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definition

Consider the linear system of equations
Ax = b

where A is a complex nonsingular m x m matrix and b is a
given complex vector.

» For the GMRES method, the iterates {x,} are defined by
the following conditions

GMRES

Xk — Xo € Ky(A. ).
(A'rg.rg) =0 for i=1..... k.




Krylov matrix and GMRES

Let us first define the Krylov matrix

So we have :

The residual norm of GMRES
.18 =r— Wi (W W) " WHR = — Wk (Wi) o =PE 1o

Properties :
1. (P8 =P¢
2 (P8) =P8
3. [|ré||= min ||b—A(x +2)||

ZeKK(A.np)




Krylov subspace Methods
Let Yx be the matrix Y, = [5..... Vx|, we define
(W)t = (Y8 W)Y,

> f{:fo— Wk(Yﬁ Wk)“ Yﬁfo =Ty — Wk(Wk)Lfo -——-Pff o
and X,'(( — Xo-}—Kk(YﬁAKk)_‘ Yﬁfo

Property
> (P =P

1. If y; = A" ry, we obtain the Orthogonal Residula method
(FOM, Arnoldi, Conjugate Gradient ).

2. If yj = A’ ry, we obtain the Minimal Residual method
(GMRES., Orthodir, Orthomin, GCR) .

3. Ifwesety = A-1H v, we obtain the Lanczos method
(BCG. ).




Krylov matrix and Arnoldi process

We consider now the QR factorization of the Krylov matrix K.
Let V& be an orthogonal matrix i.e. (VC)'VE = | and Ry be
an upper triangular matrix of order k such that K = VkG R;.
we have

G G yG G G KNT G
» AVE = VEHE + he..  vE ,(el)T = Ve,

> I'E =g — Wk(Wﬁ Wk)_1 Wﬁfo

|
4 rif; = ||fol| Vlﬁ—‘l(l'— HI?H.k HI?H.k ) €1

f
> 158N = IRl I = HE « HE.. k) &ll-

G
Hk+1.k'




Krylov matrix : Implicit QR factorization

We consider now the QR factorization of the Krylov matrix K.
Let V, be an orthogonal matrix i.e. V,{* Vi, = I, and Ry be an

upper triangular matrix of order k such that K = VjRx.
Using the QR factorizations of the matrices K and K.,
together, we get K1 and Ki, and the fact that

Kic -1 = Vies1 Ricss = AKy = AV Ry




The Arnoldi Algorithm

» Goal: to compute an orthogonal basis of Ki(A. rp).
» Input: Initial vector ry, set vy = ——ry and k.

iroll
» Arnoldi’'s procedure
FOF ] =1,...; K 00
Compute w := Ay;
hij = (w.v)
w:=w— h;;V
it = |lWlz: Vigr = W/ D
End.




Hessenberg process with pivoting strategy

1. p=(1,2,---,m)7;
Determine iy such that |(/1); | = |70l
a = (/1)10§ h =nR/a; py < Pi:
2. fork=1.---.m
U= Alk s
forj=1.--- .k
hj.k = (U)pj (U)pj =0;
(U)pj:pn = (u)p,-pn hj (I)p P’
end
Determine iy such that |(u)p,,0| = () pr1:0n]l 00

M1k = (U);} k1 = U/ P k5 P — Py
end




Solving linear systems

Consider the system of linear equations

Cx="f (1)

where C is a real nonsingular N x N matrix, f is a vector of R"
and x* denotes the unique solution.

Instead of applying the extrapolation methods for solving (1),
we will use them for the preconditioned linear system

M 'Cx=M'f

where M is a nonsingular matrix.




linearly generated Sequences
Starting from an initial vector sy, we construct the sequence

(s;) by

S =88+b j=01,... (2)

withB=/-A:A=M1Candb=MHF.
We have

ASI' = Sj4) — & = BS,‘-*- b—Sl' — b—ASj — f(S,').
Note also that, since A?s, = —AAs,, we have
AQSR = —A ASk. and

Asy = (I— A)¥r(ss) and  AXs, = (—-1)1A* 1 As,.




We deduce that
span{Asy. As,. .. .. As,_1} = span{Asy. A®sy. .. .. AK So} and

span{Asy. As;. .. .. Asi 1} = span{Asy. AAsg. .. .. A1As).
Consequently since xp = Sp, then
Xk = 59 — ASK(A'?SRVASO.

r(xk) = b— Axx = Asg — A?Sk(A?Sk) Asp.

we deduce that for the GMRES method, the iterates {x, } are
defined by the following conditions

GMRES

Xk — So € span{Asy. ASy.....Ask_1}.
A2S] r(xx) = 0.




Polynomials methods

Let {s,}.>0 be a sequence of vectors in RV, and define the
first and the second forward differences

As,:=8,.:—8, and A= s,:=AS,. ;—As,

When applied to the sequence {s,} >0, the polynomials vector
extrapolation methods MPE, RRE, and MMPE produce

approximations t,(,q) of the limit or antilimit of the s, as n — o of

the form .
tr(7Q) = Z ”rg)snﬂ
j=0
where
q
Z~,({)=1 and q}l.")A,(?’)zo 0<i<qg. (3




Convergence of RRE : y'") := AZs,,.;

We have
RRE method

If we consider a vector sequence such that

Sh=S+ ATy + AJVa + ...+ AVk + ... + AL, Vim, Where
0<|Am| < ... < |A1| and |Akx1]| < |Ak| then

1) = s+ O((Aks1)™).




Implementation of RRE : y\”) := AZs,,.;

We set n = 0 and we denote the matrices A'S, o by A'S,,
1 <7< 2, and the vectors y(o) and téq) by y, and {,

respectively. Then

lg = So — ASq(A%S; A2S,)~ ' A%S] Aso.

The system of equations (3) can be written as

e . (0)
q 1

?0)(A250 ASg) + ... + 1) (A28, Asy) =0
s (0)(Azs Asg) +15(AZsy, Asg) =0




Assume now that ~\* . 4% +{”) have been calculated, and
introduce the new variables

(1-(()0) = 1—",(()0). ()](0) — u](.g)1 —'j-](o). 1<j<q. and (1-20_)1 — ,_“(70)‘

so that the vector {,; can be expressed as

qg—1
lg =S + Z ol(-o)ASj =8y + AS,_; a9,
Jj=0
0 0
where a(® = [al”. .. .. ag_)1]7'.

In order to determine the ,.(0), we first have to compute the ..3,.(0)

by solving the nonsingular linear system of equations (4).




Solving non linear systems

Consider the system of nonlinear equations
G(x) = x (5)

where G: RY — R" and let x* be a solution of (5).
For any arbitrary vector x, the residual is defined by

r(x) = G{(x) — x.

Let (s;); be the sequence of vectors generated from an initial
guess s, as follows

.1 =0G{sg), f=0,1,:... (6)

Note that
r(sj) = As;, j =,1,...




In practice, it is recommended to restart the algorithms after a
fixed number of iterations. Another important remark is the fact
that the extrapolation methods are more efficient if they are
applied to a preconditioned nonlinear system

G(x) = x

where the function G is obtained from G by some
preconditioning nonlinear technique.




Vector extrapolation for non linear system

An extrapolation algorithm for solving the nonlinear problem is
summarized as follows
1- Kk = 0, choose xp and the integers p and m.
2- Basic iteration
set lh=Xp
Wo=Ih
w1 =G(w), j=0..... p—1.
3- Extrapolation phase

So = Wp;
if|| 81 — Sp ||< estop;
otherwise generate s;.; = G(s;), j =0..... m,

compute the approximation ¢, by RRE, MPE or
MMPE;
4- setsy=1tn, k=k+ 1andgoto?2.




Numerical example

We consider now the following nonlinear partial differential
equation

—Uyx — Uyy + 2Py Uy + 2poUy — p3U + 5e¥*Y) = (x,y) on Q

ux.y)=1+xy on Jf.

over the unit square of R? with Dirichlet boundary condition.
This problem is discretized by a standard five-point central
difference formula with uniform grid of size h=1/(n+ 1). We
get the following nonlinear system of dimension N x N, where
N=r?

AX +5¢X —b=0. (5.4)

The right hand-side function o(x. y) was chosen so that the
true solution is u(x.y) =1+ xy in Q2




The sequence (s;) is generated by using the nonlinear SSOR
method. Hence we have s;.; = G(s;), where

G(X)=B.X+w(2—-w)(D—wU) ' D(D—-wl)'(b-5€&%).

the matrix

B,=(D-wU) Y (wL+ (1 =w)D)(D—-wl) " (wlU+ (1 —w)D)
and A= D — L — U, the classical splitting decomposition.

The stopping criterion was ||xx — G{xx)|| < 1078,

In our tests, wechoose n=72,py =1,p> =1, p3 = 10,

N = 4900.

With m = 20 and w = 0.5, we obtain the results of Table 3.

Table 3
Method MMPE MPE RRE
Number of restarts 20 18 19
residual norms 2.9d-09 | 9.2d-08 | 2.8d-08




Stopping Criterion

We need to evaluate ||f; . 1 — Ix|| for our stopping criterion. From
the last formula we deduce that

k ( (k*‘) (k) ) ”(k*”
bkt1 — b = - Vi + k‘—Vk—H-
D SR AN e

Since the vectors v;, 1 < j < k + 1, are orthonormal, it follows
that

{et)_ e a2
k

K
f—1 “1—1
e — b = |3
: J

5k+1




RRE-TSVD algorithm

The RRE-TSVD algorithm is summarized as follows:
The RRE-TSVD algorithm

» Compute the SVD of the matrix A:
[U. L. V] = svd(A).

b
Set 5o =0, =-1-vj,and { = &, with
= U, 1) and ¥ = V(1) Fori= ¥, n.

1. Compute Sk.
2. Compute the *;.,(k) and afk) fori==0...., k—1.
3. Form the approximation k.

4, If ||t — t—1|l/||tc=1]|| < tol, stop.

» End




We consider linear discrete ill-posed problems of the form

A XAl = B. (7)

where at least one of the matrices A;.A> € R"*"is of
ill-determined rank.

The right-hand side B € R"*" represents observations that are
contaminated by measurement errors, i.e.,

B-=B:E (8)

where B denotes the unavailable error-free right-hand side.
The norm of the error E is not assumed to be known.




Discrete ill-posed problems of the form (7) arise from the
discretization of Fredholm integral equations of the first kind in

two space-dimensions,
// K(x.y.s. t)f(s.t)dsdt = g(x.y). (x.y)e. (9
JJa

where Q and Q' are rectangles in R and the kernel is
separable,

K(x.y.s.t) = ky(x.8) ka(y.1). (x.y) € &, (s.1) € Q.

Discretization of (9) gives a matrix equation of the form (7).




Definition of Matrix Extrapolation Methods

Let (S,) be a sequence of matrices in RV*S and consider the
transformation T,, g > 1 defined by

Tq: RNxs N RNxs

S+ TP
with "
T =S+> a”Gip). p>0
where the auxiliary sequences (Gij(p))p. I = 1..... g are given.

Let T, denotes the new transformation obtained from T, as
follows

T{p) Spi1 +Za(p)G(pr1) p > 0.

=1

We define the generalized residual of T((,‘D ) by




g
RTP) =T - TP =S, +Y aP AG(p).

=}

The coefficients a,(.‘D ) are obtained from the orthogonality
relation

R(TY)) Lr span{Y\?..... y!Ph

where | means the orhtogonality with respect to the
Frobenius inner product.

» Gi(p) = ASpti-1 = Spti — Spri-1

> Y,-(p ) = AS,.i_1: Matrix Minimal Poly.Extrapolation (MPE)

» YP) — AZS ., |: Matrix Reduced Rank Extrapolation (RRE)
» Y'®) = Y;: Matrix Modified MPE (MMPE) (Pugachev




If we set
> Vgp = span{AS,..... ASpigq-1}
> Wy, = span{A2S,.....A2S, ., 4} and
> Yoo =span{Y?, .. Y¥h

then we have the following relations

R(TS) — AS, € Wy,

AT Lr Ygp.

1 r means the orthogonality with respect to the Frobenius inner
product.

R( T((,p )) Is obtained from an oblique projection.




This gives the following expression

A(T3?) = ASp + Wop(aP ® ),

and

alP) = —(Y! , o Wqp)~' (Y, 0 ASp).

The approximation TF(,") IS given by

(10)




Let A=[A. As..... Apl and B = [B4.Bs.. ... B,| be matrices of
dimension n x ps and n x Is respectively where A; and B;

=1, EI=1, s ) are N x s matrices. Thenthe p x /
matrix A" o B is defined by:

[ (A1.Bi)r (A1.Bo)r ... (A1.B)F

AT o B — (A2-?1>F (A2-‘B2)F (Az-.BDF

\<Ap-.31)F (Ap. BoE ... (Ap..B,)F/

where
(A;. B))r = trace(A! B)).

The matrx A is F-orthonormal if

ATo A= 1




Some properties of the ¢ product:

letA.B.Cc RV*? De RV*N | ¢ RP*P. Then we have

1. (AT o B)T = BT 5 A.

2. (DA «B=A"o(D"B).

3. ATo(B(L® ks)) = (AT o B)L.

4. lfs=1then A" o B=A"B.

5. If X ¢ RV*° then X7 o X = || X 2.




Let 7,” be the matrix given by

p) _ Sp Vap
7:7( B ( (YopoASp)®ls (Y, oWgp)® ks ) k.

The approximation Ttgp) Is then expressed as the Schur
complement

TP = ( T | (Yio ©Wgp)®Is) ) '

> Yo=Y "
» Y _ Asp+, . Matrlx Minimal Poly. Extrapolation (M-MPE)

/

= Y,-(p e A28p+,_1. Matrix Reduced Rank Extrapolation
(M-RRE)
» Y'®) — ¥;: Matrix Modified MPE (MMPE)




Extrapolating the TSVD sequence by the matrix
Reduced Rank Extrapolation method

The TSVD of a Kronecker product
Let the matrices A; and A, in (7) have the singular value

decompositions

A =UL V], A=V,

respectively.
Uk — [U1 T | — up, k] = Rnxn. Vk — [V‘l_k- Vo k... .. Vnk] = Rnxn
and
Zk = diag[01_k.0’2_k ..... (Tn.k] - | shaaa
with

Olk 200k =2 ... 2 Opk = 0, kKk=1.2;




The singular value decomposition of the matrix A, defined by
A=A @ A,

IS given by
A=UxVT

U=UWUWaU.V=WVLag V. andL =22 %¢. where

O 2022 .20, >0 =...=0p=0.  (12)
with

O¢ = Oj(4).20i(¢) 1+ 1<e<n, (13)
i(¢) and j(¢) are nondecreasing functions of ¢ with range
1.2 s n}. The columns of the orthogonal matrices U and V
are given by

U = UI'([).QEJU,'(()J . Ve = VI’([).Q‘@V,'([)J , 1 S £ S n2: (14)




The rank-k approximation Ay of A= A, ® A, is defined by
. k
Ak — Z Ty U[V‘T;
=1
and its Moore-Penrose pseudoinverse can be expressed as

K

=]




The Matrix RRE for TSVD sequences

Consider the least-squares problem
min [ A; XA — B|r. (15)

The minimal-norm solution of (15) is given by

P (uf, ,Bu, P
(¢).124(¢).2 ;
Sp=)_ ( ) (Vi1 Vi 2) = >_ V.

= Ti(6).2%j(6).1 =

The vector s, = vec(S,) is given by

p (ul...®ul b

j(2).2 @ Yie).1
Z ( ) Viie).2 ® Vigo).1- (16)
i—1 Tj(£).291i(¢),1

where b = vec(B).




» Thus, S, is the p-TSVD approximate solution of the
original matrix problem .

» Itis important to choose a suitable value of the truncation
index p. This task is much simplified by extrapolating the
sequence {Sp},>0 before selecting an index.

» Here, we applied the matrix RRE (M-RRE) method.




Starting with Sp, (p = 0) the new matrix sequence ( T)

o= T — 8= Ak (¥ o ),

with

Ask_1 == [AS() ..... ASk_1]; Azsk_1 — [AZSO ..... AZSk_1].
The vector o¥) = (o', ... a{")) solves the linear system of
eguations

(AESk__1 ¥ < A25R_1) (,l:(k) e —AZSR_1 % < ASO




Using the fact that AS; = 4;V;, the matrix AS,_4 can be
factored according to

ASk_1 = [51 V1 ..... (Sk Vk] = vk (dlag[51 ..... (5;(] X IS)

AZSk_1 = Vi1 ( X ls) (17)
O —O0k
Ok +1

Since V.1 is F-orthogonal (V] , o Vi1 = ), it follows that

A2S] | o A2Sy_y = tridiag(—d2, 62 + 62, 4. —02,)




the extrapolated matrix T, is expressed as

K

B u; (£).2
Tk L " l‘\I l(l) 1 I o VT . (1 8)
; Ti(€)17j(£).2 01702

where o'%) is the solution of the linear system of equations
(A2S]_, 0 A285,_1)a'®) = —_A%S] . o ASy =4é2[1.0....,0]"

The expression (18) shows that the matrix RRE method acts as
a filter on the TSVD sequence.




The expression || Tx.1 — Tk| can be helpful to determine when
to terminate the computations. We have the following relation

o) gz | ke
1 Tesr — Tille= [ — S

i)
\1-21 Ok +1

In the computed examples, we also used the norm of the
generalized residual Ay, to determine a suitable truncation

index.
This norm easily can be evaluated using

1
K

1
Z A2

j=0 j+1

|Rk|le =




Example 1. The nonsymmetric matrices A;. A, € R'°00x1500
are:

Ay =baart(1500) and A> = foxgood(1500).

k(A) =2-10'8 and x(A,) = -10'S,
The noise-level in the right-hand sideis v = 1.2 - 10—2.

ot SFESVG
e

mARsn®

We remark that ishmuch easier to determine an accurate
approximation of X from the extrapolated sequence { Tk }x-o
than from the sequence {Si }k-0: It suffices to choose k > 6.




Example 2. A, = baart(n) and A, = usrsell(n); n = 2000.

Reiatve arorn norms

Errar RRETSYD
== Grrar TSYD

10

15

L




Example 3. In this example, we consider the Fredholm integral
equation

/ | K(x.y.s.t)f(s.t)dsdt = g(x.y). (x.y)e Q. (19)
JJQ

where Q = [0, 7/2] x [0, 7/2] and @ = [0. 7] x [0, x]. Let the
kernel be given by

K(x.y.s.t)=ki(x.s)kao(y.1). (x.y)e. (s.t)eq.

and define
g(x.y) = g1(x) g=(y).
where

ki(s. x) = exp(s cos(x)). gi(s) = 2sinh(s)/s. )

We obtain two matrices A;. A» € RB?°%°*25%0 gn4 3 scaled

approximation X of the exact solution f(t. s) = sin(t) sin(s ). The

error-free right-hand side of (7) is determined by B = A, X AT
Adding an error with noise-level » = 1 - 10~2, we obtain the

right-hand B.




A
-~
‘
. -
«
~
- —
D -
. -
-
e
-

Approximation T2z by the matrix RRE-TSVD method.

) 1
) -

Vv

r

Approximation S,3 determined by the TSVD method




Matrix extrapolations and Tikhonov regularization

Here, we consider the Tikhonov regulrization problem

min(|| Ay XAz — BI[z + A% X|¢%). (20)

where )\ is a parameter to be chosen. The problem (20) is
equivalent to solving the nonsymmetric Stein matrix equation

AXC - X+ F=0.

where A = AT A;, C = (1/)3)Al A, F = —(1/)2)A] BA,.




If the eigenvalues of A and C are inside the unit disc, the
solution X could be expressed as

X=>) AFc
i=0
Then, we generate the following matrix Smith iteration

S =0; §=F+AS_C.

or the Squared Smith iteration defined as

SO =1k S] = \Sj_1 =% Aj—1Sj—1cj—1; .A] = .Aj2_1;cj = Cjz..1-

As the convergence of the Smith iteration is very slow, we can
apply the Matrix RRE extrapolation method to the sequence

(S))-




Example 4.
» The original image is denoted by X

» The vector B = A; XA] represents the associated blurred
and noise-free image.

» We generated a blurred and noisy image: B = B + N,
where N is a noise chosen such that ||N||/||B| = 10~2.

The blurring matrix A is given by A = A, @ A; € R256°x256°
where A; = A; = [g;]: Toeplitz matrix given by
(=)

= Mz_exp( —ﬁ—) I—J| <.
0. otherwise.

We used: r =4 and 0 = 5;
Aopt = 0.0014586 (computed by the GCV method). The

restored image corresponds to the approximation 7> (with
mairix RRE).






