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Sparse Approximation

Find u from

Au = b (Noiseless), or ‖Au− b‖22 ≤ ε (Noisy),

where A ∈ Rm×n(m� n) and u is sparse.

• `0-minimization (ideal)

minimize
u∈Rn

‖u‖0, subject to Au = b

minimize
u∈Rn

‖u‖0, subject to ‖Au− b‖22 ≤ ε

• `1-minimization (convex relaxation)

minimize
u∈Rn

‖u‖1, subject to Au = b

minimize
u∈Rn

‖u‖1, subject to ‖Au− b‖22 ≤ ε

min
u∈Rn

‖u‖1 + α‖Au− b‖22



Nonconvex Regularizations

• Separable

• `p norm (0 ≤ p < 1): ‖u‖pp (r(ui) = |ui|p)
• smoothly clipped absolute deviation (Fan-Li, 2001):

rSCAD(ui) =


a1|ui| if |ui| < a1,

− a1|ui|
2−2a1a2|ui|+a

3
1

2(a2−a1)
if a1 ≤ |ui| ≤ a2,

a1a2+a21
2 if |ui| > a2.

• minimax concave penalty (Zhang, 2010)

• generalized shrinkage (Chartrand, 2013): no explicit objective function

• Non-separable

• `1 − `2, (Yin-Lou-He-Xin, 2015)

• `1
`2

• K-support

• iterative support detection (Wang-Yin, 2010)

• partial regularization (Lu-Li, 2015)



Algorithms for Nonconvex Problems

• Forward-backward: iterative thresholding

• ADMM for nonconvex problems

• Linearization: One convex problem + one linearization step

• Alternating Minimization: One convex problem + one simple problem



Purpose

• A generalization of several convex and nonconvex regularizations including `1,

K-support, iterative support detection.

• Two algorithms for solving the nonconvex problems: iteratively reweighted `1

minimization, iterative sorted thresholding

• Showing that stationary points are local minimizers.



Nonconvex Sorted `1 Minimization

Rλ(u) = λ1|u|[1] + λ2|u|[2] + · · ·+ λn|u|[n], (1)

where |u|[1] ≥ |u|[2] ≥ · · · ≥ |u|[n] are the absolute values ranked in decreasing order

and 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

• If λ1 = λ2 = · · · = λn = 1, it is the `1 norm of u.

• If λ1 = · · · = λK = 0 and λK+1 = · · · = λn = +∞ for some K satisfying

0 < K ≤ n, it is the indicator function for {u : ‖u‖0 ≤ K}.

• If λ1 = · · · = λK = 0 and λK+1 = · · · = λn = 1 for some K satisfying

0 < K < n, it corresponds to the iterative support detection in (Wang-Yin,

2010).

• If λ1 = · · · = λK = w1 and λK+1 = · · · = λn = w2 for 0 < w1 < w2 <∞, it is

the two-level `1 “norm” in (Huang et al., 2015).

• If λi = w1 + w2(i− 1), where w1 ≥ 0 and w2 > 0, it is the small magnitude

penalized (SMAP) in (Zeng-Figueiredo, 2014).
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where |u|[1] ≥ |u|[2] ≥ · · · ≥ |u|[n] are the absolute values ranked in decreas-
ing order. It is different from the sorted ℓ1 norm proposed by Bogdan et.al.
in [3], where λ is a nonincreasing sequence of nonnegative numbers, i.e., higher
weights are assigned on components with larger absolute values. The contour
map of the non-convex sorted ℓ1 is illustrated in Fig. 1, along with those of ℓ1
norm, SCAD, and ℓp “norm”.
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Fig. 1 The contour maps of several penalties: (a) the ℓ1 norm; (b) the SCAD penalty with
a1 = 1.1, a2 = 3.7; (c) the ℓp-norm with p = 2/3; (d) the nonconvex sorted ℓ1 with λ1 = 1/3
and λ2 = 1.

First, we establish the connections of this nonconvex sorted ℓ1 minimization
to existing works.

– If λ1 = λ2 = · · · = λn = 1, it is the ℓ1 norm of u.
– If λ1 = · · · = λK = 0 and λK+1 = · · · = λn = +∞ for some K satisfying

0 < K ≤ n, it is the indicator function for {u : ‖u‖0 ≤ K}.
– If λ1 = · · · = λK = 0 and λK+1 = · · · = λn = 1 for some K satisfying

0 < K < n, it corresponds to the iterative support detection in [35]. In [35],
K can be changed adaptively during the iterations.

– If λ1 = · · · = λK = w1 and λK+1 = · · · = λn = w2 for 0 < w1 < w2 < ∞,
it is the two-level ℓ1 “norm” in [25].

– If λi = w1+w2(i−1), where w1 ≥ 0 and w2 > 0, it is the small magnitude
penalized (SMAP) in [40].

Figure: The contour maps of several penalties: (a) the `1 norm; (b) the SCAD penalty with

a1 = 1.1, a2 = 3.7; (c) the `p-norm with p = 2/3; (d) the nonconvex sorted `1 with λ1 = 1/3

and λ2 = 1.



Properties of Nonconvex Sorted `1 Norm

F1(u,P) =
n∑
i=1

(Pλ)i|ui|,

F2(u,v) = λ1‖u‖1 + (λ2 − λ1)‖u− v1‖1 + (λ3 − λ2)‖u− v1 − v2‖1

+ · · ·+ (λn − λn−1)‖u−
n−1∑
j=1

vj‖1,

F3(u,Λ) = λ1‖u‖1 + (λ2 − λ1)‖u� Λ1‖1 + (λ3 − λ2)‖u� Λ1 � Λ2‖1
+ · · ·+ (λn − λn−1)‖u� Λ1 � Λ2 � · · · � Λn−1‖1.

Theorem

Let P be the set of all permutation matrices.

Rλ(u) = min
P∈P

F1(u,P) = min
{vj}n−1

j=1 :‖vj‖0≤1

F2(u,v)

= min
{Λj}n−1

j=1 :Λ
j
i∈{0,1},

∑
i Λ

j
i≥n−1

F3(u,Λ)

= min
{Λj}n−1

j=1 :Λ
j
i∈[0,1],

∑
i Λ

j
i≥n−1

F3(u,Λ).



Two Lemmas for Convergence

minimize
u

E(u) := Rλ(u) + L(u), (2)

L(u) = ι{u:Au=b}(u) (L(u) = α‖Au− b‖22) for the noiseles (noisy) case.

minimize
u,P

E1(u,P) := F1(u,P) + L(u),

minimize
u,Λ

E3(u,Λ) := F3(u,Λ) + L(u),

Lemma

If u∗ is a local minimizer of E(u), then for any P∗ minimizing F1(u∗,P), (u∗,Λ∗)

with Λ∗ being constructed from P∗ is a local minimizer of E3(u,Λ).

Lemma

Given fixed u∗, if for all P̄ ∈ P minimizing E1(u∗,P), we also have u∗ minimizing

E1(u, P̄), then u∗ is a local minimizer of E(u).



Iteratively Reweighted `1 Minimization

Algorithm 1 Iteratively Reweighted `1 Minimization

Initialize λ, u0

for l = 0, 1, · · · do
Update Pl = arg min

P
F1(ul,P) with an optimal P such that Pl is different from

{P0, P1, · · · ,Pl−1}. If there is no optimal P satisfying this condition, break.

Update ul+1 = arg min
u

E1(u,Pl).

end for

Theorem

Algorithm 1 will converge in finite steps, and the output u∗ is a local minimizer of

E(u). In addition, (u∗,Λ∗) is a local minimizer of E3(u,Λ).



Iterative Sorted Thresholding

Algorithm 2 Iteratively Sorted Thresholding

Initialize u0

for l = 0, 1, · · · do
Find ul+1 = arg minu βRλ(u) + 1

2
‖u− (ul − β∇L(ul))‖2.

end for

Lemma

The proximal operator of Rλ can be evaluated as

proxRλ (x) = max(|x| −Pλ,0)� sign(x),

for any P ∈ P such that Rλ(x) =
∑n
i=1(Pλ)ixi. Here max and sign are both

component-wise.

• The proximal operator can be multi-valued: λ = (0, 1) and x = (1, 1), then both

(1, 0) and (0, 1) are optimal.

• The proximal operator is expansive: λ = (0.5, 1), x1 = (2, 1) and x2 = (1, 2),

then proxRλ (x1) = (1.5, 0) and proxRλ (x2) = (0, 1.5).



Iteratively Sorted Thresholding (cont’d)

Lemma

If there exists u∗ such that

u∗ ∈ proxβRλ (u∗ − β∇L(u∗)),

then u∗ is a local minimizer of E(u).

• ‖∇L(u)−∇L(v)‖ ≤ LL‖u− v‖

Theorem

If β < 1/LL, the iterative sorted thresholding converges to a local optimum of (2).
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Fig. 2 Phase transition diagram for the considered algorithms: (a) ISD; (b) 2level; (c)
mlevel; (d) IRL1. The grey level stands for the successful recovery percentage: white means
100% recovery and black means 0% recovery, the 50% recovery is also displayed by the green
solid line. The red, blue, green and yellow lines show the 50% successful recovery by ISD,
2level, mlevel, and IRL1, respectively. In (d), the lines are shown together for comparison.

and IRL1. For a clear comparison, we in Fig.2(d) plot 50% successful recovery
lines for all these four methods.

We also repeat the experiment used in [7], where a recovery problem with
m = 100 and n = 256 is considered. u is a s-sparse signal and the recovery
performance of different s values is evaluated. In Fig.3(a) and Fig.3(b), the re-
covery percentage of different methods and the computational time are shown,
respectively. From both Fig.2 and Fig.3, one can find that compared with set-
ting weights by value, setting weights according to the sort can enhance the
sparse recovery performance.

Besides the above noise-free experiments, the algorithms are also tested on
real-life electrocardiography (ECG) data. The ECG data come from the Na-
tional Metrology Institute of Germany, which is online available in the Phys-
ioNet [24] [27]. This data set has 15 signal channels and each channel contains
38400 data points. Notice that ECG signal is not sparse in the time domain
and is sparse on the orthogonal Daubechies wavelets (db 10), of which the
matrix is denoted by Ψ. Then we start from the first 1024 data, denoted by u

(a) ISD; (b) 2level; (c) mlevel; (d) IRL1.



Numerical Experiments (cont’d)
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Fig. 3 Performance on signal recovery of ISD (red dashed line), 2level (blue dot-dashed
line), mlevel (green dotted line), and IRL1 (black solid line): (a) recovery percentage; (b)
average computational time.

and randomly generate one Gaussian matrix A ∈ Rm×n, where n = 1024 and
m varies from 64 to 1024. Since Ψu is sparse, we can apply the considered
algorithms to recover the signal from b = AΨu. We calculate the mean of
squared error between the recovered and the original signals, then we move to
the next 1024 data.

In this experiment, ISD, 2level, mlevel, and IRL1 are evaluated. For 2level
and mlevel, on the one hand, we can use Algorithm 1 and apply YALL1 to
solve the involved weighted ℓ1 minimization problems. On the other hand, we
can also use the iterative sorted thresholding, i.e., Algorithm 2, to solve the
unconstrained problems and evaluate their performance. Not like Algorithm 1,
Algorithm 2 does not calculate u0 and hence we set K heuristically as ⌊n/5⌋.

For m = 128, 256, 512 and different algorithms, the mean squared error
(MSE) and the corresponding mean computational time are reported in Ta-
bles 1 and 2, where the best ones in the view of MSE are underlined. From
the results, one can see that solving nonconvex sorted ℓ1 minimization by
Algorithm 1 provides accurate signals. When the signal length m increases,
the iterative sorted thresholding becomes attractive due to its computational
effectiveness, because only thresholding and matrix multiplication operations
are involved. Compared with weighting by value, weighting by sort shows bet-
ter performance on this experiment. Especially, when the compression ratio is
high, the advantage of mlevel and 2level is significant. In that case, it is worthy
designing a flexible and suitable weighting strategy. While, for the low com-
pression ratio situation, we suggest ISD or 2level/mlevel solved by Algorithm
2.

7 Conclusion

The nonconvex sorted ℓ1 minimization is proposed to enhance the sparse sig-
nal recovery. In this penalty, the set of the weights is fixed and the weights are

ISD (red dashed line), 2level (blue dot-dashed line), mlevel (green dotted line), and

IRL1 (black solid line):



Conclusion

• nonconvex sorted `1 generalizes many regularizations

• two algorithms for solving sparse recovery problem with nonconvex sorted `1

• other algorithms are also available, e.g., ADMM.
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