Matrix and vector extrapolation methods for linear discrete ill-posed problems

Hassane SADOK

L.M.P.A Université du Littoral - Calais

joint work with

A. Bouhamidi, K. Jbilou and L. Reichel

SIAM-LAA-2015

Table of contents

GMRES: linear system

The GMRES Methods for solving Linear System Properties Solving linear systems with vector extrapolation

Vector Extrapolation

polynomials vector extrapolation methods the RRE method nonlinear systems Application of RRE to TSVD

Matrix Extrapolation methods

definition

Consider the linear system of equations

$$Ax = b$$

where A is a complex nonsingular $m \times m$ matrix and b is a given complex vector.

For the GMRES method, the iterates {x_k} are defined by the following conditions

GMRES

$$x_k - x_0 \in \mathcal{K}_k(A, r_0),$$

 $(A^i r_0, r_k) = 0$ for $i = 1, ..., k,$

Krylov matrix and GMRES

Let us first define the Krylov matrix

$$K_k = [r_0, \ldots, A^{k-1} r_0]$$

So we have :

The residual norm of GMRES

1.
$$r_k^G = r_0 - W_k (W_k^H W_k)^{-1} W_k^H r_0 = r_0 - W_k (W_k)^{\dagger} r_0 = P_k^G r_0$$

Properties:

1.
$$(P_k^G)^2 = P_k^G$$

2.
$$(P_k^G)^H = P_k^G$$

3.
$$||r_k^G|| = \min_{z \in K_k(A, r_0)} ||b - A(x_0 + z)||$$

Krylov subspace Methods

Let
$$Y_k$$
 be the matrix $Y_k = [y_1, \dots, y_k]$, we define $(W_k)^L = (Y_k^H W_k)^{-1} Y_k^H$,

$$r_k^K = r_0 - W_k (Y_k^H W_k)^{-1} Y_k^H r_0 = r_0 - W_k (W_k)^L r_0 = P_k^K r_0$$
and $x_k^K = x_0 + K_k (Y_k^H A K_k)^{-1} Y_k^H r_0$

Property

$$(P_k^K)^2 = P_k^K$$

- 1. If $y_i = A^{i-1} r_0$, we obtain the Orthogonal Residula method (FOM, Arnoldi, Conjugate Gradient).
- 2. If $y_i = A^i r_0$, we obtain the Minimal Residual method (GMRES, Orthodir, Orthomin, GCR).
- 3. If we set $y_i = A^{i-1}{}^H y$, we obtain the Lanczos method (BCG.).

Krylov matrix and Arnoldi process

We consider now the QR factorization of the Krylov matrix K_k . Let V_k^G be an orthogonal matrix i.e. $(V^G)_k^H V_k^G = I_k$ and R_k be an upper triangular matrix of order k such that $K_k = V_k^G R_k$. we have

$$A V_k^G = V_k^G H_k^G + h_{k+1,k}^G V_{k+1}^G (e_k^{(k)})^T = V_{k+1}^G H_{k+1,k}^G.$$

$$r_k^G = r_0 - W_k (W_k^H W_k)^{-1} W_k^H r_0$$

$$r_k^G = ||r_0||V_{k+1}^G(I - H_{k+1,k}^G H_{k+1,k}^{G^{\dagger}}) e_1.$$

$$||r_k^G|| = ||r_0|| ||(I - H_{k+1,k}^G H_{k+1,k}^{R}^{\dagger}) e_1||.$$

Krylov matrix: Implicit QR factorization

We consider now the QR factorization of the Krylov matrix K_k . Let V_k be an orthogonal matrix i.e. $V_k^H V_k = I_k$ and \widetilde{R}_k be an upper triangular matrix of order k such that $K_k = V_k \widetilde{R}_k$. Using the QR factorizations of the matrices K_k and K_{k+1} together, we get K_{k+1} and K_k , and the fact that

$$K_{k+1}\begin{bmatrix}0\\I_k\end{bmatrix}=V_{k+1}\widetilde{R}_{k+1}\begin{bmatrix}0\\I_k\end{bmatrix}=AK_k=AV_k\widetilde{R}_k,$$

The Arnoldi Algorithm

- Goal: to compute an orthogonal basis of K_k(A, r₀).
- ▶ Input: Initial vector r_0 , set $v_1 = \frac{1}{\|r_0\|} r_0$ and k.
- Arnoldi's procedure
 For j = 1, ..., k do
 Compute $w := Av_j$ For i = 1, ..., j, do $\begin{cases} h_{i,j} := (w, v_i) \\ w := w h_{i,j} v_i \end{cases}$ $h_{j+1,j} = \|w\|_2; \qquad v_{j+1} = w/h_{j+1,j}$

End.

Hessenberg process with pivoting strategy

```
1. p = (1, 2, \dots, n)^T;
    Determine i_0 such that |(I_1)_{i_0}| = ||r_0||_{\infty};
    \alpha = (I_1)_{i_0}; I_1 = r_0/\alpha; p_1 \longleftrightarrow p_{i_0};
2. for k = 1, \dots, m
          u = Al_k:
          for j = 1, \dots, k
                  h_{j,k}=(u)_{p_i};\;(u)_{p_i}=0;
                  (u)_{D_i:D_n} = (u)_{D_i:D_n} - h_{j,k} (l_j)_{D_i:D_n};
          end
          Determine i_0 such that |(u)_{p_{i_0}}| = ||(u)_{p_{k+1}:p_n}||_{\infty};
          h_{k+1,k} = (u)_{i_0}; l_{k+1} = u/h_{k+1,k}; p_{k+1} \longleftrightarrow p_{i_0};
    end
```

Solving linear systems

Consider the system of linear equations

$$Cx = f$$
 (1)

where C is a real nonsingular $N \times N$ matrix, f is a vector of \mathbb{R}^N and x^* denotes the unique solution.

Instead of applying the extrapolation methods for solving (1), we will use them for the preconditioned linear system

$$M^{-1} Cx = M^{-1} f$$

where M is a nonsingular matrix.

linearly generated Sequences

Starting from an initial vector s_0 , we construct the sequence (s_j) by

$$s_{j+1} = Bs_j + b; \quad j = 0, 1, \dots$$
 (2)

with B = I - A; $A = M^{-1} C$ and $b = M^{-1} f$.

We have

$$\Delta s_j = s_{j+1} - s_j = Bs_j + b - s_j = b - As_j = r(s_j).$$

Note also that, since $\Delta^2 s_n = -A \Delta s_n$, we have $\Delta^2 S_k = -A \Delta S_k$, and

$$\Delta s_k = (I - A)^k r(s_0)$$
 and $\Delta^k s_n = (-1)^{k-1} A^{k-1} \Delta s_n$.

We deduce that

$$span\{\Delta s_0, \Delta s_1, \dots, \Delta s_{k-1}\} = span\{\Delta s_0, \Delta^2 s_0, \dots, \Delta^k s_0\}$$
 and

$$span\{\Delta s_0, \Delta s_1, \ldots, \Delta s_{k-1}\} = span\{\Delta s_0, A\Delta s_0, \ldots, A^{k-1}\Delta s_0\}.$$

Consequently since $x_0 = s_0$, then

$$x_k = s_0 - \Delta S_k (\Delta^2 S_k)^{\dagger} \Delta s_0,$$

$$r(x_k) = b - Ax_k = \Delta s_0 - \Delta^2 S_k (\Delta^2 S_k)^{\dagger} \Delta s_0,$$

we deduce that for the GMRES method, the iterates $\{x_k\}$ are defined by the following conditions

GMRES

$$x_k - s_0 \in span\{\Delta s_0, \Delta s_1, \dots, \Delta s_{k-1}\},$$

$$\Delta^2 S_k^T r(x_k) = 0.$$

Polynomials methods

Let $\{s_n\}_{n\geq 0}$ be a sequence of vectors in \mathbb{R}^N , and define the first and the second forward differences

$$\Delta s_n := s_{n+1} - s_n$$
 and $\Delta^2 s_n := \Delta s_{n+1} - \Delta s_n$.

When applied to the sequence $\{s_n\}_{n\geq 0}$, the polynomials vector extrapolation methods MPE, RRE, and MMPE produce approximations $t_n^{(q)}$ of the limit or antilimit of the s_n as $n \to \infty$ of the form

$$t_n^{(q)} := \sum_{j=0}^q \gamma_n^{(j)} s_{n+j},$$

where

$$\sum_{j=0}^{q} \gamma_n^{(j)} = 1, \quad \text{and} \quad \sum_{j=0}^{q} \eta_{ij}^{(n)} \gamma_n^{(j)} = 0, \quad 0 \le i < q, \quad (3)$$

Convergence of RRE : $y_{i+1}^{(n)} := \Delta^2 s_{n+i}$

We have

RRE method

$$t_n^{(q)} = s_n - \Delta S_{q,n} (\Delta^2 S_{q,n})^{\dagger} \Delta s_n,$$

If we consider a vector sequence such that

$$s_n = s + \lambda_1^n v_1 + \lambda_2^n v_2 + \ldots + \lambda_k^n v_k + \ldots + \lambda_m^n v_m$$
, where $0 \le |\lambda_m| \le \ldots < |\lambda_1|$ and $|\lambda_{k+1}| < |\lambda_k|$ then

$$t_n^{(k)} = s + O((\lambda_{k+1})^n).$$

Implementation of RRE : $y_{i+1}^{(n)} := \Delta^2 s_{n+i}$

We set n = 0 and we denote the matrices $\Delta^i S_{q,0}$ by $\Delta^i S_q$, $1 \le i \le 2$, and the vectors $y_q^{(0)}$ and $t_0^{(q)}$ by y_q and t_q , respectively. Then

$$t_q = s_0 - \Delta S_q (\Delta^2 S_q^T \Delta^2 S_q)^{-1} \Delta^2 S_q^T \Delta s_0,$$

The system of equations (3) can be written as

$$\begin{cases} \gamma_0^{(0)} + \ldots + \gamma_q^{(0)} = 1 \\ \gamma_0^{(0)} (\Delta^2 s_0, \Delta s_0) + \ldots + \gamma_q^{(0)} (\Delta^2 s_0, \Delta s_q) = 0 \\ \gamma_0^{(0)} (\Delta^2 s_1, \Delta s_0) + \gamma_q^{(0)} (\Delta^2 s_1, \Delta s_q) = 0 \\ \ldots \\ \gamma_0^{(0)} (\Delta^2 s_{q-1}, \Delta s_0) + \ldots + \gamma_q^{(0)} (\Delta^2 s_{q-1}, \Delta s_q) = 0 \end{cases}$$

Assume now that $\gamma_0^{(0)}, \gamma_1^{(0)}, \dots, \gamma_q^{(0)}$ have been calculated, and introduce the new variables

$$\alpha_0^{(0)} = 1 - \gamma_0^{(0)}, \quad \alpha_j^{(0)} = \alpha_{j-1}^{(0)} - \gamma_j^{(0)}, \quad 1 \le j < q, \text{ and } \alpha_{q-1}^{(0)} = \gamma_q^{(0)},$$

so that the vector t_q can be expressed as

$$t_q = s_0 + \sum_{j=0}^{q-1} \alpha_j^{(0)} \Delta s_j = s_0 + \Delta S_{q-1} \alpha^{(q)},$$

where $\alpha^{(q)} = [\alpha_0^{(0)}, \dots, \alpha_{q-1}^{(0)}]^T$.

In order to determine the $\gamma_i^{(0)}$, we first have to compute the $\beta_i^{(0)}$ by solving the nonsingular linear system of equations (4).

Solving non linear systems

Consider the system of nonlinear equations

$$G(x) = x \tag{5}$$

where $G: \mathbb{R}^N \longrightarrow \mathbb{R}^N$ and let x^* be a solution of (5). For any arbitrary vector x, the residual is defined by

$$r(x)=G(x)-x.$$

Let $(s_j)_j$ be the sequence of vectors generated from an initial guess s_0 as follows

$$s_{j+1} = G(s_j), j = 0, 1, \dots$$
 (6)

Note that

$$r(s_j) = \Delta s_j, j = 1, \ldots$$

In practice, it is recommended to restart the algorithms after a fixed number of iterations. Another important remark is the fact that the extrapolation methods are more efficient if they are applied to a preconditioned nonlinear system

$$\tilde{G}(x) = x$$

where the function \tilde{G} is obtained from G by some preconditioning nonlinear technique.

Vector extrapolation for non linear system

An extrapolation algorithm for solving the nonlinear problem is summarized as follows

- 1- k = 0, choose x_0 and the integers p and m.
- Basic iteration

set
$$t_0 = x_0$$

 $w_0 = t_0$
 $w_{j+1} = \tilde{G}(w_j), j = 0, ..., p-1.$

3- Extrapolation phase

$$s_0 = w_p$$
;
if $||s_1 - s_0|| < \epsilon$ stop;
otherwise generate $s_{j+1} = \tilde{G}(s_j)$, $j = 0, ..., m$,
compute the approximation t_m by RRE, MPE or

MMPE;

4- set $s_0 = t_m$, k = k + 1 and go to 2.

Numerical example

We consider now the following nonlinear partial differential equation

$$-u_{xx}-u_{yy}+2p_1u_x+2p_2u_y-p_3u+5e^{u(x,y)}=\phi(x,y)$$
 on Ω
$$u(x,y)=1+xy \quad \text{on } \partial\Omega,$$

over the unit square of \mathbb{R}^2 with Dirichlet boundary condition. This problem is discretized by a standard five-point central difference formula with uniform grid of size h = 1/(n+1). We get the following nonlinear system of dimension $N \times N$, where $N = n^2$.

$$AX + 5e^X - b = 0.$$
 (5.4)

The right hand-side function $\phi(x, y)$ was chosen so that the true solution is u(x, y) = 1 + xy in Ω

The sequence (s_j) is generated by using the nonlinear SSOR method. Hence we have $s_{j+1} = G(s_j)$, where

$$G(X) = B_{\omega} X + \omega (2 - \omega)(D - \omega U)^{-1} D(D - \omega L)^{-1} (b - 5e^{X}),$$

the matrix

$$B_{\omega} = (D - \omega U)^{-1}(\omega L + (1 - \omega)D)(D - \omega L)^{-1}(\omega U + (1 - \omega)D)$$
 and $A = D - L - U$, the classical splitting decomposition. The stopping criterion was $||x_k - G(x_k)|| < 10^{-8}$. In our tests, we choose $n = 72$, $p_1 = 1$, $p_2 = 1$, $p_3 = 10$, $N = 4900$.

With m = 20 and $\omega = 0.5$, we obtain the results of Table 3.

Table 3

Method	MMPE	MPE	RRE
Number of restarts	20	18	19
residual norms	2.9d-09	9.2d-08	2.8d-08

Stopping Criterion

We need to evaluate $||t_{k+1} - t_k||$ for our stopping criterion. From the last formula we deduce that

$$t_{k+1} - t_k = \sum_{j=1}^k \frac{(\alpha_{j-1}^{(k+1)} - \alpha_{j-1}^{(k)})}{\sqrt{\delta_j}} v_j + \frac{\alpha_k^{(k+1)}}{\sqrt{\delta_{k+1}}} v_{k+1}.$$

Since the vectors v_j , $1 \le j \le k+1$, are orthonormal, it follows that

$$||t_{k+1} - t_k|| = \sqrt{\sum_{j=1}^k \frac{|\alpha_{j-1}^{(k+1)} - \alpha_{j-1}^{(k)}|^2}{\delta_j} + \frac{|\alpha_k^{(k+1)}|^2}{\delta_{k+1}}}.$$

RRE-TSVD algorithm

The RRE-TSVD algorithm is summarized as follows:

The RRE-TSVD algorithm

• Compute the SVD of the matrix A: $[U, \Sigma, V] = svd(A)$.

Set
$$s_0 = 0$$
, $s_1 = \frac{u_1^T b}{\sigma_1} v_1$, and $t_1 = s_1$, with $u_i = U(:, i)$ and $v_i = V(:, i)$ for $i = 1, ..., n$.

- For k = 2, ..., n
 - 1. Compute S_k .
 - 2. Compute the $\gamma_i^{(k)}$ and $\alpha_i^{(k)}$ for $i=0,\ldots,k-1$.
 - 3. Form the approximation t_k .
 - 4. If $||t_k t_{k-1}|| / ||t_{k-1}|| < tol$, stop.
- End

We consider linear discrete ill-posed problems of the form

$$A_1 X A_2^T = B, (7)$$

where at least one of the matrices $A_1, A_2 \in \mathbb{R}^{n \times n}$ is of ill-determined rank.

The right-hand side $B \in \mathbb{R}^{n \times n}$ represents observations that are contaminated by measurement errors, i.e.,

$$B = \widetilde{B} + E, \tag{8}$$

where \widetilde{B} denotes the unavailable error-free right-hand side. The norm of the error E is not assumed to be known. Discrete ill-posed problems of the form (7) arise from the discretization of Fredholm integral equations of the first kind in two space-dimensions,

$$\iint_{\Omega} K(x, y, s, t) f(s, t) ds dt = g(x, y), \qquad (x, y) \in \Omega', \quad (9)$$

where Ω and Ω' are rectangles in \mathbb{R}^2 and the kernel is separable,

$$K(x, y, s, t) = k_1(x, s) k_2(y, t),$$
 $(x, y) \in \Omega',$ $(s, t) \in \Omega.$

Discretization of (9) gives a matrix equation of the form (7).

Definition of Matrix Extrapolation Methods

Let (S_p) be a sequence of matrices in $\mathbb{R}^{N\times s}$ and consider the transformation T_q , $q\geq 1$ defined by

$$T_q: \mathbb{R}^{N \times s} \longrightarrow \mathbb{R}^{N \times s}$$
 $S_p \rightarrow T_q^{(p)}$

with

$$T_q^{(p)} = S_p + \sum_{i=1}^q \mathbf{a_i^{(p)}} \ G_i(p), \ p \ge 0$$

where the auxiliary sequences $(G_i(p))_p$; i = 1, ..., q are given. Let \tilde{T}_q denotes the new transformation obtained from T_q as follows

$$\tilde{T}_q^{(p)} = S_{p+1} + \sum_{i=1}^q \mathbf{a_i^{(p)}} G_i(p+1), \ p \ge 0.$$

We define the generalized residual of $T_q^{(p)}$ by

$$\tilde{R}(T_q^{(p)}) = \tilde{T}_q^{(p)} - T_q^{(p)} = \Delta S_p + \sum_{i=1}^q a_i^{(p)} \Delta G_i(p).$$

The coefficients $a_i^{(p)}$ are obtained from the orthogonality relation

$$\tilde{R}(T_q^{(p)}) \perp_F span\{Y_1^{(p)}, \dots, Y_q^{(p)}\}$$

where \perp_F means the orhtogonality with respect to the Frobenius inner product.

•
$$G_i(p) = \Delta S_{p+i-1} = S_{p+i} - S_{p+i-1}$$

- $Y_i^{(p)} = \Delta S_{p+i-1}$: Matrix Minimal Poly.Extrapolation (MPE)
- $Y_i^{(p)} = \Delta^2 S_{p+i-1}$: Matrix Reduced Rank Extrapolation (RRE)
- $Y_i^{(p)} = Y_i$: Matrix Modified MPE (MMPE) (Pugachev

If we set

$$\triangleright \widetilde{\mathbb{V}}_{q,p} = span\{\Delta S_p, \dots, \Delta S_{p+q-1}\}$$

$$ullet$$
 $\widetilde{\mathbb{W}}_{q,p}=\textit{span}\{\Delta^2S_p,\ldots,\Delta^2S_{p+q-1}\}$ and

$$\widetilde{\mathbb{Y}}_{q,p} = span\{Y_1^{(p)}, \dots, Y_q^{(p)}\}$$

then we have the following relations

$$\begin{cases} \tilde{R}(T_q^{(p)}) - \Delta S_p \in \widetilde{\mathbb{W}}_{q,p} \\ \tilde{R}(T_q^{(p)}) \perp_F \widetilde{\mathbb{Y}}_{q,p}. \end{cases}$$

 \perp_F means the orthogonality with respect to the Frobenius inner product.

 $\tilde{R}(T_q^{(\rho)})$ is obtained from an oblique projection.

This gives the following expression

$$\widetilde{R}(T_p^{(q)}) = \Delta S_p + \mathbb{W}_{q,p}(\alpha^{(p)} \otimes I_s), \tag{10}$$

and

$$\alpha^{(p)} = -(\mathbb{Y}_{q,p}^T \diamond \mathbb{W}_{q,p})^{-1} (\mathbb{Y}_{q,p}^T \diamond \Delta S_p).$$

The approximation $T_p^{(q)}$ is given by

$$T_p^{(q)} = S_p + \mathbb{V}_{q,p}(\alpha^{(p)} \otimes I_s),$$

Let $A = [A_1, A_2, ..., A_p]$ and $B = [B_1, B_2, ..., B_l]$ be matrices of dimension $n \times ps$ and $n \times ls$ respectively where A_i and B_j (i = 1, ..., p; j = 1, ..., l) are $N \times s$ matrices. Then the $p \times l$ matrix $A^T \diamond B$ is defined by:

$$A^{T} \diamond B = \begin{pmatrix} \langle A_{1}, B_{1} \rangle_{F} & \langle A_{1}, B_{2} \rangle_{F} & \dots & \langle A_{1}, B_{I} \rangle_{F} \\ \langle A_{2}, B_{1} \rangle_{F} & \langle A_{2}, B_{2} \rangle_{F} & \dots & \langle A_{2}, B_{I} \rangle_{F} \\ \vdots & \vdots & \vdots & \vdots \\ \langle A_{p}, B_{1} \rangle_{F} & \langle A_{p}, B_{2} \rangle_{F} & \dots & \langle A_{p}, B_{I} \rangle_{F} \end{pmatrix},$$

where

$$\langle A_i, B_j \rangle_F = trace(A_i^T B_j).$$

The matrx A is F-orthonormal if

$$A^T \diamond A = I$$
.

Some properties of the o product:

Let $A, B, C \in \mathbb{R}^{N \times ps}$, $D \in \mathbb{R}^{N \times N}$, $L \in \mathbb{R}^{p \times p}$. Then we have

- 1. $(A^T \diamond B)^T = B^T \diamond A$.
- 2. $(DA)^T \diamond B = A^T \diamond (D^T B)$.
- 3. $A^T \diamond (B(L \otimes I_s)) = (A^T \diamond B)L$.
- 4. If s = 1 then $A^T \diamond B = A^T B$.
- 5. If $X \in \mathbb{R}^{N \times s}$, then $X^T \diamond X = ||X||_F^2$.

Let $\mathcal{T}_q^{(p)}$ be the matrix given by

$$\mathcal{T}_{q}^{(p)} = \begin{pmatrix} S_{p} & \mathbb{V}_{q,p} \\ (\mathbb{Y}_{q,p}^{T} \diamond \Delta S_{p}) \otimes I_{s} & (\mathbb{Y}_{q,p}^{T} \diamond \mathbb{W}_{q,p}) \otimes I_{s}. \end{pmatrix}. \tag{11}$$

The approximation $T_q^{(p)}$ is then expressed as the Schur complement

$$T_q^{(p)} = \left(\begin{array}{cc} \mathcal{T}_q^{(p)} / & (\mathbb{Y}_{q,p}^T \diamond \mathbb{W}_{q,p}) \otimes I_s) \end{array} \right).$$

With

- $\mathbb{V}_{q,p} = [\Delta S_p, \dots, \Delta S_{p+q-1}]$
- $Y_{q,p} = [Y_1^{(p)}, \dots, Y_q^{(p)}]$
- $Y_i^{(p)} = \Delta S_{p+i-1}$: Matrix Minimal Poly. Extrapolation (M-MPE)
- $Y_i^{(p)} = \Delta^2 S_{p+i-1}$: Matrix Reduced Rank Extrapolation (M-RRE)
- Y_i^(ρ) = Y_i: Matrix Modified MPE (MMPE)

Extrapolating the TSVD sequence by the matrix Reduced Rank Extrapolation method

The TSVD of a Kronecker product

Let the matrices A_1 and A_2 in (7) have the singular value decompositions

$$A_1 = U_1 \Sigma_1 V_1^T, \qquad A_2 = U_2 \Sigma_2 V_2^T,$$

respectively.

$$U_k = [u_{1,k}, u_{2,k}, \dots, u_{n,k}] \in \mathbb{R}^{n \times n}, \qquad V_k = [v_{1,k}, v_{2,k}, \dots, v_{n,k}] \in \mathbb{R}^{n \times n}$$

and

$$\Sigma_k = \operatorname{diag}[\sigma_{1,k}, \sigma_{2,k}, \dots, \sigma_{n,k}] \in \mathbb{R}^{n \times n}$$

with

$$\sigma_{1,k} \geq \sigma_{2,k} \geq \ldots \geq \sigma_{n,k} \geq 0, \qquad k = 1,2;$$

The singular value decomposition of the matrix A, defined by

$$A = A_2 \otimes A_1$$

is given by

$$A = U\Sigma V^T$$
.

 $U = U_2 \otimes U_1$, $V = V_2 \otimes V_1$, and $\Sigma = \Sigma_2 \otimes \Sigma_1$, where

$$\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_{\ell_0} > \sigma_{\ell_0+1} = \ldots = \sigma_{n^2} = 0.$$
 (12)

with

$$\sigma_{\ell} = \sigma_{j(\ell),2}\sigma_{i(\ell),1}, \qquad 1 \le \ell \le n^2, \tag{13}$$

 $i(\ell)$ and $j(\ell)$ are nondecreasing functions of ℓ with range $\{1,2,\ldots,n\}$. The columns of the orthogonal matrices U and V are given by

$$u_{\ell} = u_{j(\ell),2} \otimes u_{i(\ell),1}, \qquad v_{\ell} = v_{j(\ell),2} \otimes v_{i(\ell),1}, \qquad 1 \leq \ell \leq n^2;$$
 (14)

The rank-k approximation \widetilde{A}_k of $A = A_2 \otimes A_1$ is defined by

$$\widetilde{A}_k = \sum_{\ell=1}^k \sigma_\ell u_\ell v_\ell^T;$$

and its Moore-Penrose pseudoinverse can be expressed as

$$\widetilde{A}_k^{\dagger} = \sum_{\ell=1}^k \sigma_{\ell}^{-1} \mathbf{v}_{\ell} \mathbf{u}_{\ell}^{T}.$$

The Matrix RRE for TSVD sequences

Consider the least-squares problem

$$\min_{X} \|A_1 X A_2^T - B\|_F. \tag{15}$$

The minimal-norm solution of (15) is given by

$$S_{p} = \sum_{\ell=1}^{p} \frac{\left(u_{i(\ell),1}^{T} B u_{j(\ell),2}\right)}{\sigma_{i(\ell),2}\sigma_{j(\ell),1}} \left(v_{i(\ell),1} v_{j(\ell),2}^{T}\right) = \sum_{l=1}^{p} \delta_{l} V_{l}.$$

The vector $s_p = vec(S_p)$ is given by

$$s_p = \sum_{\ell=1}^p \frac{\left(u_{j(\ell),2}^T \otimes u_{i(\ell),1}^T\right)b}{\sigma_{j(\ell),2}\sigma_{i(\ell),1}} v_{j(\ell),2} \otimes v_{i(\ell),1}. \tag{16}$$

where b = vec(B).

- Thus, S_p is the p-TSVD approximate solution of the original matrix problem.
- It is important to choose a suitable value of the truncation index p. This task is much simplified by extrapolating the sequence {S_p}_{p≥0} before selecting an index.
- Here, we applied the matrix RRE (M-RRE) method.

Starting with S_0 , (p = 0) the new matrix sequence (T_k)

$$T_k = T_k^{(0)} = S_0 - \Delta S_{k-1}(\alpha^{(k)} \otimes I_s),$$

with

$$\Delta S_{k-1} = [\Delta S_0, \dots, \Delta S_{k-1}]; \Delta^2 S_{k-1} = [\Delta^2 S_0, \dots, \Delta^2 S_{k-1}].$$

The vector $\alpha^{(k)} = (\alpha_1^{(k)}, \dots, \alpha_k^{(k)})$ solves the linear system of equations

$$(\Delta^2 \mathcal{S}_{k-1}^T \diamond \Delta^2 \mathcal{S}_{k-1}) \alpha^{(k)} = -\Delta^2 \mathcal{S}_{k-1}^T \diamond \Delta \mathcal{S}_0$$

Using the fact that $\Delta S_{j-1} = \delta_j V_j$, the matrix ΔS_{k-1} can be factored according to

$$\Delta S_{k-1} = [\delta_1 V_1, \dots, \delta_k V_k] = V_k (\operatorname{diag}[\delta_1, \dots, \delta_k] \otimes I_s),$$

and

$$\Delta^{2}S_{k-1} = \mathcal{V}_{k+1} \left(\begin{bmatrix} -\delta_{1} \\ \delta_{2} & -\delta_{2} \\ & \ddots & \ddots \\ & \delta_{k} & -\delta_{k} \\ & & \delta_{k+1} \end{bmatrix} \otimes I_{s} \right). \tag{17}$$

Since V_{k+1} is F-orthogonal $(V_{k+1}^T \diamond V_{k+1} = I)$, it follows that

$$\Delta^2 \mathcal{S}_{k-1}^T \diamond \Delta^2 \mathcal{S}_{k-1} = tridiag(-\delta_i^2, \delta_i^2 + \delta_{i+1}^2, -\delta_{i+1}^2)$$

the extrapolated matrix T_k is expressed as

$$T_{k} = \sum_{\ell=1}^{k} \alpha_{\ell}^{(k)} \frac{u_{i(\ell),1}^{T} B u_{j(\ell),2}}{\sigma_{i(\ell),1} \sigma_{j(\ell),2}} v_{i(\ell),1} v_{j(\ell),2}^{T}.$$
(18)

where $\alpha^{(k)}$ is the solution of the linear system of equations

$$(\Delta^2 \mathcal{S}_{k-1}^T \diamond \Delta^2 \mathcal{S}_{k-1}) \alpha^{(k)} = -\Delta^2 \mathcal{S}_{k-1}^T \diamond \Delta \mathcal{S}_0 = \delta_1^2 [1, 0, \dots, 0]^T$$

The expression (18) shows that the matrix RRE method acts as a **filter** on the TSVD sequence. The expression $||T_{k+1} - T_k||$ can be helpful to determine when to terminate the computations. We have the following relation

$$||T_{k+1} - T_k||_F = \sqrt{\sum_{j=1}^k \frac{|\alpha_{j-1}^{(k+1)} - \alpha_{j-1}^{(k)}|^2}{\delta_j} + \frac{|\alpha_k^{(k+1)}|^2}{\delta_{k+1}}},$$

In the computed examples, we also used the norm of the generalized residual \tilde{R}_k , to determine a suitable truncation index.

This norm easily can be evaluated using

$$\|\tilde{R}_{k}\|_{F} = \frac{1}{\sqrt{\sum_{j=0}^{k} \frac{1}{\delta_{j+1}^{2}}}}.$$

Example 1. The nonsymmetric matrices $A_1, A_2 \in \mathbb{R}^{1500 \times 1500}$ are:

$$A_1 = \text{baart}(1500) \text{ and } A_2 = \text{foxgood}(1500).$$

$$\kappa(A_1) = 2 \cdot 10^{18} \text{ and } \kappa(A_2) = \cdot 10^{13}.$$

The noise-level in the right-hand side is $\nu = 1.2 \cdot 10^{-2}$.

We remark that is much easier to determine an accurate approximation of \hat{X} from the extrapolated sequence $\{T_k\}_{k>0}$ than from the sequence $\{S_k\}_{k>0}$; it suffices to choose $k \geq 6$.

Example 2. $A_1 = baart(n)$ and $A_2 = usrsell(n)$; n = 2000.

Example 3. In this example, we consider the Fredholm integral equation

$$\iint_{\Omega} K(x,y,s,t)f(s,t)dsdt = g(x,y), \qquad (x,y) \in \Omega', \quad (19)$$

where $\Omega = [0, \pi/2] \times [0, \pi/2]$ and $\Omega' = [0, \pi] \times [0, \pi]$. Let the kernel be given by

$$K(x, y, s, t) = k_1(x, s) k_2(y, t), \quad (x, y) \in \Omega', \quad (s, t) \in \Omega,$$

and define

$$g(x,y)=g_1(x)\,g_2(y),$$

where

$$k_i(s,x) = \exp(s\cos(x)), \qquad g_i(s) = 2\sinh(s)/s, \qquad i=1,2.$$

We obtain two matrices $A_1, A_2 \in \mathbb{R}^{2500 \times 2500}$ and a scaled approximation \hat{X} of the exact solution $f(t, s) = \sin(t) \sin(s)$. The error-free right-hand side of (7) is determined by $\tilde{B} = A_1 \hat{X} A_2^T$. Adding an error with noise-level $\nu = 1 \cdot 10^{-2}$, we obtain the right-hand B.

Approximation T_{23} by the matrix RRE-TSVD method.

Approximation S₂₃ determined by the TSVD method

Matrix extrapolations and Tikhonov regularization

Here, we consider the Tikhonov regulrization problem

$$\min_{X}(\|A_1XA_2^T - B\|_F^2 + \lambda^2 \|X\|_F^2), \tag{20}$$

where λ is a parameter to be chosen. The problem (20) is equivalent to solving the nonsymmetric Stein matrix equation

$$AXC - X + F = 0$$
,

where
$$A = A_1^T A_1$$
, $C = (1/\lambda^2) A_2^T A_2$, $F = -(1/\lambda^2) A_1^T B A_2$.

If the eigenvalues of A and C are inside the unit disc, the solution X could be expressed as

$$X = \sum_{i=0}^{\infty} A^{i} \mathcal{F} \mathcal{C}^{i}$$

Then, we generate the following matrix Smith iteration

$$S_0 = 0$$
; $S_j = \mathcal{F} + \mathcal{A}S_{j-1}\mathcal{C}$.

or the Squared Smith iteration defined as

$$S_0 = 0$$
; $S_j = S_{j-1} + A_{j-1}S_{j-1}C_{j-1}$; $A_j = A_{j-1}^2$; $C_j = C_{j-1}^2$.

As the convergence of the Smith iteration is very slow, we can apply the Matrix RRE extrapolation method to the sequence (S_j) .

Example 4.

- The original image is denoted by X;
- The vector \(\hat{B} = A_1 \hat{X} A_2^T\) represents the associated blurred and noise-free image.
- We generated a blurred and noisy image: B = B + N, where N is a noise chosen such that ||N||/||B|| = 10⁻².

The blurring matrix A is given by $A = A_2 \otimes A_1 \in \mathbb{R}^{256^2 \times 256^2}$, where $A_1 = A_2 = [a_{ij}]$: Toeplitz matrix given by

$$a_{ij} = \begin{cases} \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(i-j)^2}{2\sigma^2}\right), & |i-j| \le r, \\ 0, & \text{otherwise.} \end{cases}$$

We used: r = 4 and $\sigma = 5$;

 $\lambda_{opt} = 0.0014586$ (computed by the GCV method). The restored image corresponds to the approximation T_2 (with matrix RRE).