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Introduction

To solve f(x) = 0 Newton scheme

. Takes initial guess x
. Updates forall: € N

, _f(JJH)
T fla)

r, =

. The solution beinglimz; =

However, if 2, is not close to x then the
scheme might not converge

/ department of mathematics and computer science Houston, March 2019



Introduction

If instead one uses the iteration
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Introduction

If instead one uses the iteration
Lz = Lziy — f(xi1)
for L > max,cr{f'(x)}, then

. Iterations converge irrespective of
initial guess

. Errors decrease monotonically

. However, the convergence is
slower (linear)
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Introduction

Learning from above we propose
Lixi == LiZUZ'_l — f(ZUi_l)

with L' = f'(z;_1) + 9, M > 0 being
a tolerance.

Does their exists an 9t such that

. The errors decrease monotonically

. The convergence is faster than L-
scheme

We look for such a scheme for nonlinear PDEs in the study of porous flows

Technische Universiteit
e Eindhoven
University of Technology
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Equations

. Richards Equation
atSw =V - [kw(sw>(vp - pwé)]a —Pp = Pc(wa)

. The two-phase porous media equation

01Sa = V - [ka(Sa)(Vpa — pag)], a € {o, w}
So+Sw - 17 Po — Pw = Pc(Sw)

. Non-equilibrium effects: hysteresis and dynamic capillarity

—pOrp, — pu € P.(Sy,) — 7(Sw)sign(9,S,) — T (Sw)0:S.,

. Domain decomposition schemes for unsaturated and two-phase cases
(Seus et al. (2018))
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Time-discrete solutions

Let us talk about the nonlinear advection diffusion equation
Ob(u) +V -F(x,u) =V - [D(x,u)Vu] + r(x,t,u)

How do we solve it numerically??
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@ For N € N define timestep size 7 =T /N

. Let u = ug att = 0 be the initial condition and u = g at 9€) be the bound-
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Time-discrete solutions

Let us talk about the nonlinear advection diffusion equation
Ob(u) +V -F(x,u) =V - [D(x,u)Vu] + r(x,t,u)

How do we solve it numerically??

. Let Q € R be a Lipschitz domainand ¢ € [0,7],T > 0

@ For N € N define timestep size 7 =T /N

. Let u = ug att = 0 be the initial condition and u = g at 9€) be the bound-
ary condition

@ Foranyn € {1, .., N} use backward Euler scheme for time discretization.
This leads to the following system of equation

b(u,) — b(u,1) +7V - F(x,u,) =7V - [D(x,u,)Vu,| + 77r(x,n7,u,) in Q

Solve using some linearization technique
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The Linearization Techniques

The equation
b(u,) — blu,1) +7V - F(x,u,) =7V - [D(x,u,)Vu,| + 7r(x, n7, u,)
for a fixed n is an elliptic equation of the form
B(u,) +V -F(x,u,) =V - [D(x,u,)Vu,] + R(X, u,)

and consequently can be solved by following iterative linearization techniques
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The Local Schemes

To solve
B(u,) +V -F(x,u,) =V - [D(x,u,) Vu,] + R(X, u,)
the local schemes use

. Approximation of the nonlinearities using the last iteration

. Generally they converge if the initial guess u is close enough to u,,

Sufficient condition for convergence

For the original parabolic problem the schemes converge if u) = u,,_; and*
T < Ch?

for some constant C' > 0 and meshsize h
e A severe restriction: for d > 2, for processes that involve large time scales
or fine mesh-resolution, e.g. reservoir modelling

aRadu et al. (2006)
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L-scheme uses iterations

L~ V- [D7Vul] = L = Blu™) + [V B 4 Ry

n

where L is constant®

. If B > 0, L scheme converges unconditionally for L > %max{B’}

IfB'>0;0,R <0;D,F; € C*{Q xR); 0 < D,, <D < Dy, then there ex-
ists a 7y and L, (independent of meshsize) s.t. for all 7 < 7, and L > L,
L-scheme converges linearly in F*(€) irrespective of the initial guess.
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The Global Scheme: L-scheme

To solve
B(u,) +V -F(x,u,) =V - [D(x,u,) Vu,] + R(X, u,)
L-scheme uses iterations

L~ V- [D7Vul] = L = Blu™) + [V B 4 Ry

n

where L is constant®

. If B > 0, L scheme converges unconditionally for L > %max{B’}

IfB'>0;0,R <0;D,F; € C*{Q xR); 0 < D,, <D < Dy, then there ex-
ists a 7y and L, (independent of meshsize) s.t. for all 7 < 7, and L > L,
L-scheme converges linearly in F*(€) irrespective of the initial guess.

. The convergence speed is substantially less’ for L >> 1 or 7 small

aPop et al. (2004)
blist and Radu. (2016)
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Observation

Observe that
. The local estimates make the schemes faster but less stable

. All the schemes mentioned above are designed for elliptic problems.
u) = u,_; remains relatively unused

n —

Questions??
Can we design the 2Mt-scheme in this case so that it is both

. fast

. and stable
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Modified L-scheme

Assumptions:

A1l. The associated functions are smooth up to second derivative

A2. eV >m>0
e 0,r <0
e 0<D,, <D< Dy
o ug € HY(Q), g € H2(8), ug = g at

A3. ||u, — Up_1| =) < AT forsome A > 0

« Translates to HatuHLm( < 00

0 (0,T])
e This holds for sufficiently regular domains, ICs and BCs: e.g. if uy € C?(Q2)
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Consider the equation 9;b(u) — V - (D(x)Vu) = r(x,t, u) discretized into
b(u,) — b(u, 1) — 7V - (D(x)Vu,) = 7r(x,nt, u,)

We propose the following scheme

L (x)u!, — 7V - (DVul) = L (x)u’" — (b(u’") — b(u,_1)) + 7r(x, n7,u’)

with
L = max([b'(u") — 70,7 (x, n7,ul") + M7], 2907)

With u) = u,,_; and (A1)-(A3)

ot — iy < A7

forall: € N
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Modified L-scheme

The scheme
Ly (x)u;, — 7V - (DVu,,) = Ly (x)u;, " — (b(uy, ') — b(up-1)) + 77(x, n7, uy,)

with
L= max([V(u:") — 70,r(x, nT,ul ") + M7], 20M7)

RO With w) = w,_; and 99T > My = A max,er{|V'| + 7|0war|}
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The scheme
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L= max([b'(u") — 70,7 (x, n7,u’"") + Mr], 2907)
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Modified L-scheme

The scheme
Ly (x)u;, — 7V - (DVu,,) = Ly (x)u;, " — (b(uy, ') — b(up-1)) + 77(x, n7, uy,)

with
L= max([V(u:") — 70,r(x, nT,ul ") + M7], 20M7)

T With ), =, and MM > Ny = A maxuer{ 5] + 7|0uar|}

@ The 9Mi-scheme converges linearly in H'(Q) N L>(Q2) for all 7 > 0,
m > 0 with convergence rate

s, = ],

Q= sup Huf;l — unHX <

@ If m > 0and 7 < 7y = 5= then the convergence rate is O(7)

Techn h Un siteit
TU/e i
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General Problem
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The scheme reads

L, (uy, = ) =7V - (D V) = =(0(u, ) = b(uy)) + 7, = V- F7]

n—1

with | |
L' = max([t/(u") — 70,r(ul") + M7], 2907)

Assumptions:

A4. ||Vu,| =g < A, forsome A; > 0

» Required also for proving convergence of L-scheme
e Holds if ug € W224(Q), g€ N, 2¢ > d
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General Problem

Liul, — ) — 7V - (DL V) = —(b(u, ) — bu, ) + 7l — V- FL

with | |
L= max([b'(u") — 70,7 (u’") + Mr], 29m7)

Theorem 2.1
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General Problem

L, (uy, =y ) = 7V (D, V) = = (b(u, ) = b(w—1)) + 7

with | |
L= max([b'(u") — 70,7 (u’") + Mr], 29m7)

Theorem 2.1

For u) = wu,_1, M > My and 7 < 75 assume (A1)-(A4)*. Then

@ The 9Mt-scheme converges in H*(2) for all m > 0
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General Problem

Ly, =, ) =7V - (D, Vu,) = =(b(w, ) = bun1)) +7[r, " = V- F,7]
with | | .
L' = max([t/(u") — 70,r(ul") + M7], 2907)

Theorem 2.1

For u) = wu,_1, M > My and 7 < 75 assume (A1)-(A4)*. Then

@ The 9Mt-scheme converges in H*(2) for all m > 0

@ The 9M1-scheme converges linearly in H(Q) if m > 0
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General Problem

Ly, =, ) =7V - (D, Vu,) = =(b(w, ) = bun1)) +7[r, " = V- F,7]

n—1

with | | .
L' = max([t/(u") — 70,r(ul") + M7], 2907)

Theorem 2.1

For u) = wu,_1, M > My and 7 < 75 assume (A1)-(A4)*. Then

@ The 9Mt-scheme converges in H*(2) for all m > 0

@ The 9M1-scheme converges linearly in H(Q) if m > 0

@ For m > 0 the convergence rate is « = O(,/T)
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Richards equation in 2-D
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Take van Genuchten parameters®: form = % n
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Numerical Study

Richards equation in 2-D

04Sw(p) = V - [ku(Sw(p)) (VP — pug)] + fon (0,1) x (0,1)

Take van Genuchten parameters‘: form = 2, n = ——

1
Su(p) (14 (=p)")™
1 ifp >0

ko(S) = VS — (1 — Sm)m)?

ifp <0

Assumed initial and boundary conditions with 5(z,y,t) = 1 — (1 +)(1 + 2% + y?),
‘ IC ‘ t=0 p(z,y,0)=p(x,y0) ongQ

BC|z=0: p0,y,t)=p(0,y,8), z=1: p(1,y.t)=p(l,y,t1),
y=0: 0Jyp=0, y=1: k(S(p))oyp = k(S(p(z,1,t))0yp(z,1,t).

avan Genuchten. (1980)
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Mesh Study

—o—MS h=.1
——PSh=.1
——LSh=.1
—6—NSh=.1

M --e--MS h = .05

-=+--PS h = .05

4 —-p-—LS h=.05

--9-=NS h = .05
-e-MSh=.02

Ho$-PSh=02
&l —b>-1Sh=.02

-6 -NS h=.02

——MS h=.1
—~—PSh=.1
—p—LSh=.1
——NSh=.1
--e--MS h = .05
—+—PS h=.05
—p-=LS h=.05
—-¢-—NS h = .05
- ©~-MS h=.02
-+ =PS h=.02
—p-LS h=.02
-6-NSh=.02

5 0 . 15 2 2 4 6 . 8
number of iterations number of iterations

7 =0.01 7 = 0.001

Technische Universiteit
Eindhoven
University of Technology
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Mesh Study

efFort=0597;=10,L =1

--0-=MS h = .05
=== PS h = .05
- ©=MS h = .02
-4 =PS h=.02
—-p~LS h=.05
=-@-=NS h = .05
5 10 15
number of iterations

7=0.1

Technische Universiteit
. . I U e Eindhoven
/ department of mathematics and computer science Houston, March 2019 University of Technology



Timestep Study

e Fort =.5,h =0.059% =10
0

h=0.051t=05

-0.2F =
o10)
R

-0.4

-0.6T
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Effect of 90t

t=0.5,7=0.01, h = 0.05

M =0
o M =1
M=5
1 --0--M =10
-x=-M =20
—s— M =50 N
I L=1 .
5 10 .. 15 . 20
number of iterations
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Effect of 90t

=05, 7=0.1, h=0.05

| =-4=-M =0
——M=1
M=5
| --e-- M =10
-x-M =20
11—+ M =50
—p—L =1

5

10 . 15 . 20
number of iterations

Technische Universiteit
Eindhoven
University of Technology
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For details

see
Mitra, K. & Pop, I. S. (2018). A modified L-scheme for nonlinear
parabolic equations. Computers & Mathematics With Applications.
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Other Problems

Two Phase Equation: The 9)i-scheme given as

_(Sfu,n o w,n—l) =TV - [kO(l _ Si)_,;)(.vpi,n T pog)]
(Szv,n o w,n—l) — Tv ) [kU)(SlZU_,;)(szu,n o pwg)]
pi,n o pzu,n - Pc(‘szzu_,é) o L;Z(S’ZU,TL o Szlu_,rb
with L := —P/(Si1) + omr

IR Vith (59,0, = (Pon 1, D) define

€n = 1Pion — Punllne + 120 — Ponllm@) + 1800 — Sunllze).

Assume for i € N, p, € W'>(Q) and ||S], — S, || 1= < AT for some
A > 0. Then e/ — 0 as ¢ — oo for 7 small enough and 91t large enough.
Moreover, if P,/(S) < 0and P, € C?*(R) then for small enough 7

e Universiteit

Eindhoven
/ department of mathematics and computer science Houston, March 2019 e University of Technology




Other Problems

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: 9,5, = V - [k(S,)(Vp — pwg)]
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Other Problems

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: 0,S,, = V - [k(S,)(Vp — pug)]
Closure relation: —p = P.(S,,) — (S, )sign(0;S,,) — T (5,)0:S,,
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Other Problems

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: 9,5, = V - [k(S,)(Vp — pwg)]

Closure relation: —p = P.(S,,) — (S, )sign(0;S,,) — T (5,)0:S,,
This can be simplified to
.| PelSw) =2(Su) +p ifp < Fu(Su) = 7(Su)

0;:S, = F(Su,p) = 705, 0 ifpe[P.—~,P.+7](S,)
v Pc(Sw) -+ 'V(Sw> +p ifp> Pc(Sw) -+ 'V(Sw)
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Other Problems

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: 9,5, = V - [k(S,)(Vp — pwg)]

Closure relation: —p = P.(S,,) — (S, )sign(0;S,,) — T (5,)0:S,,
This can be simplified to

L | FelSu) =(Su) +p - ifp < B(Sw) = 7(Sw)
0;:S, = F(Su,p) = 705, 0 ifpe[P.—~,P.+7](S,)
v Pc(Sw) -+ 'V(Sw> +p ifp> Pc(Sw) -+ 'V(Sw)

T F(Su,p)
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Other Problems

Time-discrete version

S-equation: Sy, = Syn-1 + TF(Swn, Pn)
p-equation: V - [k(S,.,)(Vp, — 1)] = F(Su.n; Pn)
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Other Problems

Time-discrete version

S-equation: Sy, = Syn-1 + TF(Swn, Pn)
p-equation: V - [k(S,.,)(Vp, — 1)] = F(Su.n; Pn)

Solution strategy: 9Ji-scheme

Update: S!,, = S,,—1 + 7F (S5, pi )
Solve: Ljp, — V - [k(S,,,,)(Vp, — 1) = Lip, " — F(S,,,.. 0, ")

With L} == 0,F(S,, ., pi ") + M7
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Other Problems

Time-discrete version

S-equation: Sy, = Syn-1 + TF(Swn, Pn)
p-equation: V - [k(S,.,)(Vp, — 1)] = F(Su.n; Pn)

Solution strategy: 9Ji-scheme

Update: S!,, = S,,—1 + 7F (S5, pi )
Solve: Ljp, — V - [k(S,,,,)(Vp, — 1) = Lip, " — F(S,,,.. 0, ")

With L} == 0,F(S,, ., pi ") + M7

For small enough T, large enough 90, p, € WH>(Q), there
exists a a« = O(7/7T ) such that

1500 = Swnllygre + 120 = Pallyre < alll S = Sl + 1907 = P | ,l,oo]

Techn h Un
Ei dh
/ department of mathematics and computer science Houston, March 2019 TU/e rsity of Technology



Other Problems

Time-discrete version

S-equation: Sy, = Syn-1 + TF(Swn, Pn)
p-equation: V - [k(S,.,)(Vp, — 1)] = F(Su.n; Pn)

Solution strategy: 9Ji-scheme

Update: S!,, = S,,—1 + 7F (S5, pi )
Solve: Ljp, — V - [k(S,,,,)(Vp, — 1) = Lip, " — F(S,,,.. 0, ")

With L} == 0,F(S,, ., pi ") + M7
If 7> 0 then there exists 7 > 0 independent of 7 such that
for 7 < 7 and large enough 9, (S, ,, p!,) converges in H'((2)

/ department of mathematics and computer science Houston, March 2019




Numerical Results

efor" 7 =.1,L=100, M =1,h=.1,7=.001,¢t =10

|- ML-scheme
—p— L-scheme

4
1terations

Mt-scheme o ~ .15
ayvan Duijn, Mitra and Pop. (2018)
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Summary

. The linearization schemes are faster if local estimations are taken but are
less stable

Technische Universiteit
. . I U e Eindhoven
/ department of mathematics and computer science Houston, March 2019 University of Technology



Summary

. The linearization schemes are faster if local estimations are taken but are
less stable

. Using u! = u,,_; and local estimations one can have a scheme that has
the following properties
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Summary

. The linearization schemes are faster if local estimations are taken but are
less stable

. Using u! = u,,_; and local estimations one can have a scheme that has
the following properties

— It is simple and converges unconditionally for small enough timestep
sizes independent of meshsize

University of Technology
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Summary
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less stable

. Using u! = u,,_; and local estimations one can have a scheme that has
the following properties

— It is simple and converges unconditionally for small enough timestep
sizes independent of meshsize

— The convergence rate improves as the timestep size decreases
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Summary

. The linearization schemes are faster if local estimations are taken but are
less stable

. Using u! = u,,_; and local estimations one can have a scheme that has
the following properties

— It is simple and converges unconditionally for small enough timestep
sizes independent of meshsize

— The convergence rate improves as the timestep size decreases

. The ideas were validated with numerical experiments

Eindhoven

T U Technische Universiteit
/ department of mathematics and computer science Houston, March 2019 e University of Technology




Summary

. The linearization schemes are faster if local estimations are taken but are
less stable

. Using u! = u,,_; and local estimations one can have a scheme that has
the following properties

— It is simple and converges unconditionally for small enough timestep
sizes independent of meshsize

— The convergence rate improves as the timestep size decreases

. The ideas were validated with numerical experiments

. The ideas are extended to pseudo parabolic equations

Technische Universiteit
. . I U e Eindhoven
/ department of mathematics and computer science Houston, March 2019 University of Technology



References

o W. Jager and J. Kacur. Solution of doubly nonlinear and degenerate parabolic problems by
relaxation schemes. ESAIM: Mathematical Modelling and Numerical Analysis, 29(5), 1995.

o F. List and F.A. Radu. A study on iterative methods for solving richards’ equation. Computa-
tional Geosciences, 20(2), 2004.

e I. S. Pop, F. Radu, and P. Knabner. Mixed finite elements for the Richards equation: lin-
earization procedure. Journal of Computational and Applied Mathematics, 168(1), 2004.

e F.A. Radu, I.S. Pop, and P. Knabner. Newton-type methods for the mixed finite element
discretization of some degenerate parabolic equations. In Numerical Mathematics and Ad-
vanced Applications, 2006.

e M. Celia, E.T. Bouloutas, and R. L. Zarba. General mass-conservative numerical solution for
the unsaturated ow equation. Water Resources Research, 26(7), 1990.

o D. Seus, K. Mitra, I.S. Pop, F. Radu, and C. Rohde. A linear domain decomposition method
for partially saturated flow in porous media. arXiv preprint arXiv:1708.03224, 2017.

e F.Lehmann and P.H. Ackerer. Comparison of iterative methods for improved solutions of the
fluid flow equation in partially saturated porous media. Transport in Porous Media, 31(3),
1998.

e L. Bergamaschi and M. Putti. Mixed finite elements and newton-type linearizations for the
solution of Richards’ equation. International Journal for Numerical Methods in Engineering,
45(8), 1999.

Technische Universiteit
. . I U e Eindhoven
/ department of mathematics and computer science Houston, March 2019 University of Technology



Thanks to

‘ :: ‘ UHASSELT\

and Thank You for listening
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