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Sparse Approximation

Find u from
Au = b (Noiseless), or ||Au— b||3 < e (Noisy),
where A € R™*"(m < n) and u is sparse.
e /p-minimization (ideal)
minimize lullo, subject to Au="b

minimize ||ul|o, subject to [Au—b||3 < e
ucR"

e /1-minimization (convex relaxation)
minimize ||ul|1, subject to Au=Db
ucR”
minimize ||u||;, subject to |[Au—Db||2 <e
ucR™

min ufl1 + af|Au—b|3
ucR”



Nonconvex Regularizations

e Separable
o £y norm (0 < p < 1) [lull? (r(us) = Jual?)
e smoothly clipped absolute deviation (Fan-Li, 2001):

a|u;il if [ug| < aq,
aqlugl2—2aq1ag|u;|+ad .
rscap(ui) = - 2(021,121) 1 if a1 < |ug| < ao,
% if |’U,L‘ > as.

e minimax concave penalty (Zhang, 2010)
o generalized shrinkage (Chartrand, 2013): no explicit objective function

o Non-separable
e (1 — {3, (Yin-Lou-He-Xin, 2015)
£y

o 4
£l

e K-support

o jterative support detection (Wang-Yin, 2010)

e partial regularization (Lu-Li, 2015)



Algorithms for Nonconvex Problems

Forward-backward: iterative thresholding
ADMM for nonconvex problems
Linearization: One convex problem + one linearization step

Alternating Minimization: One convex problem + one simple problem



Purpose

e A generalization of several convex and nonconvex regularizations including ¢1,
K-support, iterative support detection.

e Two algorithms for solving the nonconvex problems: iteratively reweighted ¢
minimization, iterative sorted thresholding

e Showing that stationary points are local minimizers.



Nonconvex Sorted ¢; Minimization

Rx(u) = Alufpy) + Aefulig) + - + Anfu]fn)s (1)

where |u|1] > [u[g] > -+ > |u][,) are the absolute values ranked in decreasing order
and 0 < A < A < --- < g
e If A\ =Xo=-.-= X\, =1, itis the £; norm of u.

e If \i =---=Ag =0and Ag41 =+ = A = 00 for some K satisfying
0 < K < n, it is the indicator function for {u : ||uljo < K}.

e If \i =---=Ag =0and Ag41 =+ = A =1 for some K satisfying
0 < K < n, it corresponds to the iterative support detection in (Wang-Yin,
2010).

e lf i =---=Ag =wiand Ag41 == Ay = w2 for 0 < w1 <wz < oo, itis
the two-level £; “norm” in (Huang et al., 2015).

o If \; = w1 + wa(i — 1), where w1 > 0 and wa > 0, it is the small magnitude
penalized (SMAP) in (Zeng-Figueiredo, 2014).



Nonconvex Relaxation

N\
<
N (]

0 E 0

(a) ()

3 o 5 s o 5

(c) (d)

Figure: The contour maps of several penalties: (a) the 1 norm; (b) the SCAD penalty with
a1 = 1.1,a2 = 3.7; (c) the £,-norm with p = 2/3; (d) the nonconvex sorted £; with A; = 1/3
and Ay = 1.



Properties of Nonconvex Sorted /; Norm

n

Fi(wP) = 3" (PA)ifuil,

=1
Fa(u,v) = Atfulli + (A2 = A)[[u = v {1 + Az = A2)[[lu — v = v?|

n—1

ot n = Anc)lu= D" v,
j=1

Fs(u,A) = Mulli + (2 = A u Al + (s — A2)lu® A © A2,
ot Q=AU A OAZ O O ATy,

Theorem
Let P be the set of all permutation matrices.

Ry(u) = IIDHEI% Fi(u,P) = min Fr(u,v)

- min
{(vi}IZ i lvillo<1

min F3(u, A)
{AJ}” bATe{0,1},; Al >n—1

= min ) F3(u, A).
(A9} AT €[0,1], 0, Al >n—1



Two Lemmas for Convergence

minimize E(u):= Ryx(u)+ L(u), (2)
L(u) = t{y;Au=b} (1) (L(u) = af|Au — b||3) for the noiseles (noisy) case.
minimize Fi(u,P):= Fi(u,P)+ L(u),
u,

minirlx\ﬁze E3(u,A) := F3(u,A)+ L(u),
u,

Lemma

If u* is a local minimizer of E(u), then for any P* minimizing F(u*,P), (u*, A*)
with A* being constructed from P* is a local minimizer of E3(u, A).

Lemma

Given fixed u*, if for all P € P minimizing E1(u*,P), we also have u* minimizing
E1(u,P), then u* is a local minimizer of E(u).



Iteratively Reweighted /; Minimization

Algorithm 1 Iteratively Reweighted ¢1 Minimization

Initialize \, u®
for i =0,1,--- do
Update P! = argmin F (u!, P) with an optimal P such that P! is different from
P

{PO, P',... [ P!=1}, If there is no optimal P satisfying this condition, break.
Update u‘t! = arg min E1 (u, PY).
u
end for
Theorem

Algorithm 1 will converge in finite steps, and the output u* is a local minimizer of
E(u). In addition, (u*, A*) is a local minimizer of E3(u, A).



Iterative Sorted Thresholding

Algorithm 2 lIteratively Sorted Thresholding

Initialize u®

for {=0,1,--- do
Find u'*! = argmin,, SRy (u) + %Hu — (u! = BVL(uY)|.
end for

Lemma
The proximal operator of Ry can be evaluated as
prox, (x) = max(jx| — PA, 0) © sign(x),
for any P € P such that Ry(x) = Y 1, (P\);z;. Here max and sign are both

component-wise.

e The proximal operator can be multi-valued: A = (0,1) and x = (1, 1), then both
(1,0) and (0,1) are optimal.

e The proximal operator is expansive: A = (0.5,1), x1 = (2,1) and x2 = (1, 2),
then proxp, (x1) = (1.5,0) and proxp, (x2) = (0,1.5).



Iteratively Sorted Thresholding (cont’d)

Lemma

If there exists u* such that
u® € proxgg, (u* — BVL(u")),
then u* is a local minimizer of E(u).

* [[VL(u) = VL(v)|| < Lrlja—v]|

Theorem

If B < 1/Ly, the iterative sorted thresholding converges to a local optimum of (2).



Numerical Experiments
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(a) ISD; (b) 2level; (c) mlevel; (d) IRLL.



Numerical Experiments (cont’d)

percentage

15 20 25 30 35 . 40 45 50 55 60 015 20 25 30 35 . 40 45 50 55
sparsity s sparsity s
(a) (b)

ISD (red dashed line), 2level (blue dot-dashed line), mlevel (green dotted line), and
IRL1 (black solid line):



Conclusion

e nonconvex sorted ¢ generalizes many regularizations
e two algorithms for solving sparse recovery problem with nonconvex sorted ¢;

e other algorithms are also available, e.g., ADMM.
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