Dynamic Mode Decompositions and Koopman Analysis

 Applications in Fluid Flow AnalysisMaziar S. Hemati ${ }^{1}$, Marko Budišić ${ }^{2}$, and J. Nathan Kutz ${ }^{3}$
${ }^{1}$ Aerospace Engineering \& Mechanics, University of Minnesota
${ }^{2}$ Mathematics, Clarkson University
${ }^{3}$ Applied Mathematics, University of Washington

SIAM Conference on Applications of Dynamical Systems
Snowbird, UT

May 19, 2019

"A picture is a sum of destructions." -Pablo Picasso, 1935

Bull (1945-1946)

Sparse Representations:

Descriptions based on a "minimal" set of "essential" features.

- Essential features can inform understanding.
- Significance of features to a description depends on context.
- Everything should be made as simple as possible, but not simpler.

Sparse (Modal) Representations in Fluid Dynamics

Modes and Coherent Structures:

- Fluid flows have large (infinite) number of degrees of freedom, but most are "inactive".
- Only a few interacting "active modes" dominate complex evolution of fluid flow.

Sparse (Modal) Representations in Fluid Dynamics

Modes and Coherent Structures:

- Fluid flows have large (infinite) number of degrees of freedom, but most are "inactive".
- Only a few interacting "active modes" dominate complex evolution of fluid flow.

Extracting Sparse Representations from Data:

(1) Remove: Identify the relevant variables, and ignore the rest.
(2) Consolidate: Leverage dependencies to transform to lower-order representation.
"New dataset" should contain fewer variables, while preserving "interesting features" of original dataset.

Data-Informed Sparse Representations and POD/PCA

Consider a matrix of snapshot data $X=\left[\begin{array}{lllll}x_{0} & x_{1} & x_{2} & \ldots & x_{m}\end{array}\right] \in \mathbb{R}^{n \times m+1}$.

Use data covariance $C_{X}=\frac{1}{m} X X^{\top}$ to identify

- relevancy: large variances (i.e., diagonals in C_{X}) \Rightarrow highly dynamic
- redundancy: large covariances (i.e., off-diagonals in C_{X}) \Rightarrow highly redundant

Diagonalizing C_{X} provides an ideal view of the data, since

- all redundancies will be removed, and
- directions with largest variance will be isolated and ordered.

A Matter of Perspective

POD Perspective: A collection of snapshots.

Taira et al., AIAA Journal, 2017. Taira et al., arxiv:1903.05750.

DMD Perspective: A collection of snapshots related by a linear map (dynamics).

Rowley, Mezić, Bagheri, Schlatter, Henningson, J. Fluid Mechanics, 2009.
Schmid, J. Fluid Mechanics, 2010.

$$
\begin{aligned}
x_{1} & =A x_{0} \\
x_{2}=A x_{1} & =A^{2} x_{0} \\
x_{3}=A x_{2}=A^{2} x_{1} & =A^{3} x_{0}
\end{aligned}
$$

Knowledge of A enables prediction.

$$
x_{k}=A^{k} x_{0}
$$

$$
x_{k}=A x_{k-1}=A^{2} x_{k-2}=\ldots=A^{k} x_{0}
$$

From Prediction to Description

Prediction does not offer insight, so let's find an interpretable representation.
Express A in terms of its eigendecomposition

$$
A=V \wedge V^{-1}
$$

where

- $V=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]$ is a matrix of eigenvectors,
- $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is a diagonal matrix of eigenvalues.

Re-write the prediction in terms of the eigendecomposition of A,

$$
\begin{aligned}
x_{k} & =A^{k} x_{0} \\
& =\left(V \wedge V^{-1}\right)^{k} x_{0} \\
& =V \wedge^{k} V^{-1} x_{0} \\
& =V \wedge^{k} \alpha
\end{aligned}
$$

where $\alpha:=V^{-1} x_{0}$.

Overall dynamics as the sum of contributions from simple modal dynamics

$$
\begin{aligned}
x_{k} & =V \wedge^{k} \alpha \\
& =\sum_{j=1}^{n} v_{j} \lambda_{j}^{k} \alpha_{j} \\
& =\sum_{j=1}^{n} \underbrace{(\text { Mode } j)}_{\text {Space }} \underbrace{(\text { Eigenvalue } j)^{k}}_{\text {Time }} \underbrace{(\text { Amplitude } j)}_{\text {Relative Contribution }}
\end{aligned}
$$

Overall dynamics as the sum of contributions from simple modal dynamics

$$
\begin{aligned}
x_{k} & =V \wedge^{k} \alpha \\
& =\sum_{j=1}^{n} v_{j} \lambda_{j}^{k} \alpha_{j} \\
& =\sum_{j=1}^{n} \underbrace{(\text { Mode } j)}_{\text {Space }} \underbrace{(\text { Eigenvalue } j)^{k}}_{\text {Time }} \underbrace{(\text { Amplitude } j)}_{\text {Relative Contribution }}
\end{aligned}
$$

Overall dynamics as the sum of contributions from simple modal dynamics

Overall dynamics as the sum of contributions from simple modal dynamics

$$
\begin{aligned}
x_{k} & =V \wedge^{k} \alpha \\
& =\sum_{j=1}^{n} v_{j} \lambda_{j}^{k} \alpha_{j} \\
& =\sum_{j=1}^{n} \underbrace{(\text { Mode } j)}_{\text {Space }} \underbrace{(\text { Eigenvalue } j)^{k}}_{\text {Time }} \underbrace{(\text { Amplitude } j)}_{\text {Relative Contribution }}
\end{aligned}
$$

In practice, A unknown \rightarrow Extract modes, eigenvalues, and amplitudes from snapshot data.

Dynamic Mode Decomposition (DMD)

Consider a discrete-time system

$$
x \mapsto f(x) \in \mathbb{R}^{n}
$$

with snapshot data matrices

$$
\begin{aligned}
X & :=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right] \\
Y & :=\left[\begin{array}{llll}
f\left(x_{1}\right) & f\left(x_{2}\right) & \cdots & f\left(x_{m}\right)
\end{array}\right]
\end{aligned}
$$

DMD modes and eigenvalues correspond to eigenvectors and eigenvalues of the DMD operator

$$
A:=Y X^{+} \in \mathbb{R}^{n \times n}
$$

(Tu et al., 2014)

$$
\begin{aligned}
& X=U \Sigma V^{\top} \\
& \tilde{A}=U_{r}^{\top} Y V_{r} \Sigma_{r}^{-1} \in \mathbb{R}^{r \times r}, \\
& A=U_{r} \tilde{A} U_{r}^{\top} \in \mathbb{R}^{n \times n}
\end{aligned}
$$

Example: Flow past a cylinder ($\mathrm{Re}=413$)

DMD eigenvalues relate to temporal characteristics (i.e., simple modal dynamics).

- Modal frequencies \rightarrow phase angles
- Modal growth/decay rates \rightarrow magnitudes

Example: Flow past a cylinder ($\mathrm{Re}=413$)

What spatial structures are involved in the modal dynamics?
$\operatorname{Re}\left\{v_{j}\right\}$

$\operatorname{Im}\left\{v_{j}\right\}$

Example: Flow past a cylinder ($\mathrm{Re}=413$)

What spatial regions are active in each mode?
What spatial regions lead/lag others in each mode?

Magnitude

Phase

Reconstruction
ーロー・

Mode 1

Mode 2／3

Reconstructing Fluid Dynamics

Reconstruction
बी०0 =

Mode 1
 $+$

Mode 4/5

Reconstructing Fluid Dynamics

Reconstruction

Mode 1

Mode 4/5

Mode 2/3

Mode 6/7

Reconstructing Fluid Dynamics

Mode 1

Mode 4/5
$+$

- 韶l!
$+$

Mode 8/9
$+$

Mode 2/3

Mode 6/7

Reconstructing Fluid Dynamics

Mode 1

Mode 4／5
＋O彭ll！

Mode 8／9
$+$

Mode 2／3

Mode 6／7

Mode 10／11

| | |
| :--- | :--- | :--- |
| .1 | 1 |

Reconstructing Fluid Dynamics

Reconstruction

Mode 4/5

+ - ̄ill!

Mode 8/9
$+$

$+$

Mode 12/13
$+$

3(2)

Mode 2/3

Mode 6/7

Mode 10/11

Reconstructing Fluid Dynamics

Reconstruction

Mode 1

Mode 4/5

Mode 8/9

Mode 12/13
$+$

Mode 2/3

Mode 6/7

Mode 10/11i)

Mode 14/15

3 Modes

7 Modes

15 Modes

30 Modes

Deconstructing complex systems beyond fluid mechanics

- Video Processing
- Neuroscience
- Epidemiology
- Robotics
- Sustainable Buildings
- Power Systems
- ...

Original Feed

Stationary

Moving

What are the limitations and weaknesses of DMD?

- Difficult in deciding which modes are important.
- Sensitivity to noisy data.
- Inability to model nonlinear dynamics.
- Inability to model the effects of actuation.
- Can be computationally expensive or intractable for large datasets.

Variants of Dynamic Mode Decomposition

Deciding which modes are important

- Selection of optimal subspace for projection
- Wynn et al., 2013
- Chen at al., 2012
- Selection of a sparse set of modes
- Jovanović et al. 2014

Improving performance with noisy data

- Noise-robust and bias-free algorithms
- Dawson et al., 2016
- Hemati et al., 2017
- Askham \& Kutz, 2017
- Characterizing process noise effects
- Bagheri, 2014

Modeling the effect of actuation

- DMD with control
- Proctor et al., 2016

Dealing with big data

- Streaming algorithms
- Hemati et al., 2014
- Parallelized algorithms
- Belson et al., 2013
- Sayadi \& Schmid, 2016
- Anantharamu \& Mahesh, 2019
- Random projection methods
- Erichson \& Donovan, 2016
- Erichson et al., 2017
- Random sampling methods
- Tu et al., 2014
- Brunton et al., 2015
- Erichson et al., 2016

Modeling nonlinear dynamics

- Extended DMD
- Williams et al., 2015

[^0]
Software available at http://z.umn.edu/dmdtools

Dynamic Mode Decomposition (DMD)

Consider a discrete-time system

$$
x \mapsto f(x) \in \mathbb{R}^{n}
$$

with snapshot data matrices

$$
\begin{aligned}
X & :=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right] \\
Y & :=\left[\begin{array}{llll}
f\left(x_{1}\right) & f\left(x_{2}\right) & \cdots & f\left(x_{m}\right)
\end{array}\right]
\end{aligned}
$$

DMD modes and eigenvalues correspond to eigenvectors and eigenvalues of the DMD operator

$$
A:=Y X^{+} \in \mathbb{R}^{n \times n}
$$

(Tu et al., 2014)

$$
\begin{aligned}
& X=U \Sigma V^{\top} \\
& \tilde{A}=U_{r}^{\top} Y V_{r} \Sigma_{r}^{-1} \in \mathbb{R}^{r \times r}, \\
& A=U_{r} \tilde{A} U_{r}^{\top} \in \mathbb{R}^{n \times n}
\end{aligned}
$$

DMD for Large and Streaming Datasets

What is DMD really doing?
(1) Compute an orthonormal basis for the image of X.
(2) Construct a "small" proxy system to solve the eigenproblem.
(3) Relate the eigenvectors and eigenvalues of the small problem to those of the full problem (i.e., $A=Q_{X} \tilde{A} Q_{X}^{\top}$).

Standard DMD

Hemati, Williams, Rowley, Phys. Fluids, 2014.

DMD for Large and Streaming Datasets

What is DMD really doing?
(1) Compute an orthonormal basis for the image of X.
(2) Construct a "small" proxy system to solve the eigenproblem.
(3) Relate the eigenvectors and eigenvalues of the small problem to those of the full problem (i.e., $A=Q_{X} \tilde{A} Q_{X}^{\top}$).

Standard DMD

To design a streaming DMD method, assume:
(1) Only one snapshot pair $\left(x_{i}, y_{i}\right)$ can be stored at a given time (i.e., "single-pass").
(2) The data in X and Y are low-rank.

Hemati, Williams, Rowley, Phys. Fluids, 2014.

DMD for Large and Streaming Datasets

Standard DMD

Re-write DMD as

- Q_{X}, Q_{Y} can be computed via a Gram-Schmidt procedure.
- $K:=\tilde{Y} \tilde{X}^{\top}, G_{X}:=\tilde{X} \tilde{X}^{\top}, \tilde{X}:=Q_{X}^{\top} X, \tilde{Y}:=Q_{Y}^{\top} Y$ can be dynamically updated.

DMD for Large and Streaming Datasets

Standard DMD

Re-write DMD as

- (Optional) Maintain low-rank via POD compression.
- Define $G_{Y}:=\tilde{Y} \tilde{Y}^{\top}$ and make use of leading eigenvectors of G_{X}, G_{Y}.

Hemati, Williams, Rowley, Phys. Fluids, 2014.

DMD for Large and Streaming Datasets

Standard DMD

Re-write DMD as

- $\mathcal{O}\left(n r^{2}\right)$ operations per iterate with mode computations.
- $\mathcal{O}(n r)$ operations per iterate without mode computations.
- $\mathcal{O}(n r)$ storage of matrix entries (single-pass method).

DMD for Large and Streaming Datasets

Example: PIV data for laminar flow past a cylinder ($\mathrm{Re}=413$)

PIV data courtesy of Jessica Shang, U. Rochester.

DMD for Large and Streaming Datasets

Noise makes the data full-rank, regardless of the nature of the underlying dynamics.
\rightarrow Apply POD Compression ($r=25$)
Frequency Spectrum

Batch-Processed DMD: 3 Cores; Wall-clock $\sim \mathcal{O}$ (hours)
Streaming DMD: My laptop; Wall-clock $\sim \mathcal{O}$ (minutes)
$n=10800, m=8000$
Hemati, Williams, Rowley, Phys. Fluids, 2014.

DMD for Large and Streaming Datasets

Batch-Processed DMD

$$
f=1.744 \mathrm{~Hz}
$$

Streaming DMD

$$
f=0.887 \mathrm{~Hz}
$$

$$
f=1.737 \mathrm{~Hz}
$$

Hemati, Williams, Rowley, Phys. Fluids, 2014.

Prior to applying DMD to (noisy) experimental data, we should ask:

- How does measurement noise influence DMD analyses?
- Are such analyses representative of the "true" system dynamics?

Example: A complex-valued linear system ($n=250, r=2$)

- Additive measurement noise $(\Delta X, \Delta Y) \sim \mathcal{C N}(0,0.05)$.
- Computations repeated for 200 independent noise realizations.

DMD and Measurement Noise

Example: A complex-valued linear system ($n=250, r=2$)

- Additive measurement noise ($\Delta X, \Delta Y$) $\sim \mathcal{C N}(0,0.05)$.
- Computations repeated for 200 independent noise realizations.

Here, DMD identifies unstable eigenvalues as stable and decaying!

DMD and Measurement Noise

Example: A complex-valued linear system ($n=250, r=2$)

- Additive measurement noise $(\Delta X, \Delta Y) \sim \mathcal{C N}(0,0.05)$.
- Computations repeated for 200 independent noise realizations.

Here, DMD identifies unstable eigenvalues as stable and decaying!

Assume additive zero-mean i.i.d. noise with variance σ^{2} on all snapshots (X, Y), and recall that $A=Y X^{+}$(or, $\left.\tilde{A}=Q_{X}^{\top} Y X^{+} Q_{X}\right)$.

For small noise, can correct for this error in DMD as

$$
\begin{aligned}
& \tilde{A}_{\text {corrected }}=\tilde{A}\left(I-m \sigma^{2} \Sigma^{-2}\right) \\
m:= & \text { \# snapshots } \\
\Sigma:= & \text { matrix of non-zero singular values of } X \\
\sigma^{2}:= & \text { measurement noise variance }
\end{aligned}
$$

Dawson, Hemati, Williams, Rowley, Exp. Fluids, 2016.

Instead of relying on knowledge of the noise distribution, let's directly consider the interpretation of DMD as

$$
A=Y X^{+}
$$

Hemati, Rowley, Deem, Cattafesta, TCFD, 2017.

Instead of relying on knowledge of the noise distribution, let's directly consider the interpretation of DMD as

$$
A=Y X^{+}
$$

In the over-constrained case (i.e., $m>n$), this can be re-written as

$$
\min _{A, \Delta Y}\|\Delta Y\|_{F}, \quad \text { subject to } \quad Y+\Delta Y=A X
$$

When snapshots are noisy, the residual ΔY can be interpreted as a "noise-correction."

Hemati, Rowley, Deem, Cattafesta, TCFD, 2017.

Instead of relying on knowledge of the noise distribution, let's directly consider the interpretation of DMD as

$$
A=Y X^{+}
$$

In the over-constrained case (i.e., $m>n$), this can be re-written as

$$
\min _{A, \Delta Y}\|\Delta Y\|_{F}, \quad \text { subject to } \quad Y+\Delta Y=A X
$$

When snapshots are noisy, the residual ΔY can be interpreted as a "noise-correction."
What about $\Delta X ? \longrightarrow$ Asymmetric treatment of noise!

Hemati, Rowley, Deem, Cattafesta, TCFD, 2017.

Instead, consider a problem of total least-squares:

$$
\min _{A, \Delta X, \Delta Y}\left\|\left[\begin{array}{c}
\Delta X \\
\Delta Y
\end{array}\right]\right\|_{F}, \quad \text { subject to } \quad Y+\Delta Y=A(X+\Delta X)
$$

Hemati, Rowley, Deem, Cattafesta, TCFD, 2017.

A two-stage method for noise-robust "total" DMD (TDMD) analysis:

Stage 1: Subspace Projection

Define an augmented snapshot matrix $Z:=\left[\begin{array}{c}X \\ Y\end{array}\right]$,
then $\bar{Y}=Y_{\mathbb{P}_{Z_{n}^{\top}}}, \bar{X}=X \mathbb{P}_{Z_{n}^{\top}}$,
where Z_{n} is the best rank- n approximation of Z.
*When the underlying dynamics are r-dimensional, replace n with r.
Results are "best" when $r \ll m$.

Stage 2: Operator Identification

Perform DMD on the projected snapshots \bar{X}, \bar{Y}.
*Any variant of DMD can be used here (e.g., streaming DMD).

- the "de-biasing" occurs in the subspace projection stage.

Hemati, Rowley, Deem, Cattafesta, TCFD, 2017.

A Noise-Aware "Total" DMD

Example: A complex-valued linear system ($n=250, r=2$)

- Additive measurement noise $(\Delta X, \Delta Y) \sim \mathcal{C N}(0,0.05)$.
- Computations repeated for 200 independent noise realizations.

Hemati, Rowley, Deem, Cattafesta, TCFD, 2017.

A Noise-Aware "Total" DMD

Example: A complex-valued linear system ($n=250, r=2$)

- Additive measurement noise $(\Delta X, \Delta Y) \sim \mathcal{C N}(0,0.05)$.
- Computations repeated for 200 independent noise realizations.

Hemati, Rowley, Deem, Cattafesta, TCFD, 2017.

Case Study: Flow Separation and its Control

Image courtesy of www.dlr.de

Flow separation can degrade performance in many engineered systems:

- Decreased lift
- Increased drag
- Reduced efficiency
- Compromised control authority

Case Study: Flow Separation and its Control

Flow separation can degrade performance in many engineered systems:

- Decreased lift
- Increased drag
- Reduced efficiency
- Compromised control authority

Image courtesy of www.dlr.de

Separated flow past an airfoil is characterized by frequencies associated with the

- wake
- shear layer (SL)
- separation bubble (SB)
- actuation (if applied)

Experimental Setup

Canonical separated flow model

- Removing airfoil curvature dependence
- 4:1 elliptical leading edge
- Chord $=40.2 \mathrm{~cm}$
- Thickness $=3.8 \mathrm{~cm}$
- \quad Span $=29.2 \mathrm{~cm}$
- $R e_{c}=10^{5}$
- $13 \mathrm{WM}-61 \mathrm{~A}$ mics
- Spacing: 0.02c

Surface
Microphone Array

Experimental Setup

Canonical separated flow model

Surface

- Removing airfoil curvature dependence
- 4:1 elliptical leading edge
- Chord $=40.2 \mathrm{~cm}$
- Thickness $=3.8 \mathrm{~cm}$
- \quad Span = 29.2 cm
- $R e_{c}=10^{5}$
- $13 \mathrm{WM}-61 \mathrm{~A}$ mics
- Spacing: 0.02c

Microphone Array

Separation induced by blowing/suction on tunnel ceiling [1]

- Retains essential separation characteristics [2]
- Eliminates curvature effects
- Amenable to both simulations and experiments
[1] Na and Moin. "Direct numerical simulation of a separated turbulent boundary layer", J. Fluid Mech. 1998-370 [2] Mittal et al. "Numerical study of resonant interactions and flow control", AIAA 2005-1261

Canonical separated flow model

- Removing airfoil curvature dependence
- 4:1 elliptical leading edge
- Chord $=40.2 \mathrm{~cm}$
- Thickness $=3.8 \mathrm{~cm}$
- $S p a n=29.2 \mathrm{~cm}$
- $R e_{c}=10^{5}$
- 13 WM-61A mics
- Spacing: 0.02c

Separation induced by blowing/suction on tunnel ceiling [1]

- Retains essential separation characteristics [2]
- Eliminates curvature effects
- Amenable to both simulations and experiments
[1] Na and Moin. "Direct numerical simulation of a separated turbulent boundary layer", J. Fluid Mech. 1998-370
[2] Mittal et al. "Numerical study of resonant interactions and flow control", AIAA 2005-1261

DMD analysis of TR-PIV data of canonically separated flow experiment $\left(R e=10^{5}\right)$

video slowed $40 \times$
FSU Flow Control Wind Tunnel

Streaming Analysis of Canonically Separated Flow TR-PIV Data

Mean separation bubble height is smallest when ZNMF is forced at the dominant DMD frequency ($f_{b}=106 \mathrm{~Hz}$).

Time-averaged vorticity

TDMD of Baseline Separated Flow:

- Dimension of snapshot: $n=20,064$, Number of snapshots: $m=10,000$, Rank: $r=25$

TDMD of Baseline Separated Flow:

- Dimension of snapshot: $n=20,064$, Number of snapshots: $m=10,000$, Rank: $r=25$

TDMD of Pressure Field:

Similar dynamical characteristics \rightarrow Surface pressure based ROM

Deem et al., AIAA Paper 2018-1052.

Canonical separated flow model

- Removing airfoil curvature dependence
- 4:1 elliptical leading edge
- Chord $=40.2 \mathrm{~cm}$
- Thickness $=3.8 \mathrm{~cm}$
- \quad Span $=29.2 \mathrm{~cm}$
- $R e_{c}=10^{5}$
- 13 WM-61A mics
- Spacing: 0.02c

Separation induced by blowing/suction on tunnel ceiling [1]

- Retains essential separation characteristics [2]
- Eliminates curvature effects
- Amenable to both simulations and experiments
[1] Na and Moin. "Direct numerical simulation of a separated turbulent boundary layer", J. Fluid Mech. 1998-370 [2] Mittal et al. "Numerical study of resonant interactions and flow control", AIAA 2005-1261

Online DMD of surface pressure data

Pressure measured by microphone array ($n=13$)
Online DMD used to extract time-varying frequencies (Zhang et al., 2017)

Deem et al., AIAA Paper 2018-1052.

Related work:

- DMD with Control (Proctor et al., 2016)
- Online DMD for TV Systems (Zhang et al., 2017)
- Koopman MPC (Arbabi et al, 2018)

Deem et al., AIAA Paper 2018-1052.

Related work:

- DMD with Control (Proctor et al., 2016)
- Online DMD for TV Systems (Zhang et al., 2017)
- Koopman MPC (Arbabi et al, 2018)

Related work:

- DMD with Control (Proctor et al., 2016)
- Online DMD for TV Systems (Zhang et al., 2017)
- Koopman MPC (Arbabi et al, 2018)

Related work:

- DMD with Control (Proctor et al., 2016)
- Online DMD for TV Systems (Zhang et al., 2017)
- Koopman MPC (Arbabi et al, 2018)

Adaptive/Model-Predictive Control of Separated Flow

- Suppress surface pressure fluctuations
- Primary control loop rate: $125 f_{S L}(10 \mathrm{kHz})$
- LQR gains updated at $4 f_{S L}(0.33 \mathrm{kHz})$
- $Q_{l q r}=20 \times I, R_{l q r}=0.3$
- Online DMD weighting factor: $\kappa=0.99995$
$\rightarrow 50 \%$ snapshot attenuation after $\tau \approx 227$

Deem et al., AIAA Paper 2018-1052.

- DMD/Koopman offer powerful perspectives for analyzing fluid flows (and other systems).
- Volume, velocity, and veracity are practical challenges that must be considered in practice.

Software available at http://z.umn.edu/dmdtools

Acknowledgements:

- Lou Cattafesta (FSU)
- Scott Dawson (IIT)
- Eric Deem (Lockheed Martin)
- Clancy Rowley (Princeton)

Supported by:

- Air Force Office of Scientific Research
- Matt Williams (Oceanit)
- AIAA DGs on Modal Analysis and Reduced-Complexity Modeling

Q\&A

- Theory
- Computations
- Applications

Software Resources:

- mathLab/PyDMD - GitHub
- dmdbook.com
- z.umn.edu/dmdtools

[^0]: DMD can be customized to suit a variety of applications/datasets.

