitizing the
analog signal from the potentiometer and writing this information
to a static random access memory (RAM). The contents of the
RAM were read out after a time delay, t, and converted to
analogue to produced the output signal.

Statistical and mathematical analyses
Since stick survival times are Wiebull–distributed we used non–

parametric statistics, specifically a Mann-Whitney U test (Wil-
coxon rank sum test), to test for statistical significance between

Figure 9. Effects of parametric excitation on the dynamics of a simple ‘‘drift and act’’ controller. a) Graphical representation of a simple
realization of the feedback function that produces a limit cycle oscillation in (2) in the absence of parametric excitation and noisy perturbations,
where F x t{tð Þð Þ~ azbð Þ{b= 1zexp Q x t{tð Þð {Thðð Þ and a~0:18 , b~{0:20, Q~500, and Th~1. The displacement from the upright position,
x t{tð Þ, grows when x t{tð ÞvTh and decreases when x t{tð ÞwTh . b) Periodic parametric excitation is turned on at the ;. The effect is to decrease
the amplitude of the limit cycle oscillation. Parameters are f~2 and k~0:14.
doi:10.1371/journal.pone.0007427.g009

Balancing with Vibration

PLoS ONE | www.plosone.org 9 October 2009 | Volume 4 | Issue 10 | e7427

mean stick balancing time is observed only when vertical
vibrations are produced at the fingertip, is associated with a small
increase in neural latency, and produces no changes in the
distribution of the changes in speed made by the fingertip. Taken
together these observations suggest that the skill enhancement is
due to vertical vibrations at the fingertip and not to the effects of
vibration on the nervous or musculo–skeletal system. We suggest
that a simple explanation for this unexpected observation is to
hypothesize that the upright balanced position is not a simple
equilibrium, but represents a complex bounded time–dependent
state that is confined within a basin of attraction whose size is of
the same order [7–9,15]. Consequently, for sufficiently large
fluctuations, trajectories can escape the basin of attraction, and the
stick subsequently falls. In this setting, any mechanism that biases
the fluctuations generated by this time-dependent state away from
the basin boundary enhances stick balancing skill. The experi-
mentally observed exponential relationship between the vibration–
induced increase in stick balancing skill and the decrease in the
amplitude of the fluctuations the the fingertip-stick movements
supports this interpretation.
Although, the use of parametric excitation to control the

amplitude of limit cycle oscillations has been described previously
[41–46], little attention has been previously given to the possible
implications of this mechanism for human balance control. Recent
control theoretic arguments for the control of an unstable fixed
point in the presence of time delayed feedback and random
perturbations (‘‘noise’’) have emphasized the need for switch–like
controllers in which for small displacements the variable ‘‘drifts’’

with active control (‘‘act’’) taken only once the variable exceeds
certain thresholds [7,10,13,22,23,25–27]. A one–dimensional
generic model with ‘‘drift–and–act’’ control of human balance
with parametric excitation takes the form

dx

dt
~F x t{tð Þð Þx tð Þzkx tð Þsin2pftzg2j tð Þ ð2Þ

where k is a constant, f is the forcing frequency, t is the time
delay, x tð Þ,x t{tð Þ are, respectively, the values of the controlled
variable at times t and t{t, and j tð Þ describes white additive

noise with variance g2. The feedback function, F x t{tð Þð Þ, has the
step–like shape shown in Figure 9a. Models of this type have been
successfully employed, for example, to obtain insights into the
properties of the two–point correlation functions observed for
human postural sway [7,13,16]. Figure 9b illustrates that in the
absence of noise the amplitude of a limit cycle oscillation can be
lowered using parametric excitation. The attractiveness of drift
and act, and related controllers, is that they are robust, inexpensive
to implement, and optimal for finite corrective actions [47].
However, it may also be possible to gain further insights into our
observations by examining the effects of parametric excitation on
recently developed models for balancing that are based on an
inverted pendulum controlled by nonlinear, time–delayed feed-
back [8,9,15,17,35,48,49].
Measurements of the frequency and amplitude dependence of

the vibration–enhancement of stick balancing skill provide the
direction for future model development. However, there are two

Figure 6. Comparison of three paradigms for stick balancing: a) stick balancing at the fingertip, b) mechanical stick balancing, and
c) virtual stick balancing. In all cases the dashed lines are related to the controlled variable and the solid lines are related to the controller: a) plots
the position of the fingertip tip (solid line) versus the tip of the stick (dashed line);b) plots the voltage proportional to the displacement angle
(dashed line) versus the voltage response of the controller (solid line), and c) plots the position of the target (dashed line) versus the position of the
computer mouse (solid line). In a) and c), D x tð Þ,y tð Þð Þ~

ffi
x2 tð Þzy2 tð Þ

p
is the length of the position vector measured at time t from a common

reference point, 0,0ð Þ, supplied, respectively, by the Qualisys motion capture system and the computer program. No ambiguity arises from the use of
D x tð Þ,y tð Þð Þ since the vertical displacement angle is small (see Figure 7d) and the movements of the fingertip and tip of the stick are necessarily
strongly correlated.
doi:10.1371/journal.pone.0007427.g006

Balancing with Vibration

PLoS ONE | www.plosone.org 6 October 2009 | Volume 4 | Issue 10 | e7427

ambient temp: virtual eq

Toy model

Milton, et al, 2009

On

Off

Coherence resonance-type route to chatter

Transient oscillations
sustained as spiral via noise

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.2

−0.1

0

0.1

0.2

�

�

0 100 200 300 400 500 600 700 800
−0.4

−0.2

0

0.2

0.4

t

�

OFF

ON

On-off control of balance: Inverted
pendulum with delayed feedback control

Coherence resonance-
type phenomenon -
sustained transient
oscillations with
characteristic frequency

\

In optimization context: discrete time steps
In general, want to take as large a time step as
possible for faster convergence

(a) Ak œ R250◊1000, ‡ = 0

(b) Ak œ R250◊1000, ‡ > 0

(c) Ak œ R2000◊1000, ‡ > 0

Figure 3: Plot of two entries of zk with fixed indices i that correspond to the largest entry and one of the
small non-zero entry {++for the strictly sparse BP problem++}. With solid line we track entries of zk that
use the constant time step and with dashed line we track entries of zk that use the dynamic time step. The
plot (3a) corresponds to the consistent case (‡ = 0) for which no chatter behaviour is observed. On the other
hand, plots (3b) and (3c) correspond to the inconsistent case (‡ > 0) which su�er from chatter.

selected for the subsampled systems according to constant tk = 1
ÎAkÎ2

2
and dynamic tk = ÎAkxk≠bkÎ2

2
ÎA€

k
(Akxk≠bk)Î2

2
time steps for the consistent (‡ = 0) and inconsistent (‡ > 0) cases. For the consistent case, the time steps
fluctuate but remain centered around a constant value. As expected, the dynamic step lengths are larger and
the fluctuations in both cases are due to the random selection of new sub-problem pairs {Ak, bk} for each
iteration. However, the situation is completely di�erent for the inconsistent case where the fluctuations in tk

increase with chatter (cf. figures 3 and 4). As a result, the recovered values for the non-zero entries change
from iteration to iteration, in part due to the relatively strong fluctuations and large values of the dynamic
time steps at the later iterations.

7

(a) Ak œ R250◊1000, ‡ = 0

(b) Ak œ R250◊1000, ‡ > 0

(c) Ak œ R2000◊1000, ‡ > 0

Figure 3: Plot of two entries of zk with fixed indices i that correspond to the largest entry and one of the
small non-zero entry {++for the strictly sparse BP problem++}. With solid line we track entries of zk that
use the constant time step and with dashed line we track entries of zk that use the dynamic time step. The
plot (3a) corresponds to the consistent case (‡ = 0) for which no chatter behaviour is observed. On the other
hand, plots (3b) and (3c) correspond to the inconsistent case (‡ > 0) which su�er from chatter.

selected for the subsampled systems according to constant tk = 1
ÎAkÎ2

2
and dynamic tk = ÎAkxk≠bkÎ2

2
ÎA€

k
(Akxk≠bk)Î2

2
time steps for the consistent (‡ = 0) and inconsistent (‡ > 0) cases. For the consistent case, the time steps
fluctuate but remain centered around a constant value. As expected, the dynamic step lengths are larger and
the fluctuations in both cases are due to the random selection of new sub-problem pairs {Ak, bk} for each
iteration. However, the situation is completely di�erent for the inconsistent case where the fluctuations in tk

increase with chatter (cf. figures 3 and 4). As a result, the recovered values for the non-zero entries change
from iteration to iteration, in part due to the relatively strong fluctuations and large values of the dynamic
time steps at the later iterations.

7

Constant:

Dynamic:

Draft
Emmanouil Daskalakis

1*
, Rachel Kuske

2
and Felix J. Herrmann

1
1
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

2
School of Math, Georgia Institute of Technology

Part I

1. Introduction

In compressive sensing, a hot field in applied mathematics for the last fifteen years, the key assumption
is that the unknown solution vector x œ Rn, is sparse (most of its entries are zero). Given a data vector
b œ Rm and a sensing matrix A œ Rm◊n with (m π n) such that Ax = b, recovering x is non-trivial because
it is a underdetermined problem. However, this problem can be solved using the assumed sparsity, under
certain conditions on the matrix A, via a ¸1≠norm minimization procedure [Donoho, 2006, Candes and
Romberg [2007], Candès et al. [2006]]. While there are many options for solving an ¸1≠ norm minimization
problems, we focus on a modification of the linearized Bregman iterations given below (cf. equation 1), a
method well-suited for ¸1≠norm optimization problems with convergence guarantees [Cai et al., 2009].

The linearized Bregman (LB) method [Yin et al., 2008] follows a simple iterative scheme involving

zk+1 = zk ≠ tkA
€(Axk ≠ b)

xk+1 = S⁄(zk+1), (1)

where S⁄(zk) = max(|zk| ≠ ⁄, 0) sign(zk) is a thresholding or shrinkage nonlinearity and tk is the steplength
or time step. These iterations converge in the limit ⁄ ø Œ to the solution of the well known Basis Pursuit
(BP) problem—i.e.,

min
x

ÎxÎ1 subject to Ax = b . (BP)

While convergence of LB for consistent (noise-free) ¸1≠norm minimization problems has been established
[Cai et al., 2009], we are interested in large inconsistent and overdetermined problems for which exact recovery
is not possible. Since our problems are large and overdetermined, we study the behavior of iterations that
involve (random) subsets of data—i.e., we follow Yang et al. [2016] and write

zk+1 = zk ≠ tkA
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1), (2)

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from A and the corresponding
data points bk extracted from b. As a result, we solve a sequence of sub-problems involving sub-matrices
Ak = Ar(k) that consist of randomly subsampled rows r(k) taken from the tall matrix A (see Figure 1) and
redrawn with replacement during each kth iteration. We follow Lorenz et al. [2014b] and use “dynamic time
steps” tk’s given by

tk = ÎAkxk ≠ bkÎ2
2

ÎA€
k (Akxk ≠ bk)Î2

2
. (3)

For consistent systems, the above iterations with dynamic time steps tk converge to the following strongly
convex optimization problem:

min
x

⁄ÎxÎ1 + 1
2ÎxÎ2

2 subject to Ax = b . (EL⁄)

1

Draft
Emmanouil Daskalakis

1*
, Rachel Kuske

2
and Felix J. Herrmann

1
1
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

2
School of Math, Georgia Institute of Technology

Part I

1. Introduction

In compressive sensing, a hot field in applied mathematics for the last fifteen years, the key assumption
is that the unknown solution vector x œ Rn, is sparse (most of its entries are zero). Given a data vector
b œ Rm and a sensing matrix A œ Rm◊n with (m π n) such that Ax = b, recovering x is non-trivial because
it is a underdetermined problem. However, this problem can be solved using the assumed sparsity, under
certain conditions on the matrix A, via a ¸1≠norm minimization procedure [Donoho, 2006, Candes and
Romberg [2007], Candès et al. [2006]]. While there are many options for solving an ¸1≠ norm minimization
problems, we focus on a modification of the linearized Bregman iterations given below (cf. equation 1), a
method well-suited for ¸1≠norm optimization problems with convergence guarantees [Cai et al., 2009].

The linearized Bregman (LB) method [Yin et al., 2008] follows a simple iterative scheme involving

zk+1 = zk ≠ tkA
€(Axk ≠ b)

xk+1 = S⁄(zk+1), (1)

where S⁄(zk) = max(|zk| ≠ ⁄, 0) sign(zk) is a thresholding or shrinkage nonlinearity and tk is the steplength
or time step. These iterations converge in the limit ⁄ ø Œ to the solution of the well known Basis Pursuit
(BP) problem—i.e.,

min
x

ÎxÎ1 subject to Ax = b . (BP)

While convergence of LB for consistent (noise-free) ¸1≠norm minimization problems has been established
[Cai et al., 2009], we are interested in large inconsistent and overdetermined problems for which exact recovery
is not possible. Since our problems are large and overdetermined, we study the behavior of iterations that
involve (random) subsets of data—i.e., we follow Yang et al. [2016] and write

zk+1 = zk ≠ tkA
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1), (2)

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from A and the corresponding
data points bk extracted from b. As a result, we solve a sequence of sub-problems involving sub-matrices
Ak = Ar(k) that consist of randomly subsampled rows r(k) taken from the tall matrix A (see Figure 1) and
redrawn with replacement during each kth iteration. We follow Lorenz et al. [2014b] and use “dynamic time
steps” tk’s given by

tk = ÎAkxk ≠ bkÎ2
2

ÎA€
k (Akxk ≠ bk)Î2

2
. (3)

For consistent systems, the above iterations with dynamic time steps tk converge to the following strongly
convex optimization problem:

min
x

⁄ÎxÎ1 + 1
2ÎxÎ2

2 subject to Ax = b . (EL⁄)

1

Entries enter and exit the support,
crossing threshold at λ

Analogy to chatter

Taking finite steps at each stage:

In the inconsistent case: previous step approximation
to over-determined case - no exact solution, only
approximate solution -

Sparse case: entry = 0 in exact solution

Will exceed the threshold at some point, but will
(likely) reduce below threshold on next iteration

xi

\

Test (sparse) problem: track dynamics of entries
Threshold alone does not cause chatter:

In the consistent case, there is
an optimal solution to Ax=b
()

(a) Ak œ R250◊1000, ‡ = 0

(b) Ak œ R250◊1000, ‡ > 0

(c) Ak œ R2000◊1000, ‡ > 0

Figure 3: Plot of two entries of zk with fixed indices i that correspond to the largest entry and one of the
small non-zero entry {++for the strictly sparse BP problem++}. With solid line we track entries of zk that
use the constant time step and with dashed line we track entries of zk that use the dynamic time step. The
plot (3a) corresponds to the consistent case (‡ = 0) for which no chatter behaviour is observed. On the other
hand, plots (3b) and (3c) correspond to the inconsistent case (‡ > 0) which su�er from chatter.

selected for the subsampled systems according to constant tk = 1
ÎAkÎ2

2
and dynamic tk = ÎAkxk≠bkÎ2

2
ÎA€

k
(Akxk≠bk)Î2

2
time steps for the consistent (‡ = 0) and inconsistent (‡ > 0) cases. For the consistent case, the time steps
fluctuate but remain centered around a constant value. As expected, the dynamic step lengths are larger and
the fluctuations in both cases are due to the random selection of new sub-problem pairs {Ak, bk} for each
iteration. However, the situation is completely di�erent for the inconsistent case where the fluctuations in tk

increase with chatter (cf. figures 3 and 4). As a result, the recovered values for the non-zero entries change
from iteration to iteration, in part due to the relatively strong fluctuations and large values of the dynamic
time steps at the later iterations.

7

Sparse example, threshold 4

σ = 0

\

(a) Ak œ R250◊1000, ‡ = 0

(b) Ak œ R250◊1000, ‡ > 0

(c) Ak œ R2000◊1000, ‡ > 0

Figure 3: Plot of two entries of zk with fixed indices i that correspond to the largest entry and one of the
small non-zero entry {++for the strictly sparse BP problem++}. With solid line we track entries of zk that
use the constant time step and with dashed line we track entries of zk that use the dynamic time step. The
plot (3a) corresponds to the consistent case (‡ = 0) for which no chatter behaviour is observed. On the other
hand, plots (3b) and (3c) correspond to the inconsistent case (‡ > 0) which su�er from chatter.

selected for the subsampled systems according to constant tk = 1
ÎAkÎ2

2
and dynamic tk = ÎAkxk≠bkÎ2

2
ÎA€

k
(Akxk≠bk)Î2

2
time steps for the consistent (‡ = 0) and inconsistent (‡ > 0) cases. For the consistent case, the time steps
fluctuate but remain centered around a constant value. As expected, the dynamic step lengths are larger and
the fluctuations in both cases are due to the random selection of new sub-problem pairs {Ak, bk} for each
iteration. However, the situation is completely di�erent for the inconsistent case where the fluctuations in tk

increase with chatter (cf. figures 3 and 4). As a result, the recovered values for the non-zero entries change
from iteration to iteration, in part due to the relatively strong fluctuations and large values of the dynamic
time steps at the later iterations.

7

Under-determined system

Over-determined (inconsistent)
system σ ≠ 0

\

“Wiggle” plots :

Consistent vs. Inconsistent

Model vs. gradient

classically used for signal traces (in seismic)

(a) Model iterates for Ak œ
R250◊1000, ‡ = 0

(b) Gradients for Ak œ
R250◊1000, ‡ = 0

(c) Model iterates for Ak œ
R250◊1000, ‡ > 0

(d) Gradients for Ak œ
R250◊1000, ‡ > 0

Figure 5: Wiggle plots of a part of the model iterates (xk) and gradients. In the consistent case (‡ = 0),
we observe no chatter and the gradient gets smaller as the iterations pass. In the inconsistent case (‡ > 0)
we observe the chatter behavior where entries regularly and continually enter and leave the support of the
solution. The chatter is driven by the fact that the gradient does not get smaller with the iterations as with
the consistent case.

10

(a) Model iterates for Ak œ
R250◊1000, ‡ = 0

(b) Gradients for Ak œ
R250◊1000, ‡ = 0

(c) Model iterates for Ak œ
R250◊1000, ‡ > 0

(d) Gradients for Ak œ
R250◊1000, ‡ > 0

Figure 5: Wiggle plots of a part of the model iterates (xk) and gradients. In the consistent case (‡ = 0),
we observe no chatter and the gradient gets smaller as the iterations pass. In the inconsistent case (‡ > 0)
we observe the chatter behavior where entries regularly and continually enter and leave the support of the
solution. The chatter is driven by the fact that the gradient does not get smaller with the iterations as with
the consistent case.

10

Approaches to address cycling: fluctuations about
a solution

Projection at each step, based on noise level:
Advantage: Eliminates largest of fluctuations,
Disadvantage: Reduces the solution space - some
solutions not allowed, have to approximate the
noise level. (Lorenz, et al, 2014)

Reduce step-size: When, and how? Choose specific
directions of search
Reduce overshoot (used e.g. in SGD)
Disadvantage: Could slow convergence, could be
computationally expense to determine

\

(a) (b)

Figure 8: Solution paths for inconsistent problems. The Pareto curve (in blue) is the the optimal solution
path for this problem. The LB is plotted with light blue, green is the MLB, ISTA is with red and magenta
for LB with the l2 -ball projection.

First we re-examine the time dynamics via the entries of zk, in order to analyse the evolution of the entries
over the iterations before we apply the threshold at ⁄. We divide the entries of zk into two groups, denoted
as the large and small solution entries of zk. The indices of these two groups correspond respectively to the
nonzero and zero entries of the exact sparse solution xexact . For consistent problems (not shown), the large
entries of zk reach the desired values for fewer iterations (small k), while the small entries of zk converge
as expected to values below the threshold ⁄, typically after more iterations (larger k). In contrast, for the
entries from inconsistent problems solved with LB as shown in figure 9, the inconsistency gives rise to chatter
both for the small (blue lines) and large (red lines) entries of zk, leading to intermittent incorrect support
detections and undesired slow convergence, if at all, as discussed in Section [] above. While using (7) as in
MLB significantly reduces the chatter (cf. figure 9), Figure 9b illustrates the slower convergence for MLB.
There, an entry z

i, with i corresponding to a is this vanishing or small? vanishing contribution x
i in the

sparse solution, takes a larger number of iterations in MLB to reach the threshold than it does in LB. Thus
more iterations in MLB are required to capture all contributions to the solution. The slower convergence of
the smaller entries in MLB is mainly driven by the initial drop in step size tk for the smaller entries, (see
green line in figure 4), due to larger fluctuations as the algorithm seeks larger entries in the earlier iterations,
in turn reducing the step size for smaller entries through ·k[i] in #weights. While shown for the sparse case
in figures 9 and 10 , this resolution of small entries is particularly essential when the solution is compressible,
since detection of the correct support is dependent on capturing the smaller entries. For large scale problems
where we can a�ord only a limited number of passes through the data, a slowdown in capturing the smaller
entries can severely limit the performance of MLB.

This observation motivates avoiding a small step size in early iterations for the small entries, accomplished
by including an additional threshold nonlinearity to detect when entries first cross the threshold and potentially
enter into the solution. That is, we use the weighted increment ·k[i] only after the first iteration k at which
|zi

k| > ⁄ . This threshold crossing corresponds to automatic support detection for the weighted increments.
In contrast to attempts to detect the support in sparsity-promoting solvers automatically [Wang and Yin,
2010], our “support detection” only changes the weighted increments. The resulting update of MLB that
tracks threshold crossing (MLBT) is given by:

·k[i] =

Y
__]

__[

tk if |zi
j | Æ ⁄, ’j Æ k

tk

|
kq

j=1
sign([A€

j (Ajxj ≠ bj)]i)|

k
otherwise.

(8)

Figure 9b illustrates that the extra element-wise nonlinear operation in MLBT can lead to faster convergence
when the signal is detectable relative to the noise, particularly in the case where a similar threshold value for

12

(a) (b)

Figure 8: Solution paths for inconsistent problems. The Pareto curve (in blue) is the the optimal solution
path for this problem. The LB is plotted with light blue, green is the MLB, ISTA is with red and magenta
for LB with the l2 -ball projection.

First we re-examine the time dynamics via the entries of zk, in order to analyse the evolution of the entries
over the iterations before we apply the threshold at ⁄. We divide the entries of zk into two groups, denoted
as the large and small solution entries of zk. The indices of these two groups correspond respectively to the
nonzero and zero entries of the exact sparse solution xexact . For consistent problems (not shown), the large
entries of zk reach the desired values for fewer iterations (small k), while the small entries of zk converge
as expected to values below the threshold ⁄, typically after more iterations (larger k). In contrast, for the
entries from inconsistent problems solved with LB as shown in figure 9, the inconsistency gives rise to chatter
both for the small (blue lines) and large (red lines) entries of zk, leading to intermittent incorrect support
detections and undesired slow convergence, if at all, as discussed in Section [] above. While using (7) as in
MLB significantly reduces the chatter (cf. figure 9), Figure 9b illustrates the slower convergence for MLB.
There, an entry z

i, with i corresponding to a is this vanishing or small? vanishing contribution x
i in the

sparse solution, takes a larger number of iterations in MLB to reach the threshold than it does in LB. Thus
more iterations in MLB are required to capture all contributions to the solution. The slower convergence of
the smaller entries in MLB is mainly driven by the initial drop in step size tk for the smaller entries, (see
green line in figure 4), due to larger fluctuations as the algorithm seeks larger entries in the earlier iterations,
in turn reducing the step size for smaller entries through ·k[i] in #weights. While shown for the sparse case
in figures 9 and 10 , this resolution of small entries is particularly essential when the solution is compressible,
since detection of the correct support is dependent on capturing the smaller entries. For large scale problems
where we can a�ord only a limited number of passes through the data, a slowdown in capturing the smaller
entries can severely limit the performance of MLB.

This observation motivates avoiding a small step size in early iterations for the small entries, accomplished
by including an additional threshold nonlinearity to detect when entries first cross the threshold and potentially
enter into the solution. That is, we use the weighted increment ·k[i] only after the first iteration k at which
|zi

k| > ⁄ . This threshold crossing corresponds to automatic support detection for the weighted increments.
In contrast to attempts to detect the support in sparsity-promoting solvers automatically [Wang and Yin,
2010], our “support detection” only changes the weighted increments. The resulting update of MLB that
tracks threshold crossing (MLBT) is given by:

·k[i] =

Y
__]

__[

tk if |zi
j | Æ ⁄, ’j Æ k

tk

|
kq

j=1
sign([A€

j (Ajxj ≠ bj)]i)|

k
otherwise.

(8)

Figure 9b illustrates that the extra element-wise nonlinear operation in MLBT can lead to faster convergence
when the signal is detectable relative to the noise, particularly in the case where a similar threshold value for

12

Evolution in the error vs. sparsity trade-off plane

Compare to the Pareto curve: separates feasible and
infeasible solutions
Different types of transient behavior - ideally tracking
the Pareto curve (LB uses threshold only in gradient
term - samples transients)

Hennenfent, et al, 2008

Modified LB (MLB) algorithm

\

Figure 4: Here we solve the small scale problem with the LB method, using 1 for blue, red, and yellow and
we track the value of the time-step. In blue we have the constant time step tk = 1

ÎAkÎ2
2
. In red we have the

dynamic time-step tk = ÎAkxk≠bkÎ2
2

ÎA€
k

(Akxk≠bk)Î2
2

when trying to solve the inconsistent problem. In yellow we have the
dynamic time-step when trying to solve the consistent problem with #LB1. With purple and green we track
the weighted increments in mLB⁄ for the same entries as in Figure 3 (purple is the largest and green is a
small entry)).

Because large time steps in the earlier iterations typically lead to preferred faster convergence, we would
like to devise an adaptive scheme that allows the solution to make rapid progress in the beginning, followed by
a period of increased caution when the chatter sets in. As in stochastic gradient descent [Nedic and Bertsekas,
2001], such a scheme would reduce the time steps when the stochastic fluctuations start to dominate. Because
the chatter di�ers from entry to entry (see Figure 5 w/ wiggle trace, showing the amplitude versus time as an
oscillating line), we select the time steps for each entry depending on its history, specifically, the amount of
chatter for that entry. To e�ectively counter the chatter, the scheme must adaptively reduce the chatter more
aggressively for those entries with strong chatter. We can accomplish this by keeping track of the signs of the
previous gradients. If the signs of the ith entry of these gradients is persistent, having the same sign from
iteration to iteration, we want to keep the time step as is. Conversely, we want the time step to decrease
when the gradients at the entry changes sign often, indicating the onset of chatter. We accomplish these goals
by shrinking the ith entry of the time step accordingly, thus assigning a di�erent time step for each entry as

·k[i] = tk

|
kq

j=1
sign([A€

j (Ajxj ≠ bj)]i)|

k
. (7)

We normalize this expression by the current number of iterations k so that the weights shrink each entry
towards zero—i.e, the element-wise multiplication factor is guaranteed to be between zero and one.

With these weighted increments, our modified Linearized Bregman (MLB) algorithm takes the form:

zk+1 = zk ≠ ·k § A
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1),
(mLB⁄)

8

Figure 4: Here we solve the small scale problem with the LB method, using 1 for blue, red, and yellow and
we track the value of the time-step. In blue we have the constant time step tk = 1

ÎAkÎ2
2
. In red we have the

dynamic time-step tk = ÎAkxk≠bkÎ2
2

ÎA€
k

(Akxk≠bk)Î2
2

when trying to solve the inconsistent problem. In yellow we have the
dynamic time-step when trying to solve the consistent problem with #LB1. With purple and green we track
the weighted increments in mLB⁄ for the same entries as in Figure 3 (purple is the largest and green is a
small entry)).

Because large time steps in the earlier iterations typically lead to preferred faster convergence, we would
like to devise an adaptive scheme that allows the solution to make rapid progress in the beginning, followed by
a period of increased caution when the chatter sets in. As in stochastic gradient descent [Nedic and Bertsekas,
2001], such a scheme would reduce the time steps when the stochastic fluctuations start to dominate. Because
the chatter di�ers from entry to entry (see Figure 5 w/ wiggle trace, showing the amplitude versus time as an
oscillating line), we select the time steps for each entry depending on its history, specifically, the amount of
chatter for that entry. To e�ectively counter the chatter, the scheme must adaptively reduce the chatter more
aggressively for those entries with strong chatter. We can accomplish this by keeping track of the signs of the
previous gradients. If the signs of the ith entry of these gradients is persistent, having the same sign from
iteration to iteration, we want to keep the time step as is. Conversely, we want the time step to decrease
when the gradients at the entry changes sign often, indicating the onset of chatter. We accomplish these goals
by shrinking the ith entry of the time step accordingly, thus assigning a di�erent time step for each entry as

·k[i] = tk

|
kq

j=1
sign([A€

j (Ajxj ≠ bj)]i)|

k
. (7)

We normalize this expression by the current number of iterations k so that the weights shrink each entry
towards zero—i.e, the element-wise multiplication factor is guaranteed to be between zero and one.

With these weighted increments, our modified Linearized Bregman (MLB) algorithm takes the form:

zk+1 = zk ≠ ·k § A
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1),
(mLB⁄)

8

Factor in definition of the time step: element by
element adjustment of time step
No chatter - no change in time step, progress towards
the correct value continues
Chatter sets in - time step decreases

Specific features of regular crossing of threshold:
Frequent change of gradient
In contrast to changes in gradient due to subsampling
or change of gradient due to noise

\

MLB vs LB

(a) Dynamic time-step, Ak œ R250◊1000 (b) Dynamic time-step, Ak œ R2000◊1000

Figure 6: The same entries are tracked as in Figures 3 . For entries in green we used the weighted increment ·k

(eq. 7) in comparison to the entries in blue where we do not use the weighted increment. {++The di�erence
in the values of zk is due to a di�erent choise of threshold for the MLB. Specifically after experimentation we
found that ⁄MLB ¥ 1

3 ⁄LB .++}

(a) Model iterates for Ak œ
R250◊1000, ‡ > 0

(b) Gradients for Ak œ
R250◊1000, ‡ > 0

(c) Time steps for Ak œ
R250◊1000, ‡ > 0

Figure 7: Wiggle plots of a part of the solution, the gradient and the time step using MLB. Even though
the gradient has similar behavior compared to the gradient of the LB method (cf. figure 5d), the chatter is
damped as the the time step shrinks as seen in panel 7c

11

Figure 4: Here we solve the small scale problem with the LB method, using 1 for blue, red, and yellow and
we track the value of the time-step. In blue we have the constant time step tk = 1

ÎAkÎ2
2
. In red we have the

dynamic time-step tk = ÎAkxk≠bkÎ2
2

ÎA€
k

(Akxk≠bk)Î2
2

when trying to solve the inconsistent problem. In yellow we have the
dynamic time-step when trying to solve the consistent problem with #LB1. With purple and green we track
the weighted increments in mLB⁄ for the same entries as in Figure 3 (purple is the largest and green is a
small entry)).

Because large time steps in the earlier iterations typically lead to preferred faster convergence, we would
like to devise an adaptive scheme that allows the solution to make rapid progress in the beginning, followed by
a period of increased caution when the chatter sets in. As in stochastic gradient descent [Nedic and Bertsekas,
2001], such a scheme would reduce the time steps when the stochastic fluctuations start to dominate. Because
the chatter di�ers from entry to entry (see Figure 5 w/ wiggle trace, showing the amplitude versus time as an
oscillating line), we select the time steps for each entry depending on its history, specifically, the amount of
chatter for that entry. To e�ectively counter the chatter, the scheme must adaptively reduce the chatter more
aggressively for those entries with strong chatter. We can accomplish this by keeping track of the signs of the
previous gradients. If the signs of the ith entry of these gradients is persistent, having the same sign from
iteration to iteration, we want to keep the time step as is. Conversely, we want the time step to decrease
when the gradients at the entry changes sign often, indicating the onset of chatter. We accomplish these goals
by shrinking the ith entry of the time step accordingly, thus assigning a di�erent time step for each entry as

·k[i] = tk

|
kq

j=1
sign([A€

j (Ajxj ≠ bj)]i)|

k
. (7)

We normalize this expression by the current number of iterations k so that the weights shrink each entry
towards zero—i.e, the element-wise multiplication factor is guaranteed to be between zero and one.

With these weighted increments, our modified Linearized Bregman (MLB) algorithm takes the form:

zk+1 = zk ≠ ·k § A
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1),
(mLB⁄)

8

MLB solution settles in at
target value, as time step
is reduced

Note: different choice of
for different schemes -

λ

xi = zi ± λ Daskalakis,K, Herrmann 2017

(a) Dynamic time-step, Ak œ R250◊1000 (b) Dynamic time-step, Ak œ R2000◊1000

Figure 6: The same entries are tracked as in Figures 3 . For entries in green we used the weighted increment ·k

(eq. 7) in comparison to the entries in blue where we do not use the weighted increment. {++The di�erence
in the values of zk is due to a di�erent choise of threshold for the MLB. Specifically after experimentation we
found that ⁄MLB ¥ 1

3 ⁄LB .++}

(a) Model iterates for Ak œ
R250◊1000, ‡ > 0

(b) Gradients for Ak œ
R250◊1000, ‡ > 0

(c) Time steps for Ak œ
R250◊1000, ‡ > 0

Figure 7: Wiggle plots of a part of the solution, the gradient and the time step using MLB. Even though
the gradient has similar behavior compared to the gradient of the LB method (cf. figure 5d), the chatter is
damped as the the time step shrinks as seen in panel 7c

11

Time-step

Model vs. gradient
(a) Model iterates for Ak œ
R250◊1000, ‡ = 0

(b) Gradients for Ak œ
R250◊1000, ‡ = 0

(c) Model iterates for Ak œ
R250◊1000, ‡ > 0

(d) Gradients for Ak œ
R250◊1000, ‡ > 0

Figure 5: Wiggle plots of a part of the model iterates (xk) and gradients. In the consistent case (‡ = 0),
we observe no chatter and the gradient gets smaller as the iterations pass. In the inconsistent case (‡ > 0)
we observe the chatter behavior where entries regularly and continually enter and leave the support of the
solution. The chatter is driven by the fact that the gradient does not get smaller with the iterations as with
the consistent case.

10

Figure 4: Here we solve the small scale problem with the LB method, using 1 for blue, red, and yellow and
we track the value of the time-step. In blue we have the constant time step tk = 1

ÎAkÎ2
2
. In red we have the

dynamic time-step tk = ÎAkxk≠bkÎ2
2

ÎA€
k

(Akxk≠bk)Î2
2

when trying to solve the inconsistent problem. In yellow we have the
dynamic time-step when trying to solve the consistent problem with #LB1. With purple and green we track
the weighted increments in mLB⁄ for the same entries as in Figure 3 (purple is the largest and green is a
small entry)).

Because large time steps in the earlier iterations typically lead to preferred faster convergence, we would
like to devise an adaptive scheme that allows the solution to make rapid progress in the beginning, followed by
a period of increased caution when the chatter sets in. As in stochastic gradient descent [Nedic and Bertsekas,
2001], such a scheme would reduce the time steps when the stochastic fluctuations start to dominate. Because
the chatter di�ers from entry to entry (see Figure 5 w/ wiggle trace, showing the amplitude versus time as an
oscillating line), we select the time steps for each entry depending on its history, specifically, the amount of
chatter for that entry. To e�ectively counter the chatter, the scheme must adaptively reduce the chatter more
aggressively for those entries with strong chatter. We can accomplish this by keeping track of the signs of the
previous gradients. If the signs of the ith entry of these gradients is persistent, having the same sign from
iteration to iteration, we want to keep the time step as is. Conversely, we want the time step to decrease
when the gradients at the entry changes sign often, indicating the onset of chatter. We accomplish these goals
by shrinking the ith entry of the time step accordingly, thus assigning a di�erent time step for each entry as

·k[i] = tk

|
kq

j=1
sign([A€

j (Ajxj ≠ bj)]i)|

k
. (7)

We normalize this expression by the current number of iterations k so that the weights shrink each entry
towards zero—i.e, the element-wise multiplication factor is guaranteed to be between zero and one.

With these weighted increments, our modified Linearized Bregman (MLB) algorithm takes the form:

zk+1 = zk ≠ ·k § A
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1),
(mLB⁄)

8

LB

MLB

⁄ is used for both LB and MLB. MLBT avoids choosing a smaller step size prematurely for small entries, so
that the behavior of entries below threshold in MLBT is the same as LB.

(a)

(b)

Figure 9: (a) Evolution of the entries of zk, using LB for the small scale problem and Ak is 250 ◊ 1000 .
With blue we plot the entries that correspond to zero valued entries of the exact solution and with red we
plot the non-zero entries. (b) Comparison of evolution of an entry of z

i
k for which the corresponding entry

of x
i
exact is small small or vanishing? in comparison to the maximum of x

i
exact, using methods LB (blue),

MLB (green), and MLBT (red). The same threshold value ⁄ = 3 is used for all methods.

Figures 10a and 10b show the evolution of small and large entries of zk for MLB and MLBT, respectively,
similar to that shown in figure #Multi1_1. By definition, MLB and MLBT di�er in only the smaller entries
of zk. These entries correspond to the small entries of the exact solution, which tend to remain below the
threshold longer in MLB even for large k. In figure 10b we can see that after 2 data passes, only a small
number of small entries are still below the threshold value for MLBT, while in figure 10a a smaller threshold
is necessary to get comparable results for MLB. In all cases, entries that are not in the support—i.e., the
zero entries of the exact solution, may occasionally cross the threshold and enter into the solution. This
obviously occurs more frequently with smaller ⁄, and can lead to overfitting of the noise as discussed in the
next section. Typically for LB one would choose a larger ⁄ if the noise level is not known, at least for the
earlier iterations, to facilitate the rapid selection of large values by LB and to avoid overfitting of the noise.

13

Same threshold of
LB and MLB

Recall variable time
step: entry dependent

Figure 4: Here we solve the small scale problem with the LB method, using 1 for blue, red, and yellow and
we track the value of the time-step. In blue we have the constant time step tk = 1

ÎAkÎ2
2
. In red we have the

dynamic time-step tk = ÎAkxk≠bkÎ2
2

ÎA€
k

(Akxk≠bk)Î2
2

when trying to solve the inconsistent problem. In yellow we have the
dynamic time-step when trying to solve the consistent problem with #LB1. With purple and green we track
the weighted increments in mLB⁄ for the same entries as in Figure 3 (purple is the largest and green is a
small entry)).

Because large time steps in the earlier iterations typically lead to preferred faster convergence, we would
like to devise an adaptive scheme that allows the solution to make rapid progress in the beginning, followed by
a period of increased caution when the chatter sets in. As in stochastic gradient descent [Nedic and Bertsekas,
2001], such a scheme would reduce the time steps when the stochastic fluctuations start to dominate. Because
the chatter di�ers from entry to entry (see Figure 5 w/ wiggle trace, showing the amplitude versus time as an
oscillating line), we select the time steps for each entry depending on its history, specifically, the amount of
chatter for that entry. To e�ectively counter the chatter, the scheme must adaptively reduce the chatter more
aggressively for those entries with strong chatter. We can accomplish this by keeping track of the signs of the
previous gradients. If the signs of the ith entry of these gradients is persistent, having the same sign from
iteration to iteration, we want to keep the time step as is. Conversely, we want the time step to decrease
when the gradients at the entry changes sign often, indicating the onset of chatter. We accomplish these goals
by shrinking the ith entry of the time step accordingly, thus assigning a di�erent time step for each entry as

·k[i] = tk

|
kq

j=1
sign([A€

j (Ajxj ≠ bj)]i)|

k
. (7)

We normalize this expression by the current number of iterations k so that the weights shrink each entry
towards zero—i.e, the element-wise multiplication factor is guaranteed to be between zero and one.

With these weighted increments, our modified Linearized Bregman (MLB) algorithm takes the form:

zk+1 = zk ≠ ·k § A
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1),
(mLB⁄)

8

Small time step for smaller entries:
slower convergence = long transients
for certain entries

Slow convergence of small entries
Is this a problem for sparse solutions?

In real life, solutions are compressible: entries in solution
decrease in magnitude with some exponent

Implications:
separating solution from noise is tricky when resolving
small entries

discretized linearized Born modelling operator for the i
th source experiment; the vector m0 is the background

model for the compressional wavespeed; the qi and bi are the source wavelet and observed data for the i
th

shot; and C
ú is the conjugate transpose of the Curvelet transform. Solving problem SPLS‡ is challenging for

the following reasons: (i) the system is inconsistent because the derivation of the Jacobians Ji(m0) is based on
a linearization with respect to the background model (m0) and this means that the system is inconsistent; (ii)

evaluations of actions with Ji and J
€
i are expensive because they involve at least two wave-equation (PDE)

solves for each source; (iii) there are many source experiments—i.e., ns is large making iterative solutions
that involve all source ns experiments unfeasible; (iv) the system of equations in SPLS‡ is ill conditioned due
to physical constraints on the acquisition geometry and the frequency content of the sources; and (v) earth
images are not strictly sparse but compressible and the challenge is to capture as many as possible small
curvelet coe�cients as possible.

To provide a concrete example of the challenges that arise in this context, we plot imaging results for
iterations k = 21 · · · 23 in figure 2 . Even though the LB iterations produce a reasonable image after making
approximately two passes through the data (i.e., we touched 10% of the shots 20 times), we observe a cyclic
behavior where the solutions are hopping between two di�erent solutions. This type of behavior is consistent
with chatter and leads to undesired stalling. Unfortunately, this stalling can lead to serious deterioration of
the resulting image because we are typically only allowed to make a limited number of passes through the
data.

Remark. While chatter is a problem that needs to be addressed, working with sub-problems Ak has
advantages when the condition number of the sub-matrix Ak is better than the condition number of the full
matrix A and when fast matrix multiplies are available for each block of rows [Needell and Tropp, 2014]. The
latter is certainly the case for Problem SPLS‡ and there are also indications that the conditioning of the
sub-problems is better. This means we are in the right regime.

(a) Iteration 21 (b) Iteration 22 (c) Iteration 23

Figure 2: The resulting migration image for three consecutive iterations

Before we study the behavior of tall inconsistent problems of a realistic size and complexity, we first
consider the dynamics of small scale problems in order to expose the source of the chatter. We do this by
looking at the relative model error as a function of k for strictly sparse problems. This relative error measures
how close xk is to the exact solution xsol and is defined as

Me(xk) = Îxsol ≠ xkÎ2
ÎxsolÎ2

. (4)

Unfortunately, the model error requires prior knowledge on the exact solution xsol. For this reason, we also
consider the normalized residual. This normalized residual is given by

R(xk) = ÎAxk ≠ bÎ2
ÎbÎ2

. (5)

Regrettably, it is computationally infeasible to calculate this normalized residual for large matrices A

that encode imaging problems with PDEs so we compute the normalized residuals for each sub-problem
instead—i.e., we compute

Rk(xk) = ÎAkxk ≠ bkÎ2
ÎbkÎ2

. (6)

4

Slow convergence of small entries
Typically small entries below threshold - move
slowly to threshold for MLB, due to chatter
removal variable time step

MLB+T: Include threshold detection: use entry-
specific time step from MLB only after entry
crosses threshold

⁄ is used for both LB and MLB. MLBT avoids choosing a smaller step size prematurely for small entries, so
that the behavior of entries below threshold in MLBT is the same as LB.

(a)

(b)

Figure 9: (a) Evolution of the entries of zk, using LB for the small scale problem and Ak is 250 ◊ 1000 .
With blue we plot the entries that correspond to zero valued entries of the exact solution and with red we
plot the non-zero entries. (b) Comparison of evolution of an entry of z

i
k for which the corresponding entry

of x
i
exact is small small or vanishing? in comparison to the maximum of x

i
exact, using methods LB (blue),

MLB (green), and MLBT (red). The same threshold value ⁄ = 3 is used for all methods.

Figures 10a and 10b show the evolution of small and large entries of zk for MLB and MLBT, respectively,
similar to that shown in figure #Multi1_1. By definition, MLB and MLBT di�er in only the smaller entries
of zk. These entries correspond to the small entries of the exact solution, which tend to remain below the
threshold longer in MLB even for large k. In figure 10b we can see that after 2 data passes, only a small
number of small entries are still below the threshold value for MLBT, while in figure 10a a smaller threshold
is necessary to get comparable results for MLB. In all cases, entries that are not in the support—i.e., the
zero entries of the exact solution, may occasionally cross the threshold and enter into the solution. This
obviously occurs more frequently with smaller ⁄, and can lead to overfitting of the noise as discussed in the
next section. Typically for LB one would choose a larger ⁄ if the noise level is not known, at least for the
earlier iterations, to facilitate the rapid selection of large values by LB and to avoid overfitting of the noise.

13

Figure 4: Here we solve the small scale problem with the LB method, using 1 for blue, red, and yellow and
we track the value of the time-step. In blue we have the constant time step tk = 1

ÎAkÎ2
2
. In red we have the

dynamic time-step tk = ÎAkxk≠bkÎ2
2

ÎA€
k

(Akxk≠bk)Î2
2

when trying to solve the inconsistent problem. In yellow we have the
dynamic time-step when trying to solve the consistent problem with #LB1. With purple and green we track
the weighted increments in mLB⁄ for the same entries as in Figure 3 (purple is the largest and green is a
small entry)).

Because large time steps in the earlier iterations typically lead to preferred faster convergence, we would
like to devise an adaptive scheme that allows the solution to make rapid progress in the beginning, followed by
a period of increased caution when the chatter sets in. As in stochastic gradient descent [Nedic and Bertsekas,
2001], such a scheme would reduce the time steps when the stochastic fluctuations start to dominate. Because
the chatter di�ers from entry to entry (see Figure 5 w/ wiggle trace, showing the amplitude versus time as an
oscillating line), we select the time steps for each entry depending on its history, specifically, the amount of
chatter for that entry. To e�ectively counter the chatter, the scheme must adaptively reduce the chatter more
aggressively for those entries with strong chatter. We can accomplish this by keeping track of the signs of the
previous gradients. If the signs of the ith entry of these gradients is persistent, having the same sign from
iteration to iteration, we want to keep the time step as is. Conversely, we want the time step to decrease
when the gradients at the entry changes sign often, indicating the onset of chatter. We accomplish these goals
by shrinking the ith entry of the time step accordingly, thus assigning a di�erent time step for each entry as

·k[i] = tk

|
kq

j=1
sign([A€

j (Ajxj ≠ bj)]i)|

k
. (7)

We normalize this expression by the current number of iterations k so that the weights shrink each entry
towards zero—i.e, the element-wise multiplication factor is guaranteed to be between zero and one.

With these weighted increments, our modified Linearized Bregman (MLB) algorithm takes the form:

zk+1 = zk ≠ ·k § A
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1),
(mLB⁄)

8

MLB+T = LB for entries not yet crossing the threshold

Slow convergence of small entries
Implications: separating small entries from noise
Danger of over-fitting the noise:

over-fitting the data. There the value of ⁄ is smaller than the value used in figures 11b and 11c for these
methods, thus illustrating the danger of overfitting for smaller ⁄ mentioned above.

Given normalized norm of ‡ in the figure captions - otherwise does not have much meaning
Use symbol for model error in figure labels

(a) Compressible solution with slow decay rate, ||‡||2 =
790.5709

(b) Compressible solution with slow decay rate, ||‡||2 =
790.5709

(c) Compressible solution with slow decay rate, ||‡||2 =
790.5709, using an ill-conditioned matrix A

Figure 11: Compressible case: The model error for LB with the dynamic time-step (in blue), the MLB with
the weighted increment of equation 7 (in green) and the MLBT weighted increment of equation 8 (in red).

Figure 11c shows results when the matrix A is ill-conditioned. There the chatter drives significantly higher
model error for LB in comparison to MLB and MLBT, both of which reduce the chatter and su�er only from
error related to the magnitude of ‡.

While the ¸2-norm relative model error MË (eq. 4) is a reliable quantity to measure the performance of
MLB(T) vs. LB, it requires the oracle of knowing the true solution, which is not available in practice. The
quantity most often used in practice to compare di�erent iterative methods is the residual R (eq 5), rather

15

Small entries are not
rejected after crossing the
threshold

discretized linearized Born modelling operator for the i
th source experiment; the vector m0 is the background

model for the compressional wavespeed; the qi and bi are the source wavelet and observed data for the i
th

shot; and C
ú is the conjugate transpose of the Curvelet transform. Solving problem SPLS‡ is challenging for

the following reasons: (i) the system is inconsistent because the derivation of the Jacobians Ji(m0) is based on
a linearization with respect to the background model (m0) and this means that the system is inconsistent; (ii)

evaluations of actions with Ji and J
€
i are expensive because they involve at least two wave-equation (PDE)

solves for each source; (iii) there are many source experiments—i.e., ns is large making iterative solutions
that involve all source ns experiments unfeasible; (iv) the system of equations in SPLS‡ is ill conditioned due
to physical constraints on the acquisition geometry and the frequency content of the sources; and (v) earth
images are not strictly sparse but compressible and the challenge is to capture as many as possible small
curvelet coe�cients as possible.

To provide a concrete example of the challenges that arise in this context, we plot imaging results for
iterations k = 21 · · · 23 in figure 2 . Even though the LB iterations produce a reasonable image after making
approximately two passes through the data (i.e., we touched 10% of the shots 20 times), we observe a cyclic
behavior where the solutions are hopping between two di�erent solutions. This type of behavior is consistent
with chatter and leads to undesired stalling. Unfortunately, this stalling can lead to serious deterioration of
the resulting image because we are typically only allowed to make a limited number of passes through the
data.

Remark. While chatter is a problem that needs to be addressed, working with sub-problems Ak has
advantages when the condition number of the sub-matrix Ak is better than the condition number of the full
matrix A and when fast matrix multiplies are available for each block of rows [Needell and Tropp, 2014]. The
latter is certainly the case for Problem SPLS‡ and there are also indications that the conditioning of the
sub-problems is better. This means we are in the right regime.

(a) Iteration 21 (b) Iteration 22 (c) Iteration 23

Figure 2: The resulting migration image for three consecutive iterations

Before we study the behavior of tall inconsistent problems of a realistic size and complexity, we first
consider the dynamics of small scale problems in order to expose the source of the chatter. We do this by
looking at the relative model error as a function of k for strictly sparse problems. This relative error measures
how close xk is to the exact solution xsol and is defined as

Me(xk) = Îxsol ≠ xkÎ2
ÎxsolÎ2

. (4)

Unfortunately, the model error requires prior knowledge on the exact solution xsol. For this reason, we also
consider the normalized residual. This normalized residual is given by

R(xk) = ÎAxk ≠ bÎ2
ÎbÎ2

. (5)

Regrettably, it is computationally infeasible to calculate this normalized residual for large matrices A

that encode imaging problems with PDEs so we compute the normalized residuals for each sub-problem
instead—i.e., we compute

Rk(xk) = ÎAkxk ≠ bkÎ2
ÎbkÎ2

. (6)

4

Several transient phases in LB
method:

1. Honing in on large entries
2. Iterate to include small entries
3. When to stop to avoid over-fitting of noise?

over-fitting the data. There the value of ⁄ is smaller than the value used in figures 11b and 11c for these
methods, thus illustrating the danger of overfitting for smaller ⁄ mentioned above.

Given normalized norm of ‡ in the figure captions - otherwise does not have much meaning
Use symbol for model error in figure labels

(a) Compressible solution with slow decay rate, ||‡||2 =
790.5709

(b) Compressible solution with slow decay rate, ||‡||2 =
790.5709

(c) Compressible solution with slow decay rate, ||‡||2 =
790.5709, using an ill-conditioned matrix A

Figure 11: Compressible case: The model error for LB with the dynamic time-step (in blue), the MLB with
the weighted increment of equation 7 (in green) and the MLBT weighted increment of equation 8 (in red).

Figure 11c shows results when the matrix A is ill-conditioned. There the chatter drives significantly higher
model error for LB in comparison to MLB and MLBT, both of which reduce the chatter and su�er only from
error related to the magnitude of ‡.

While the ¸2-norm relative model error MË (eq. 4) is a reliable quantity to measure the performance of
MLB(T) vs. LB, it requires the oracle of knowing the true solution, which is not available in practice. The
quantity most often used in practice to compare di�erent iterative methods is the residual R (eq 5), rather

15

over-fitting the data. There the value of ⁄ is smaller than the value used in figures 11b and 11c for these
methods, thus illustrating the danger of overfitting for smaller ⁄ mentioned above.

Given normalized norm of ‡ in the figure captions - otherwise does not have much meaning
Use symbol for model error in figure labels

(a) Compressible solution with slow decay rate, ||‡||2 =
790.5709

(b) Compressible solution with slow decay rate, ||‡||2 =
790.5709

(c) Compressible solution with slow decay rate, ||‡||2 =
790.5709, using an ill-conditioned matrix A

Figure 11: Compressible case: The model error for LB with the dynamic time-step (in blue), the MLB with
the weighted increment of equation 7 (in green) and the MLBT weighted increment of equation 8 (in red).

Figure 11c shows results when the matrix A is ill-conditioned. There the chatter drives significantly higher
model error for LB in comparison to MLB and MLBT, both of which reduce the chatter and su�er only from
error related to the magnitude of ‡.

While the ¸2-norm relative model error MË (eq. 4) is a reliable quantity to measure the performance of
MLB(T) vs. LB, it requires the oracle of knowing the true solution, which is not available in practice. The
quantity most often used in practice to compare di�erent iterative methods is the residual R (eq 5), rather

15

Estimate for , using dynamics of LB

1. Honing in on large entries
2. Iterate to include small entries - approaching size of noise

3. When to stop to avoid over-fitting of noise?

λ

the noise for the number of data passes shown.
In Figures 11b, 11c, and 12 we have used the choice of ⁄ (A_1 in formula?)

⁄ = Nd max
iœS

(|tk[AT
1 ‡]i|), (9)

where Nd is the number of desired data passes, and S = {i : |zi
k| < ‡}, with k chosen after the first few

iterations (e.g. k ¥ 10), during which some of the largest contributions are approximated by the method.
Intuitively this choice of ⁄ is chosen so that the LB-type method allows small entries into the approximation
without over-fitting the noise over Nd data passes.
Note that the values used in previous figures based on 9, correspond to the optimal values of ⁄ shown in
Figure #Lambda1.

Based on 9, the MLB method (eq. 7) benefits from a smaller threshold parameter ⁄ than the LB method,
as shown by the smaller error for MLB in Figure 13 for smaller ⁄. This follows from the smaller tk is MLB,
as observed from 4, also contributing to smaller entries reaching the threshold slowly as observed in Figure
#Multi1_2. The MLBT method (eq. 8) (Figure 13 in red) has smaller model error than LB regardless of the
choice for ⁄ since it benefits from the elimination of the chattering behaviour, without a reduction of tk for
smaller entries (Figure 10b)

(a) Sparse vector recovery, 3 data passes, give normalized
residualÎAx ≠ bÎ2 = 44.9598

(b) Compressible vector recovery, 3 data passes, give nor-
malized residuals ÎAx ≠ bÎ2 = 44.6205

Figure 13: The model error vs the threshold parameter ⁄ . In blue we see results using the original LB
method, in green are results for MLB (7) and in red are results for MLBT (8).

This method 9 of choosing the parameter ⁄ relies on a prior knowledge of the noise level, which is usually
not available in applications. Often the threshold parameter is chosen using some naive estimations that
do not involve the noise level or the number of data passes. These preliminary results using 9 suggest that
in the inconsistent setting, there can be value in approximating the noise level and identifying the desired
number of data passes in order to accelerate convergence without overfitting the noise. Further details and
improvements of the estimation of the parameter ⁄ will be covered in future work.

Part V

6. Implications for large scale problems

So far, we discussed chatter in small overdetermined but inconsistent toy problems. While this idealized
setting has been widely studied, real life problems such as the motivating problem SPLS‡ are not strictly
sparse but rather compressible. In that case, we hope to recover as many small entries in the tail of the
solution as possible, given a fixed but limited number of iterations based on subsampling. Figures 14a,14b

17

λ = Nd max
i∈𝒮

(| tk[AT
k ε]i |) Nd = number of data passes

Computing transients

Daskalakis,K, Herrmann 2019

\

Limitations for approximating :λ
Typically level of noise not known - estimates used in LB +
projection
Model error not known - instead residual used

and 14c show pronounced chattering behaviour for the LB, and it is not possible to resolve the smaller entries.
In Figures 14d,14e and 15a the chattering behaviour has been eliminated with MLB.

(a) Iteration 21 (b) Iteration 22 (c) Iteration 23

(d) Iteration 21, with the proposed
modification

(e) Iteration 22, with the proposed
modification

(f) Iteration 23, with the proposed
modification

Figure 14: The resulting migration image for three consecutive iterations. In Figure 2 we saw the results
using the LB method and on this Figure we have the results using the MLB with the weighted increment of
equation (7), for which the chattering behaviour of #Curvelet_sparsity is eliminated.

Figure 15 compares the resulting migration image at iteration 81 (equivalent to 8 data passes) for the LB
method (eq. 2) and the MLB (7). The di�erence is indeed quite visible, and qualitatively the image using
with the LB method (eq. 2) appears washed out, without the details obtained using the MLB. The lack of
resolution for LB is a manifestation of the stagnated model error, induced by the chattering behaviour. Since
MLB eliminates the chattering behaviour, more of the details are resolved, resulting in a reduced model error.
What about MLBT? What happens then? Is there any advantage to using it?

References

Jian-Feng Cai, Stanley Osher, and Zuowei Shen. Convergence of the linearized bregman iteration for l1-norm
minimization. Mathematics of Computation, 78(268):2127–2136, 2009.

Emmanuel Candes and Justin Romberg. Sparsity and incoherence in compressive sampling. Inverse problems,
23(3):969, 2007.

Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on information theory,
52(2):489–509, 2006.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via acceler-
ated gradient methods. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems 24, pages 1647–1655. Curran Associates, Inc., 2011.
URL http://papers.nips.cc/paper/4432-better-mini-batch-algorithms-via-accelerated-gradient-methods.
pdf.

18

Large scale problem:

MLBT - similar results for reduction in data passes: 15-20%

LB

MLB

Sources of non-smooth and stochastic dynamics

Thresholds - connection to sparsity

Non-convexity - use of methods such as stochastic
gradient descent

Projections: use of error bounds to reduce search space
Representations: e.g. ReLU commonly used in ML

Draft
Emmanouil Daskalakis

1*
, Rachel Kuske

2
and Felix J. Herrmann

1
1
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

2
School of Math, Georgia Institute of Technology

Part I

1. Introduction

In compressive sensing, a hot field in applied mathematics for the last fifteen years, the key assumption
is that the unknown solution vector x œ Rn, is sparse (most of its entries are zero). Given a data vector
b œ Rm and a sensing matrix A œ Rm◊n with (m π n) such that Ax = b, recovering x is non-trivial because
it is a underdetermined problem. However, this problem can be solved using the assumed sparsity, under
certain conditions on the matrix A, via a ¸1≠norm minimization procedure [Donoho, 2006, Candes and
Romberg [2007], Candès et al. [2006]]. While there are many options for solving an ¸1≠ norm minimization
problems, we focus on a modification of the linearized Bregman iterations given below (cf. equation 1), a
method well-suited for ¸1≠norm optimization problems with convergence guarantees [Cai et al., 2009].

The linearized Bregman (LB) method [Yin et al., 2008] follows a simple iterative scheme involving

zk+1 = zk ≠ tkA
€(Axk ≠ b)

xk+1 = S⁄(zk+1), (1)

where S⁄(zk) = max(|zk| ≠ ⁄, 0) sign(zk) is a thresholding or shrinkage nonlinearity and tk is the steplength
or time step. These iterations converge in the limit ⁄ ø Œ to the solution of the well known Basis Pursuit
(BP) problem—i.e.,

min
x

ÎxÎ1 subject to Ax = b . (BP)

While convergence of LB for consistent (noise-free) ¸1≠norm minimization problems has been established
[Cai et al., 2009], we are interested in large inconsistent and overdetermined problems for which exact recovery
is not possible. Since our problems are large and overdetermined, we study the behavior of iterations that
involve (random) subsets of data—i.e., we follow Yang et al. [2016] and write

zk+1 = zk ≠ tkA
€
k (Akxk ≠ bk)

xk+1 = S⁄(zk+1), (2)

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from A and the corresponding
data points bk extracted from b. As a result, we solve a sequence of sub-problems involving sub-matrices
Ak = Ar(k) that consist of randomly subsampled rows r(k) taken from the tall matrix A (see Figure 1) and
redrawn with replacement during each kth iteration. We follow Lorenz et al. [2014b] and use “dynamic time
steps” tk’s given by

tk = ÎAkxk ≠ bkÎ2
2

ÎA€
k (Akxk ≠ bk)Î2

2
. (3)

For consistent systems, the above iterations with dynamic time steps tk converge to the following strongly
convex optimization problem:

min
x

⁄ÎxÎ1 + 1
2ÎxÎ2

2 subject to Ax = b . (EL⁄)

1

Network perspectives: ML

 (recursive) Layers, CNN’s

Online/Streaming Applications:

DS perspectives:
Landscape perspectives: interacting particle
systems. (e.g. Rotskoff, et al 2018; Mei, 2019)

Lagrangian formulation for accelerated methods

Direction dependent time step

Modified equations: cts approximations of discrete
algorithm + correction - connections to multiple
scale dynamics

Potential for noise sustained oscillations:
accelerated methods, without thresholds

Wibisono, et al 2016

Yezzi, et al 2018

DS perspectives:
Potential for noise sustained oscillations (without thresholds)

50 100 150 200 250 300 350 400 450

0

0.1

0.2

50 100 150 200 250 300 350 400 450

0

0.1

0.2

0.3

50 100 150 200 250 300 350 400 450

0

0.1

0.2

50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

50 100 150 200 250 300 350 400 450

0

0.2

0.4

0.6

50 100 150 200 250 300 350 400
-0.2

0

0.2

0.4

0.6

xk+1 = xk + β1(xk − xk−1) − tk ∇f(xn + β2(xk − xk−1))
Accelerated (higher order) methods: e.g. Nesterov, Heavy ball, etc

Inconsistent:

Larger βj

Reduced
noise

coherence
resonance-
type result

ev
ol

ut
io

n
of

 m
od

el
 e

rr
or

