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History of the discovery of the 20 universal
amino acids

• 1806: Louis-Nicolas Vauquelin and Pierre-Jean Robiquet isolate the first amino acid 
in asparagus (asparagine). 

• 1868: Friedrich Miescher discovers nucleic acids.

• 1935: William Rose discovers the 20th (and final) universal amino acid (threonine).

• 1939: Caspersson and Schultz propose a connection between RNA and protein 
synthesis.

• 1942: Starvation experiments in graduate students establish that eight amino acids 
are essential.
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It is assumed in one of the more popular theories of protein synthesis that amino acids 
are ordered on a nucleic acid strand (see, for example, Dounce [1]) and that the order of 
the amino acids is determined by the order of the nucleotides of the nucleic acid. There 
are some twenty naturally occurring amino acids commonly found in proteins, but 
(usually) only four different nucleotides. The problem of how a sequence of four things 
(nucleotides) can determine a sequence of twenty things (amino acids) is known as the 
"coding" problem.
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Crick, Griffith and Orgel, PNAS 1957.

42 < 20 < 43



A sense and nonsense proposal

• There must be a mechanism for determining “frame”:

•  Crick, Griffith and Orgel guess that this may be accomplished via a
“comma free code”. That is, an assignment of a subset of nucleotide triplets to 
sense codons such that any sequence of successive sense codons only has 
nonsense codons in the shifted positions.
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Two simple observations and a question

•  Repeats cannot be sense triplets. For example, if AAA is nonsense because the 
frame cannot be determined in the sequence AAAAAA. 

• Shifts of sense triplets must be nonsense. For example, if AGC is a sense triplet, 
then GCA and CAG cannot be. This is because the frame must be recognizable in 
the sequence AGCAGC.

• Question: what is the maximum size of a comma free code on a four letter alphabet?
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Example of a comma free code

AGA  AGG   ACA   ACG  ACC
GCA  GCG  GCC   ATA   ATG
ATC    ATT   GTA   GTG  GTC
GTT   CTA   CTG   CTC  CTT
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The resulting math

• Let W(k,n) be the maximum number of words in a comma free dictionary where each 
word has size k and the size of the alphabet is n.

• Theorem:

• Proved by Golomb, Gordon and Welch in 1958 (Canadian Journal of Mathematics).

• Showed that the bound is tight for k=1,3,5,7,9,11,13 and 15.

• Showed that the bound is tight for k=2, 

•  Crick, Griffith and Orgel’s result is the special case W(3,4)=20.
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The math

•  Eastman (1965) showed that the bound is tight for all odd k.

•  The problem of determining whether the bound is tight remains open for even k.
The current best result is due to Tang, Golomb and Graham from 1987.

• The bound 

is based on counting the number of necklaces of period n with k types of beads. This 
connects the problem to numerous questions in enumerative combinatorics.  
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My first (biological?) paper

• Motivated by a paper of Kleitman and Füredi on zero sum sequences we asked how 
many subsets of a finite abelian group sum to to the identity element.

• A special case of this is the number of subsets of {1,...n} that sum to k modn

[N. Kitchloo and P., 1994]

• The Crick et al. bound agrees with our formula (k=1), and it is an open problem to 
find an explicit bijection when n is not prime [see also Stanley EC1].
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Genetic chaos and a philosophical comment...

•  In their paper, in a section titled “Applications”, Golomb, Gordon and Welch write:

“ The reasonableness of this [comma free] condition can be seen if we think of the 
sequence of nucleotides as an infinite message, written without punctuation, from 
which any finite portion must be decodeable into a sequence of amino acids by 
suitable insertion of commas. If the manner of inserting commas were not unique, 
genetic chaos would result.”

• In fact, the theory is (completely) false. However it is an example of
interesting mathematics inspired by biology.

13



Deciphering the “genetic code”

14

“It has not escaped our attention that the specific pairing 
we have postulated immediately suggests a copying 
mechanism for the genetic material”

• 1955: Francis Crick suggests the “adaptor
hypothesis”. 

• 1956: Gamow thinks mathematically about
the number of nucleotides necessary to make
one amino acid.  

• 1963: Pauling and Zuckerkandl compare amino acid
sequences thereby ushering in the era of comparative
genomics.
 

• 1953: Watson, Crick and Franklin’s work leads
to the proposed double helix structure for DNA

• 1954: George Gamow founds the RNA tie club.
The club consists of 20 regular members and
4 honorary members. 



Pauling’s (biological) idea [1963]

15

Function is related to conservation



Pauling’s (biological) idea [1963]

15

Function is related to conservation
“Nothing in Biology Makes Sense Except in the Light of Evolution”

- Theodosius Dobzhansky (1973)
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An algorithm for a biological problem 
that reveals a solution to a math problem



The neighbor-joining algorithm [Saitou & Nei, 1987]

 Input: dissimilarity map

 Output: tree T together with 
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D = (dij)n
i,j=1.

w : E(T )→ R.



The neighbor-joining algorithm [Saitou & Nei, 1987]

 Given dissimilarity map
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 Replace a and b with a new leaf c and create a new dissimilarity map with  
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 Pick a pair of cities for which the average length of tours with those cities as 
neighbors is minimized:

 Repeat.
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A greedy algorithm



A greedy algorithm 
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 Fix the neighbors and repeat, each 
time minimizing the average length of 
the remaining possible tours.

 This algorithm is called the neighbor-
net algorithm.



Why neighbor-net?
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Once a circular ordering (tour) has been established, weights can be assigned to the 
circular splits so that if the distance between cities is computed as the sum of the split 
weights that separate them, then these distances approximate the original distances.



Why neighbor-net?

 Input: dissimilarity map.
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 Output: cyclic permutation and a tree .

A record of the steps with at which cities are joined produces a triangulation of the n-
gon. This triangulation is in bijection with a tree. This tree is the neighbor-joining tree.



Neighbor-net can be implemented in time O(n3) 
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1987: Saitou and Nei present the neighbor-joining algorithm for building phylogenetic 

trees that runs in O(n3).

1988: Studier and Keppler complete a proof that it is consistent.

 2002: Bryant and Moulton adapt this algorithm to produce the O(n3) of the neighbor-

net algorithm just explained.

 2007: Levy and P. explain that the algorithm of Bryant and Moulton is a greedy 

algorithm for the traveling Salesman problem.



The Kalmanson conditions

• A metric satisfies the Kalmanson conditions if for some circular permutation x1,....xn  

it satisfies the parallelogram law:
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Property of the neighbor-net algorithm

•Theorem: If a dissimilarity map satisfies the Kalmanson conditions with respect to 
some circular ordering then neighbor-net outputs the circular ordering.

•Corollary: neighbor-net is statistically consistent. Equivalently, neighbor-net provides 
optimal (and robust!) TSP solutions for Kalmanson matrices.
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• It suffices to show that for Kalmanson matrices, at any step only neighbors in the 
circular ordering will be joined.

• Cases: 

Optimality of the neighbor-net algorithm
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• If there are more than 3 points in between, the proof that there are two adjacent 
points that will be joined first is non-constructive.
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0	    (R) and the space of phylogenetic networks
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Experiment: the traveling salesman problem

• Experimented with the 70 city st70.tsp problem from TSPLIB.

• Optimal tour has length 678.598.

• Neighbor-net tour has length 759.801.
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Example: votes of the United States senate
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RepublicanDemocrat



Some conclusions

• Mathematics, computer science and statistics have emerged as essential sciences 
for biology. At the same time, biological problems can offer interesting 
opportunities for mathematics. 

• In this talk I have focused on aspects of biology which touch on combinatorics, but 
there are many similar stories from other branches of biology and in other areas of 
mathematics.

• Biologists may not always have formal math training (on average), yet they respect 
mathematics and have on many occasions discovered beautiful mathematics. In his 
autobiography, Darwin wrote “I have deeply regretted that I did not proceed far 
enough at least to understand something of the great leading principles of 
mathematics; for men thus endowed seem to have an extra sense.

31


