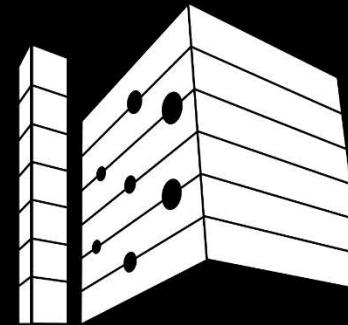


MOLECULAR  
FOUNDRY



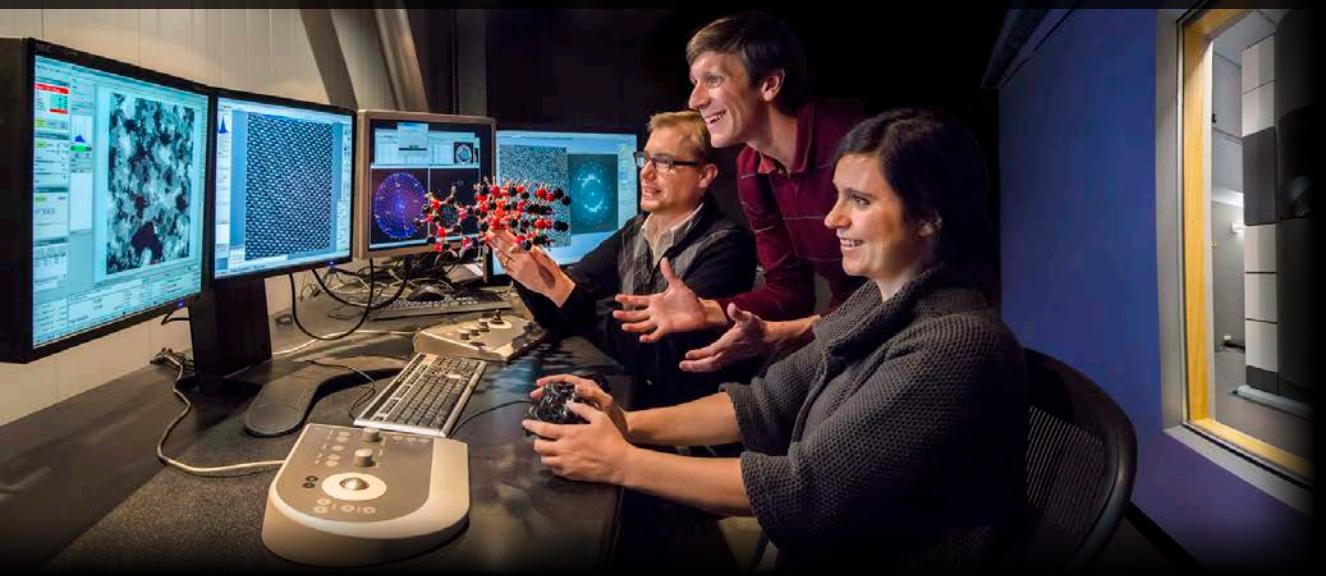
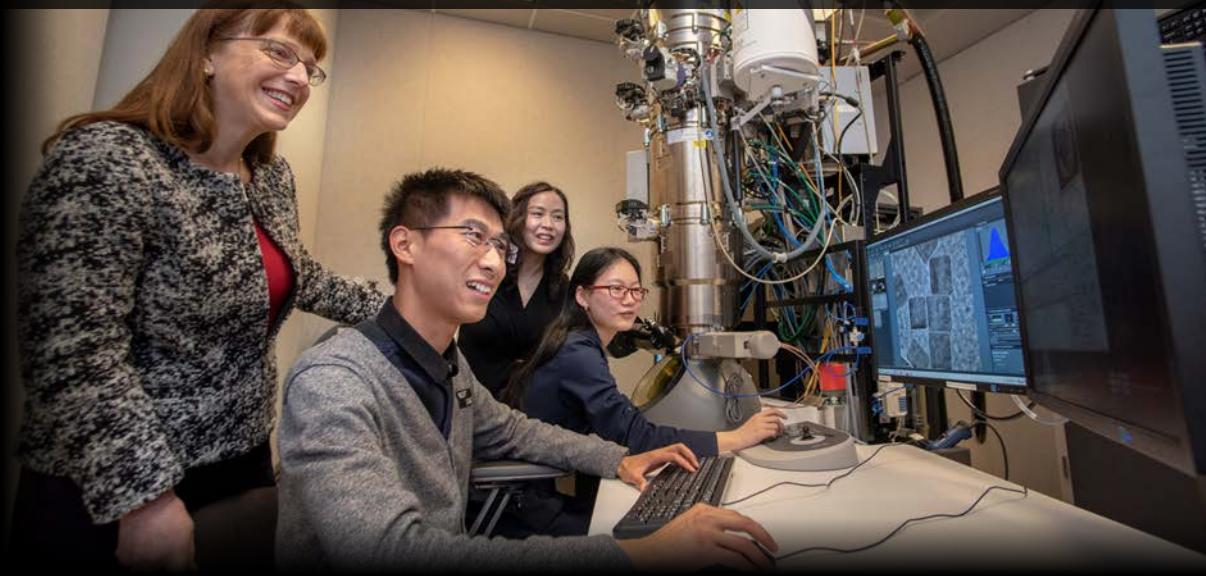
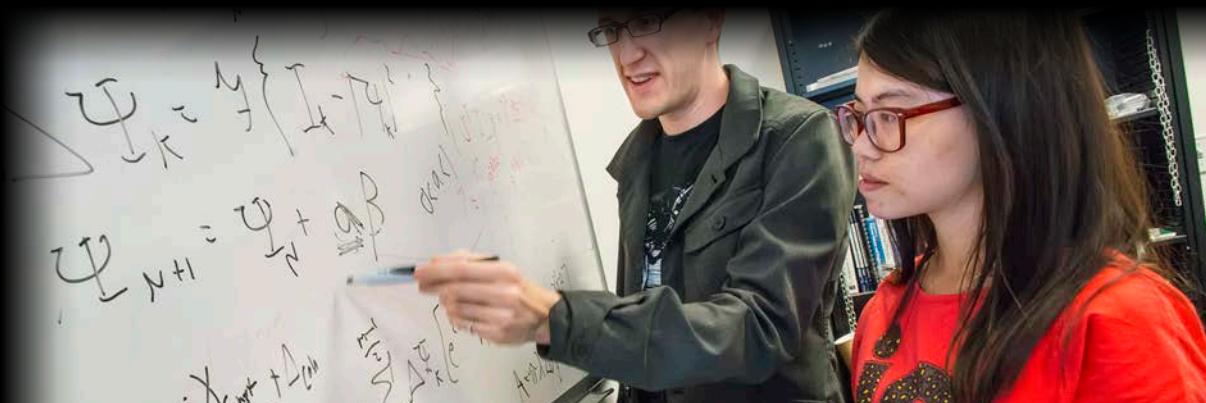
# Data Analysis and Machine Learning for 4DSTEM Characterization

**Colin Ophus**

NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory

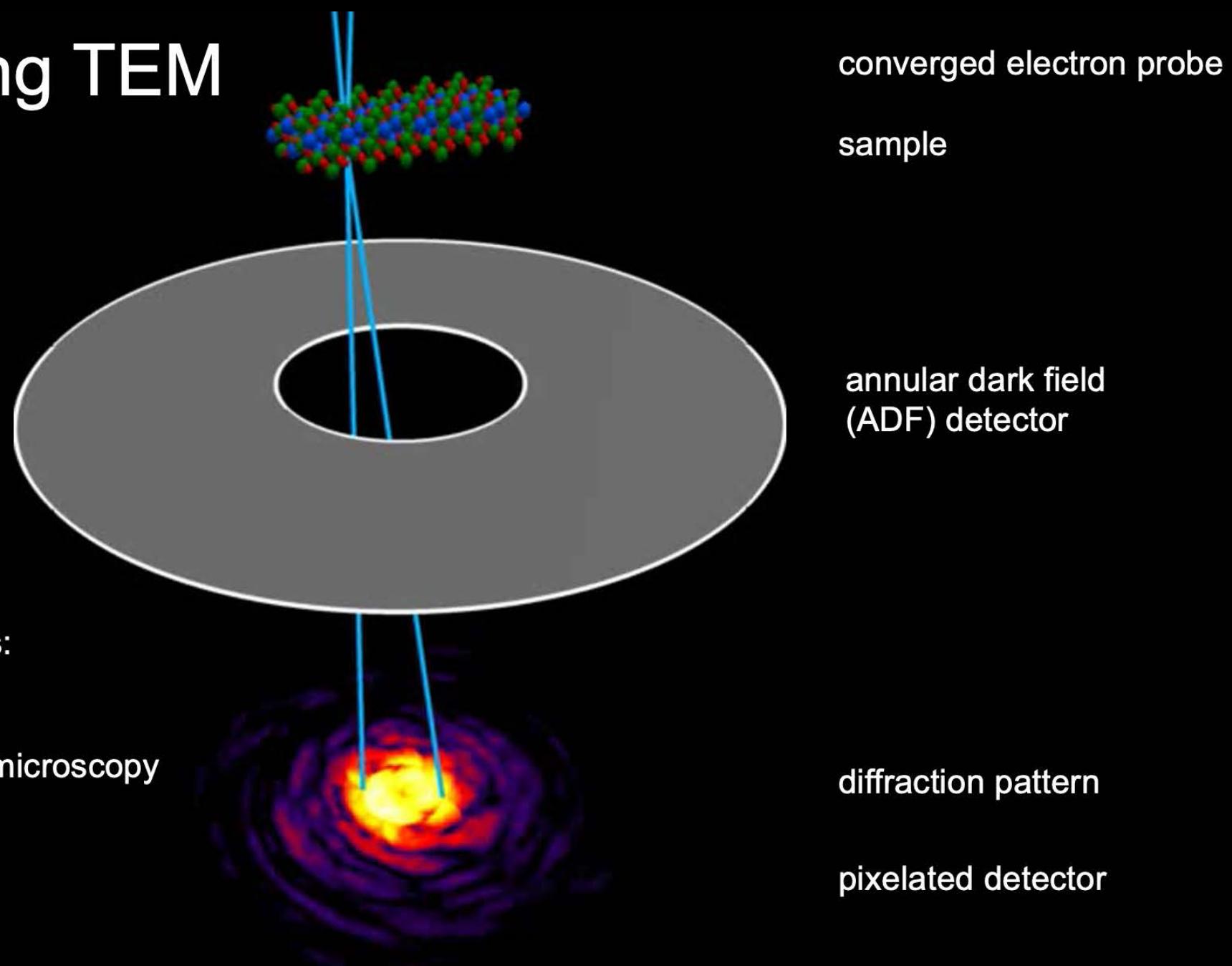
14:45 Tuesday, 18 April 2024 – Monterey Marriott in Monterey, CA  
Frontiers of Characterization and Metrology for Nanoelectronics (FCMN)

# Molecular Foundry User Facility – Sept 2024 – [foundry.lbl.gov](http://foundry.lbl.gov)



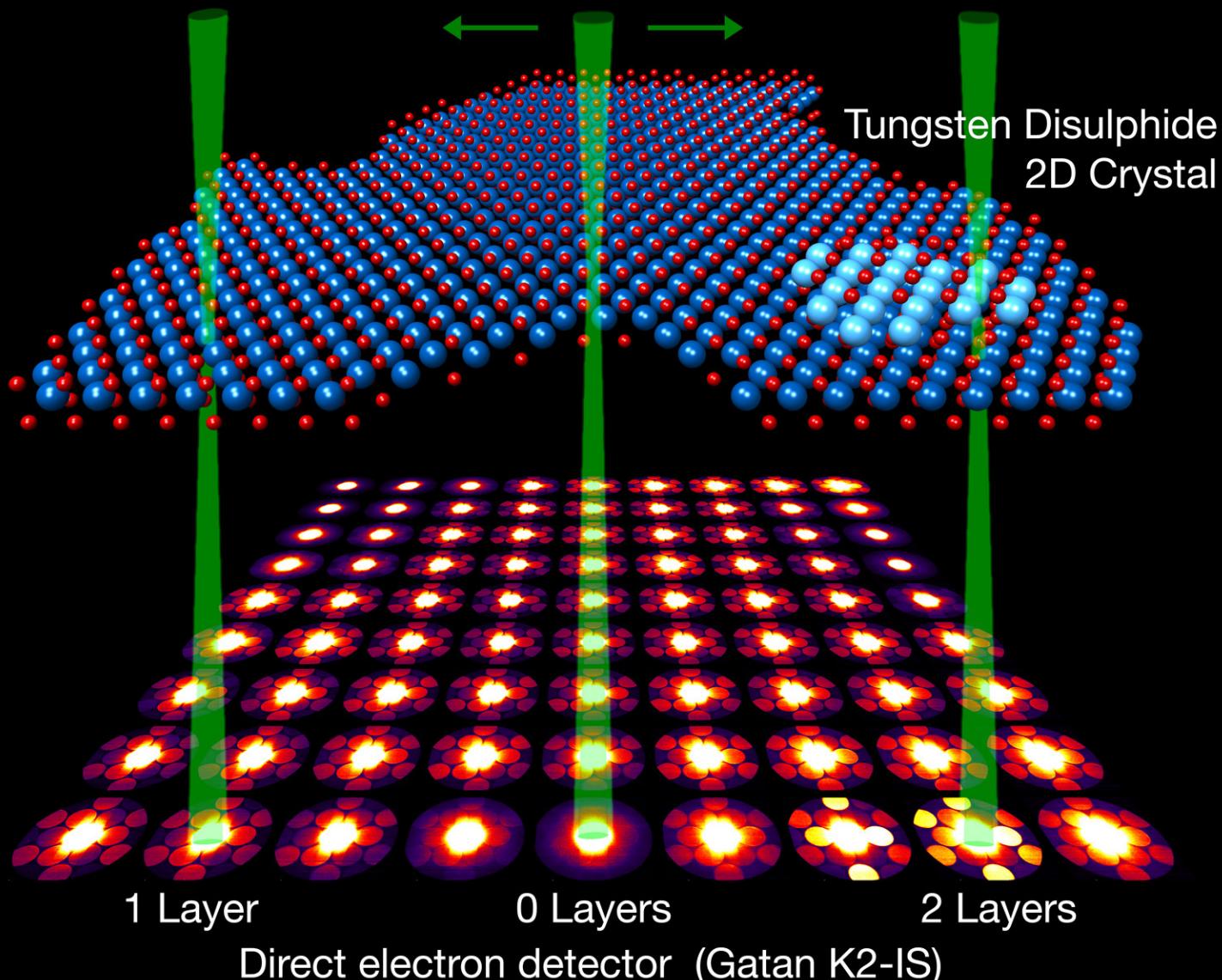
- We are a **user facility** at the Berkeley Lab, operated by the US Department of Energy.
- **Anyone** can submit a proposal (including for **computation, simulation or analysis!**).
- If accepted by independent review board, access to microscopes and staff is **free**.

# Intro to Scanning TEM



# 4D STEM Experiments

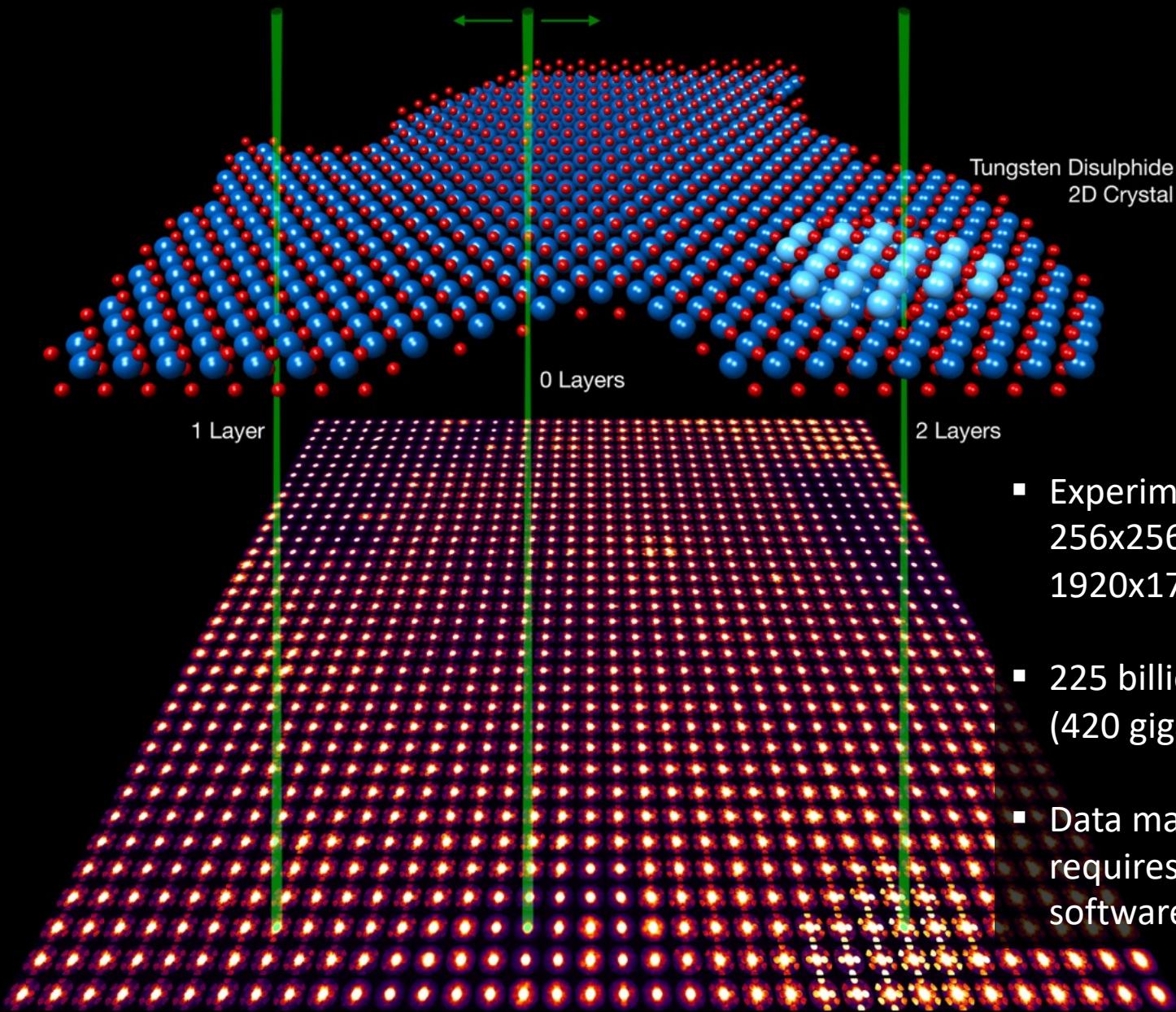
Converged electron probe rastered over sample (TEAM I)



Each image is  
40 x 40 positions  
averaged ...

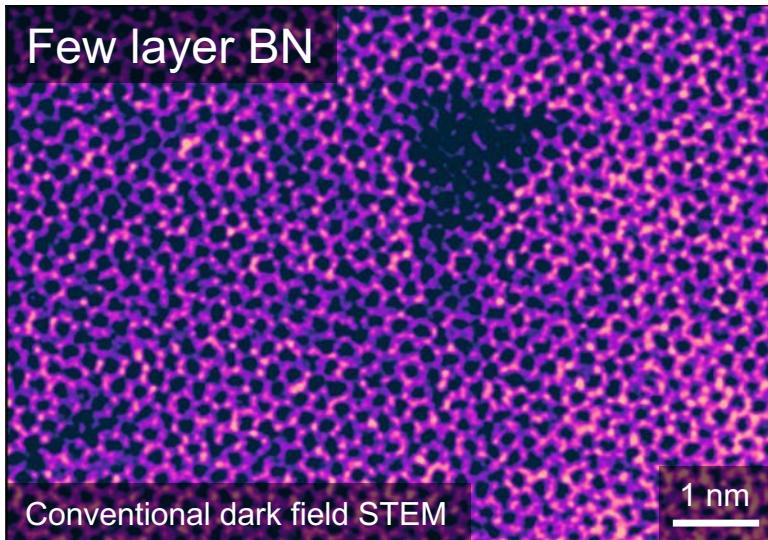
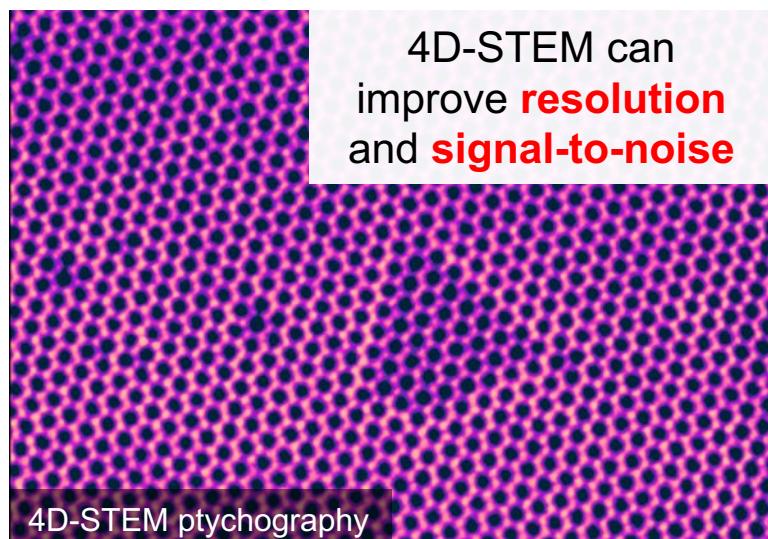
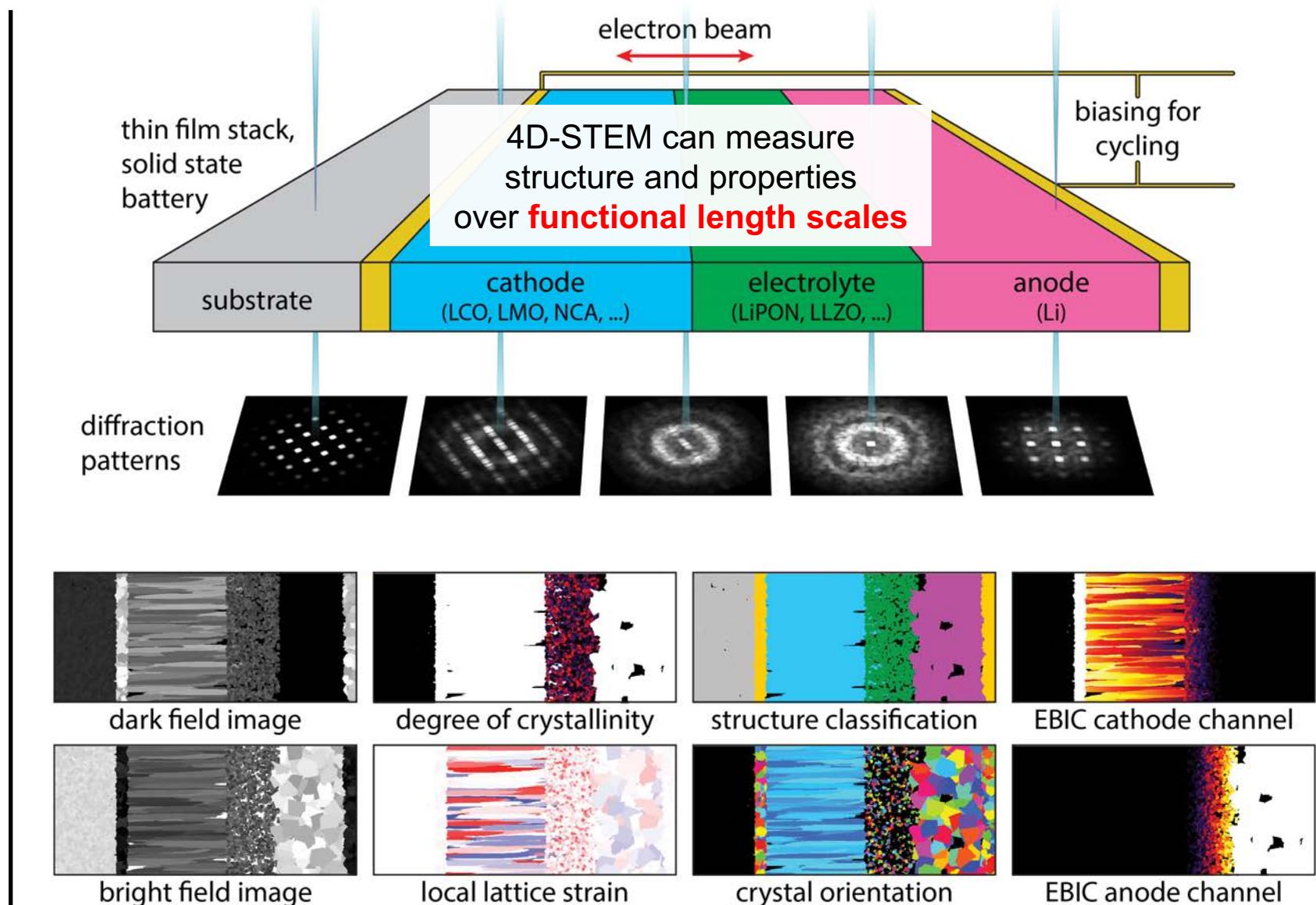
# 4D STEM Experiments

Each image is  
7 x 7 positions  
averaged ...

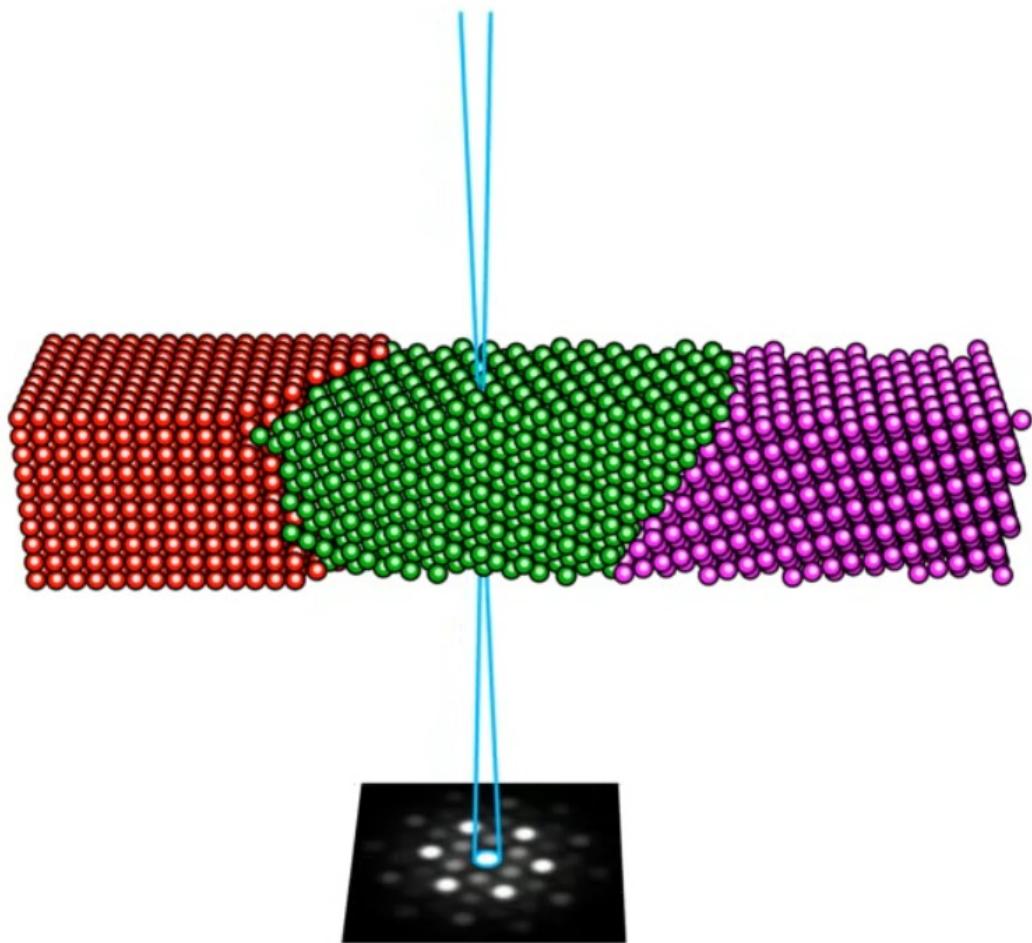


- Experimental K2 IS dataset, 256x256 probe positions, 1920x1792 CBED image sizes.
- 225 billion pixels (420 gigabytes) in ≈3 minutes.
- Data manipulation / analysis requires fast and robust software methods.

# Motivation – Why do 4D-STEM?

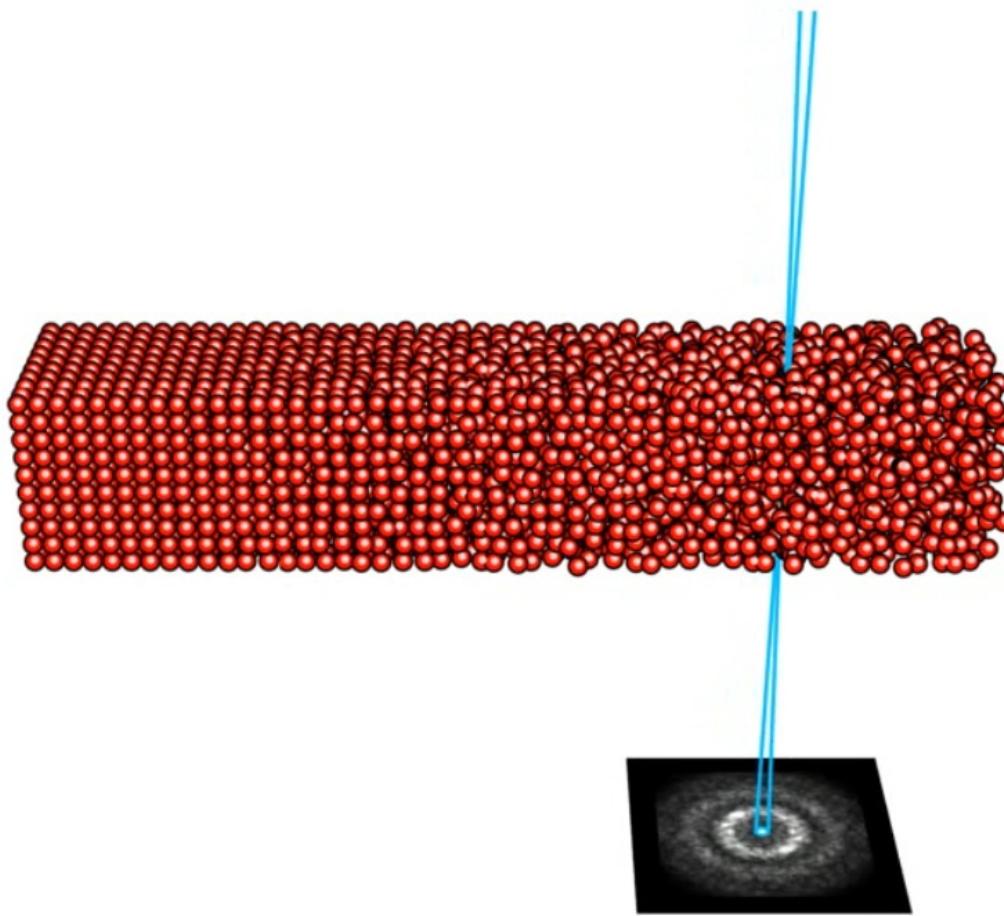


# STEM Diffraction from Crystalline Samples



- Ideally, the diffracted signal is simply a 2D **Fourier transform** of the projected potential, multiplied by the probe intensity.
- Thus the position and intensity of **Bragg disks** of each diffraction pattern acts as a **fingerprint** for the local structure and orientation of the (crystal) sample.
- Interpretation is complicated by multiple / dynamical scattering (thickness effects), overlapping grains, background signals.

# 4D-STEM Diffraction from Amorphous Samples

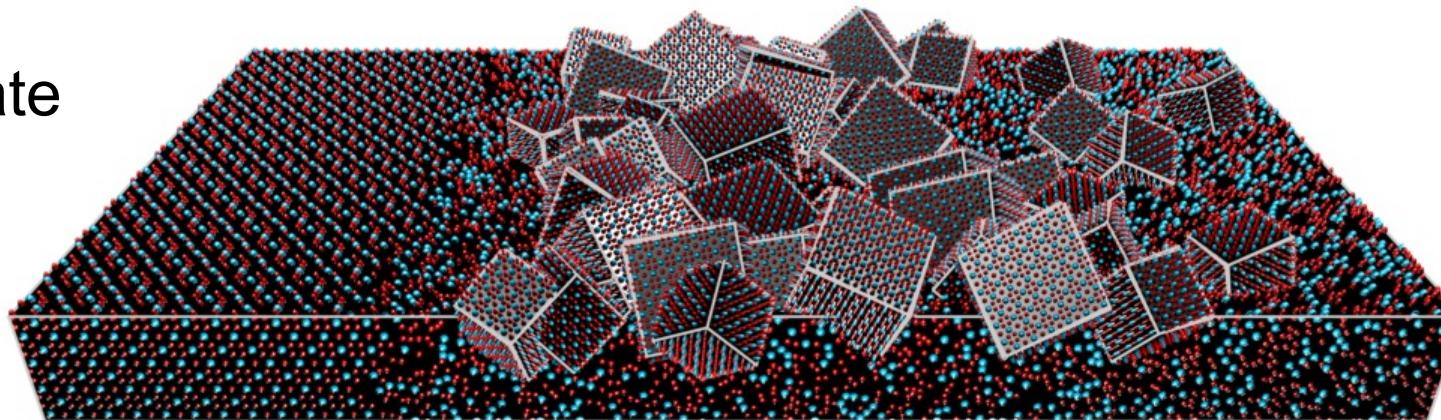


- Ideally, the diffracted signal is simply a 2D **Fourier transform** of the projected potential, multiplied by the probe intensity.
- The position and shape of **amorphous halos** of each diffraction pattern acts as a **fingerprint** for the local structure factor, given by the mean atomic arrangement.
- Interpretation is **complicated** by multiple / dynamical scattering (thickness effects), background, **more** than crystal diffraction!

# Complex Sample Analysis with 4D-STEM

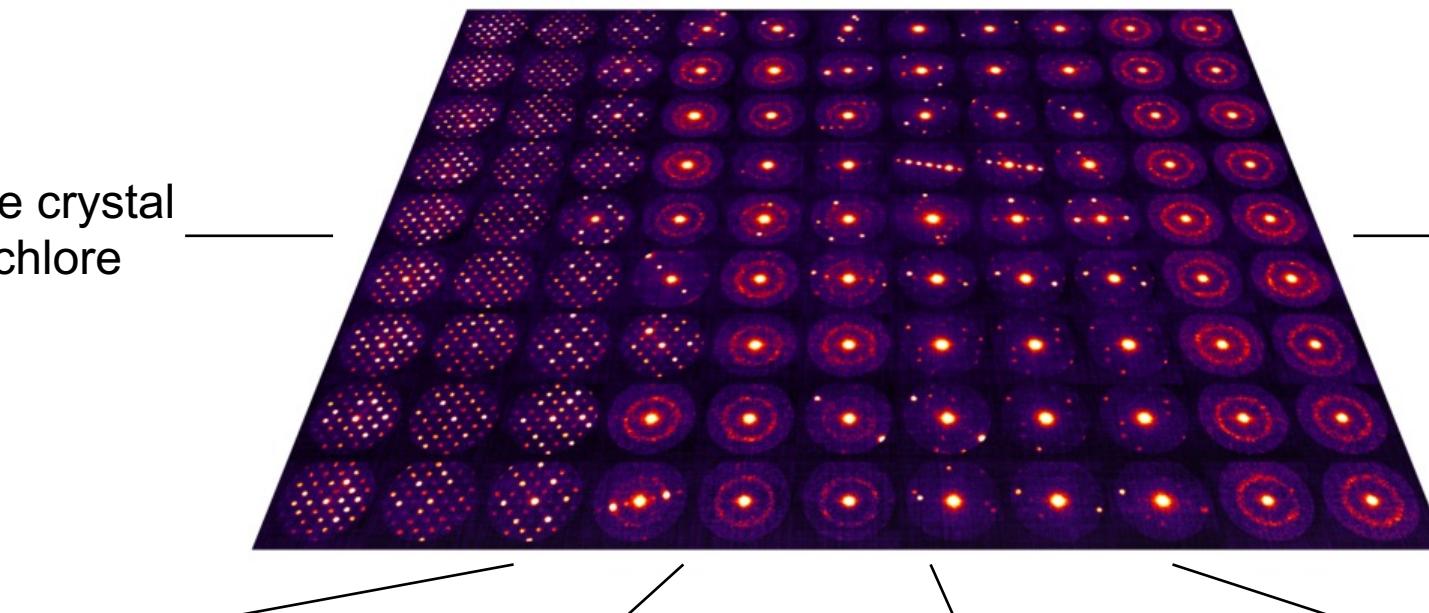
Gadolinium Titanate

4D-STEM  
experiment



single crystal  
pyrochlore

amorphous



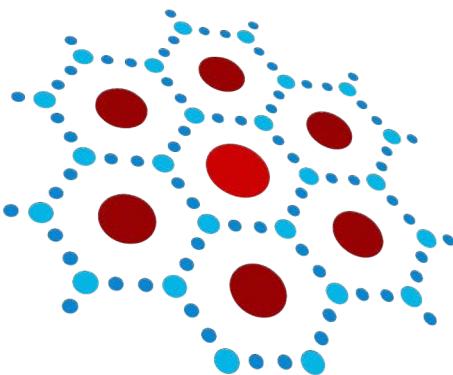
recrystallized fluorite

mixed

polycrystalline fluorite

mixed

# 4D-STEM Analysis



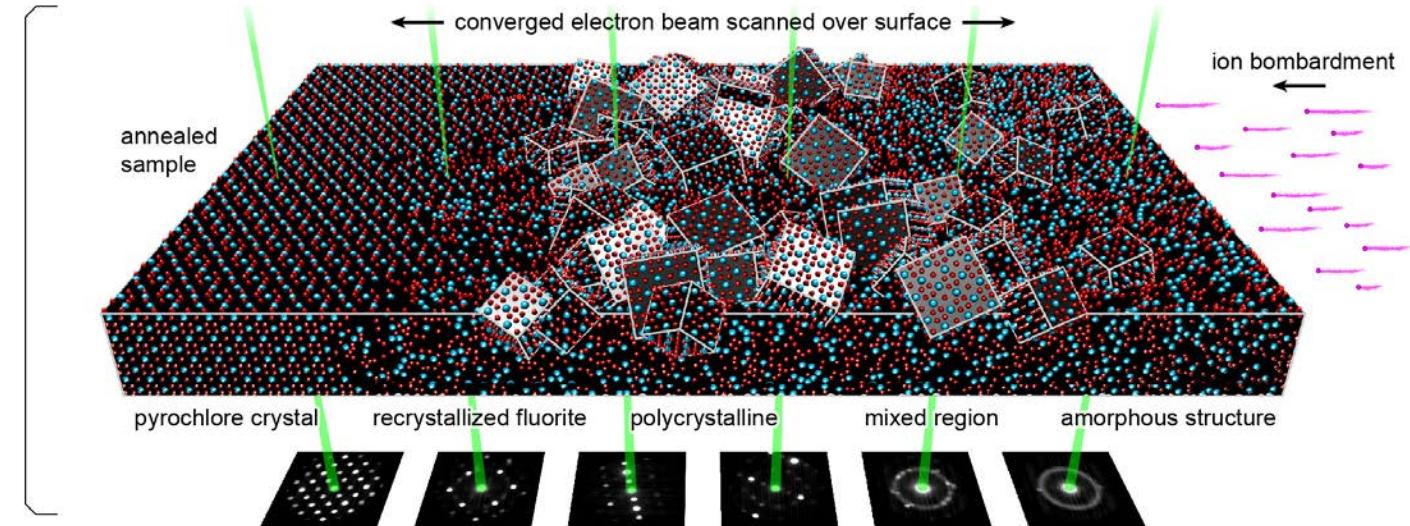
**py4DSTEM**

Created by Benjamin Savitzky & Colin Ophus.

Primarily funded by  TOYOTA RESEARCH INSTITUTE

Core developer team also includes Steve Zeltmann, Steph Ribet, Alex Rakowski, and George Varnavides.

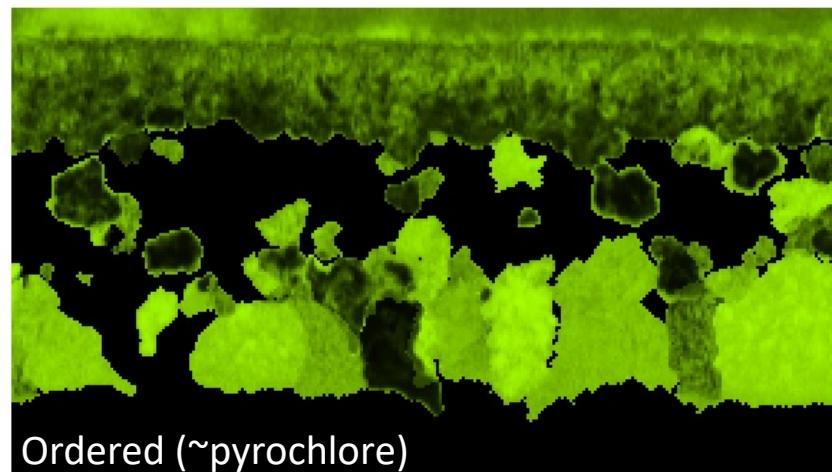
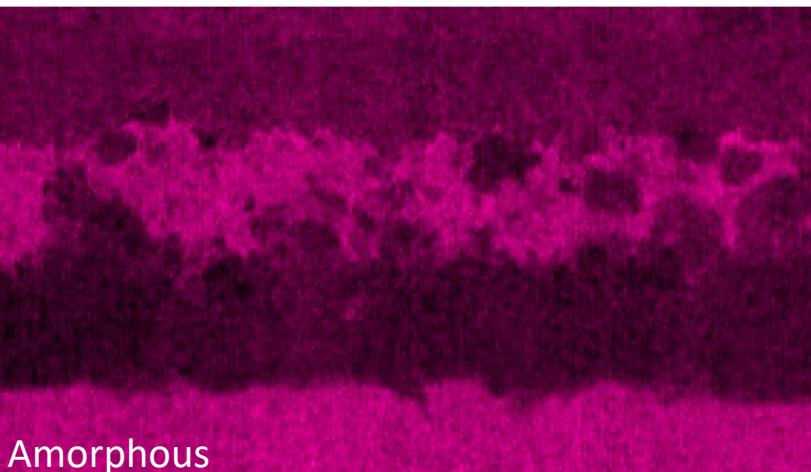
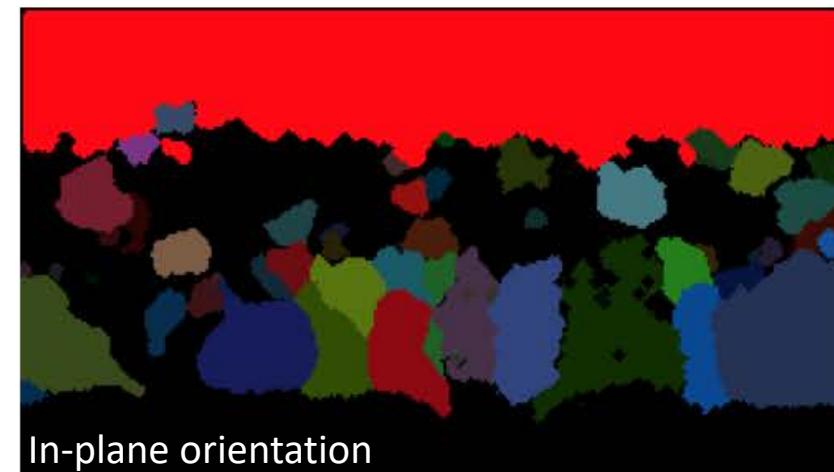
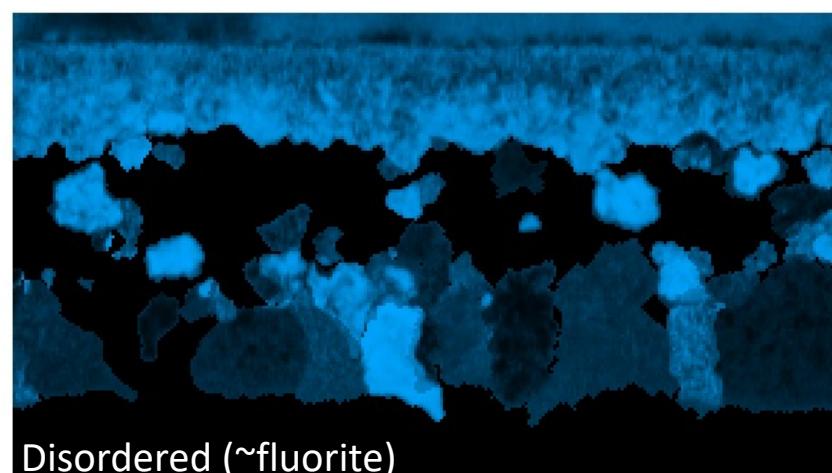
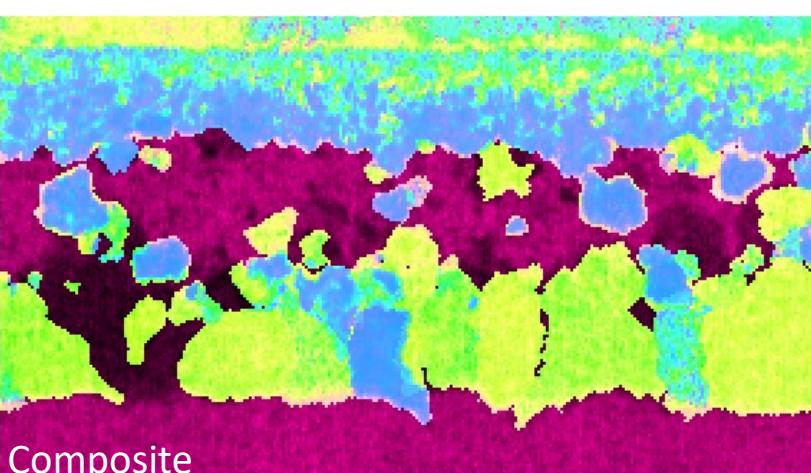
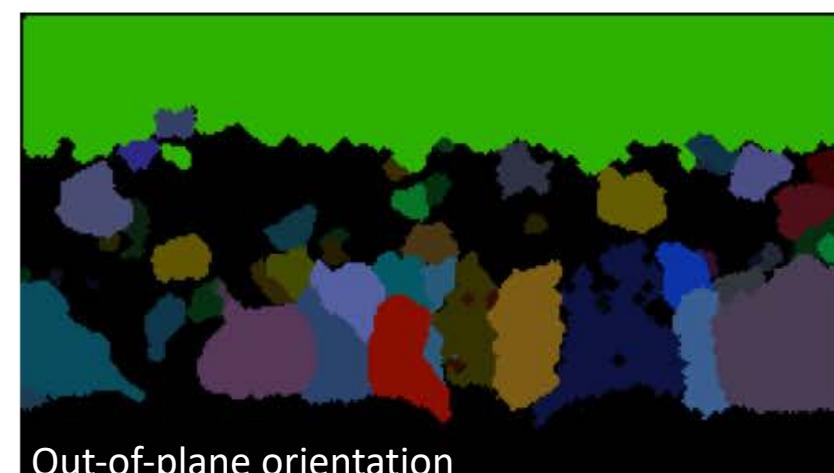
Teaching Workshop at M&M



## py4DSTEM can measure:

- Virtual imaging (bright field and dark field).
- Structure classification.
- Phase, orientation and strain mapping of crystal materials.
- Short range ordering (SRO) & FEM of amorphous materials.
- Phase contrast imaging methods:
  - ◊ Differential phase contrast
  - ◊ Parallax imaging
  - ◊ Ptychography
  - ◊ Ptychographic atomic tomography

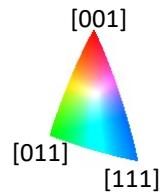
# 4D-STEM – Irradiated & Annealed $\text{Gd}_2\text{Ti}_2\text{O}_7$



Ordered (~pyrochlore)

Disordered (~fluorite)

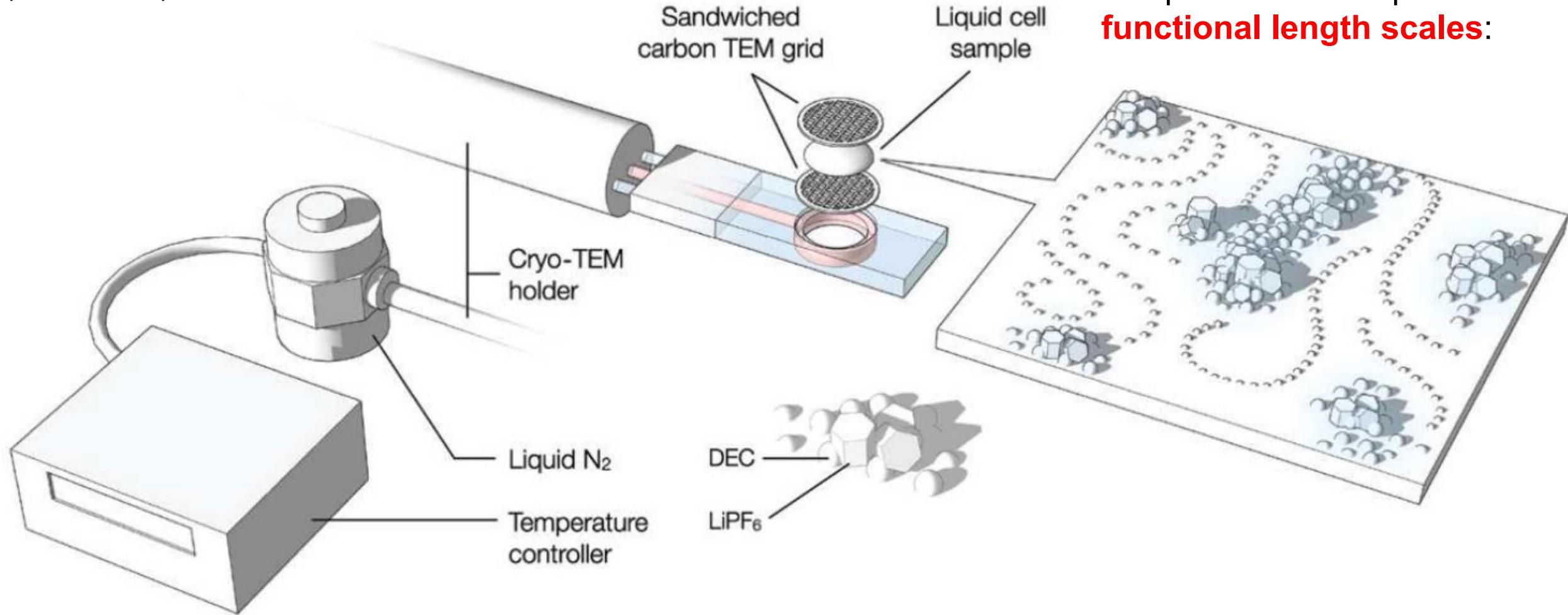
Amorphous



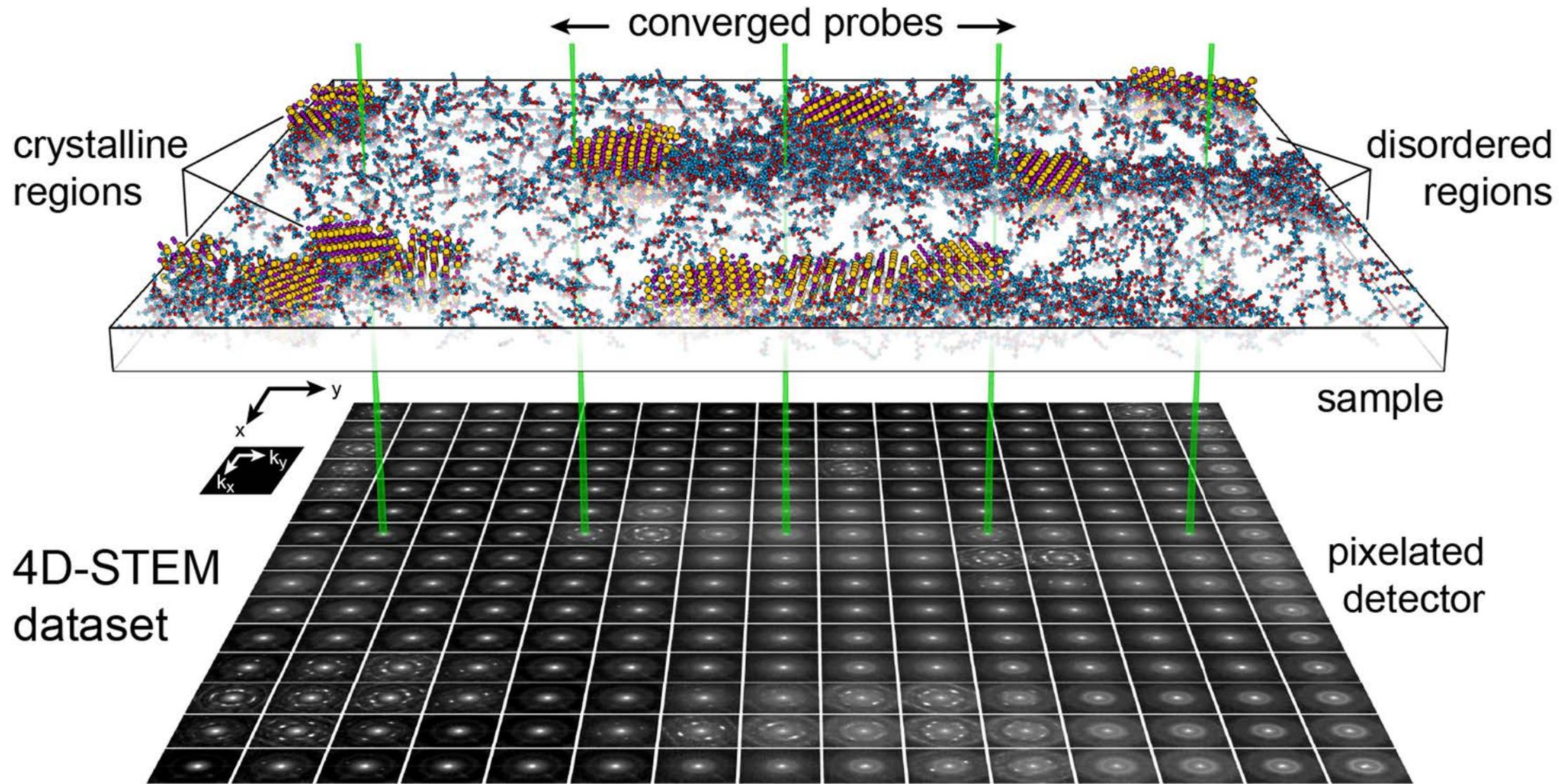
# Characterization of Battery Electrolyte @ -30°C

ethylene carbonate / diethyl carbonate  
**(EC / DEC)**

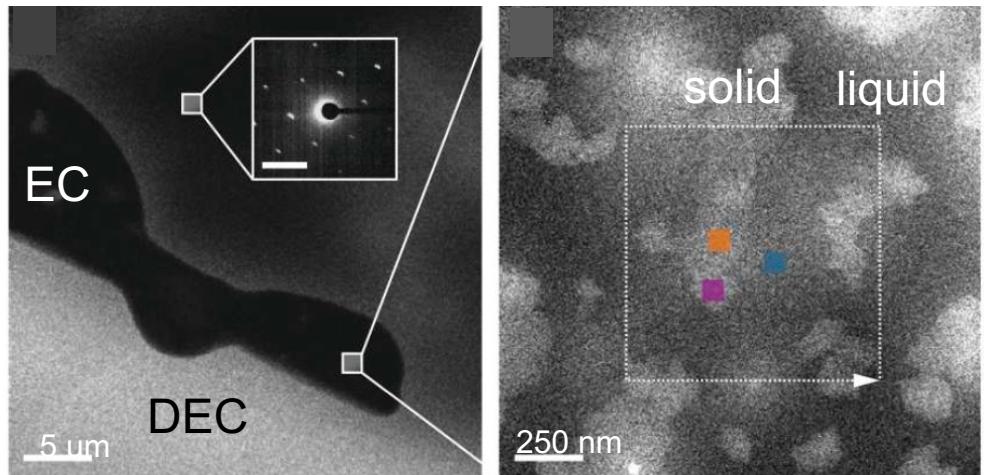
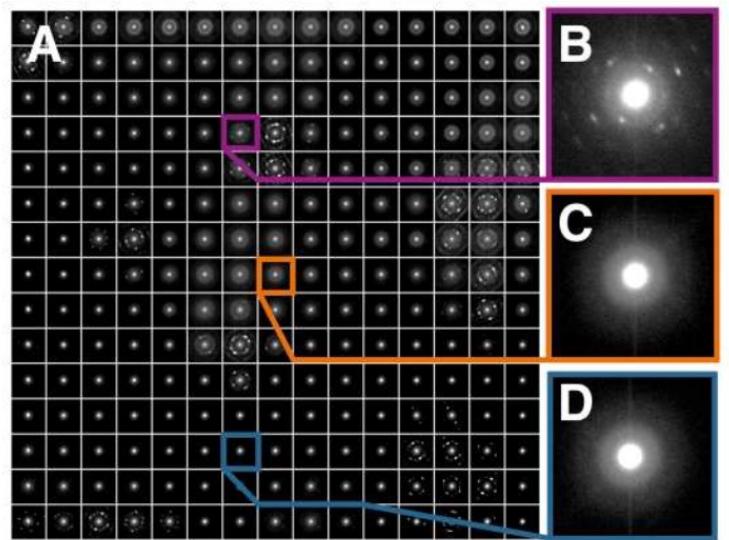
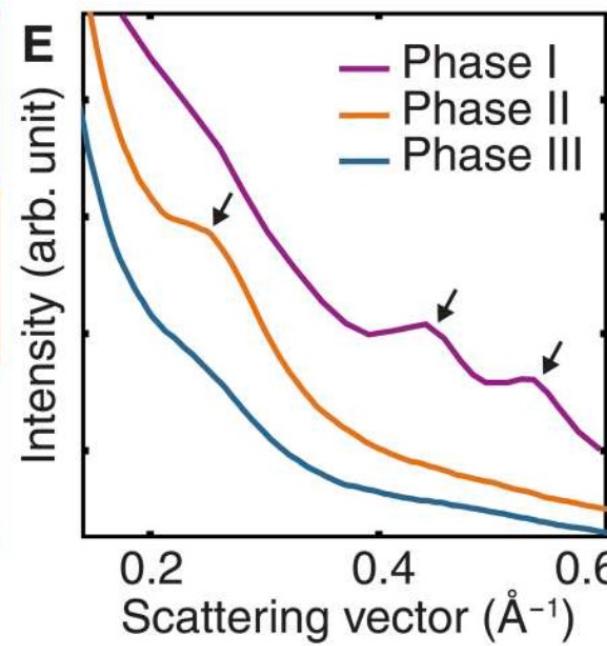
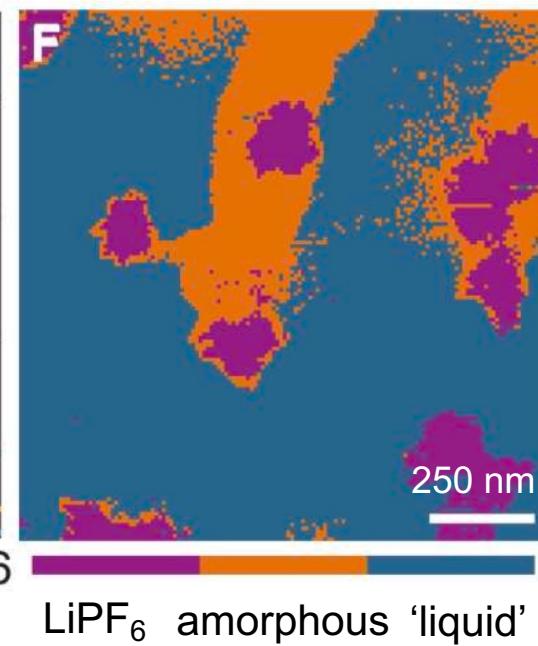
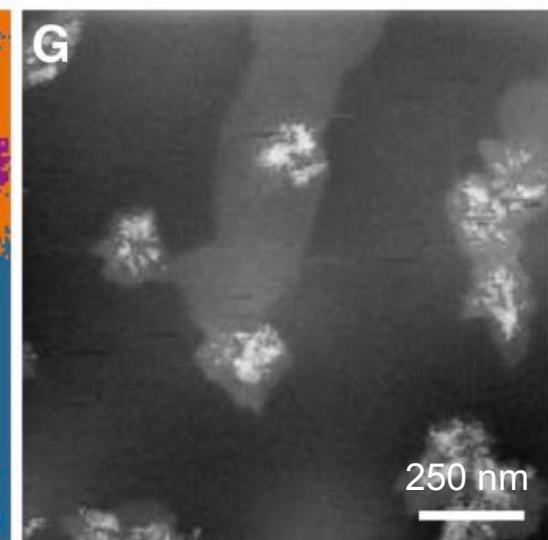
complex mixture of phases on  
**functional length scales:**



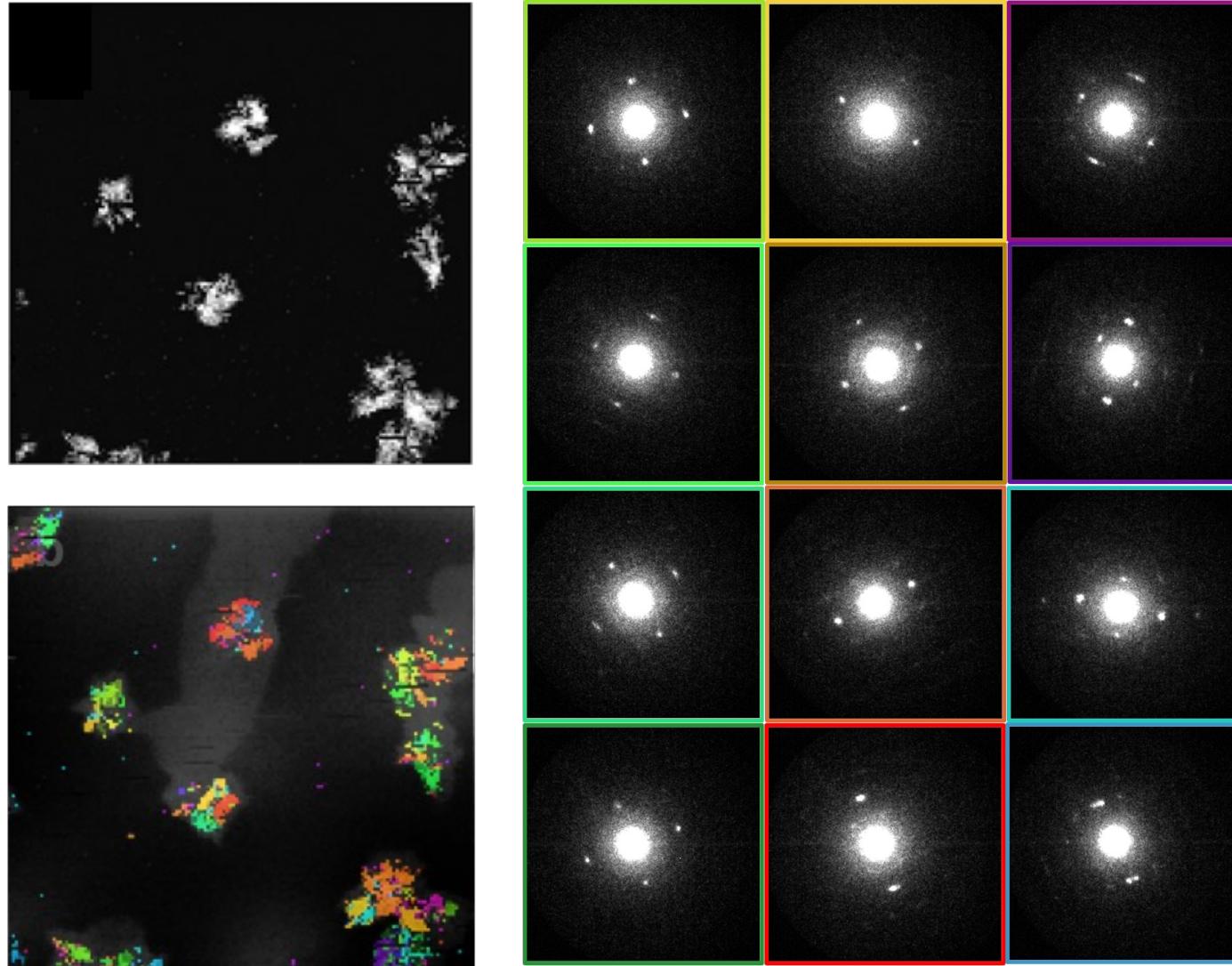
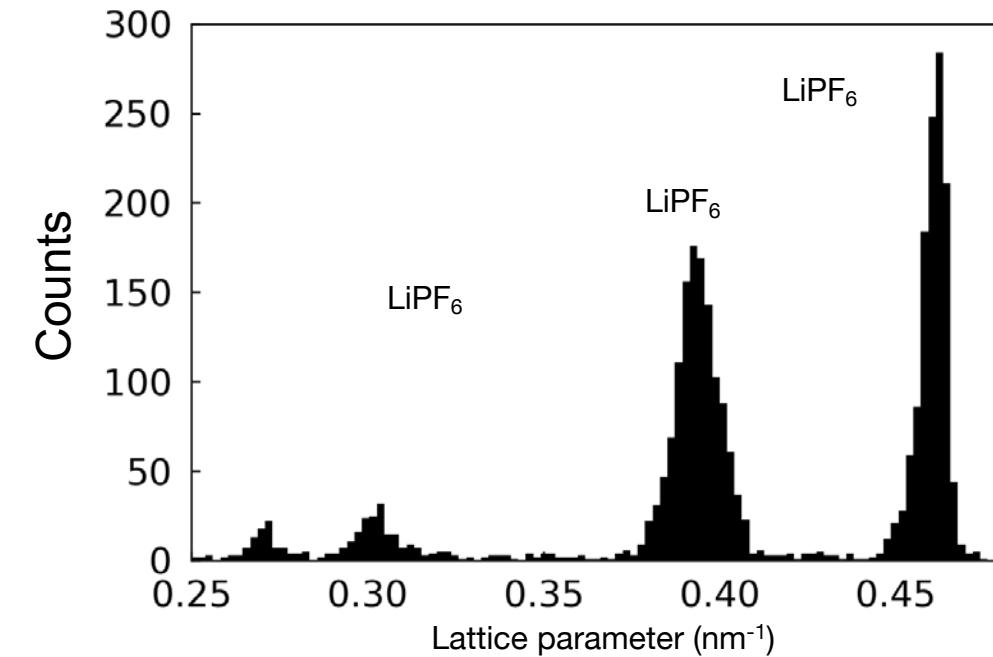
# 4D-STEM Characterization of Battery Electrolyte



# 4D-STEM Characterization of Battery Electrolyte



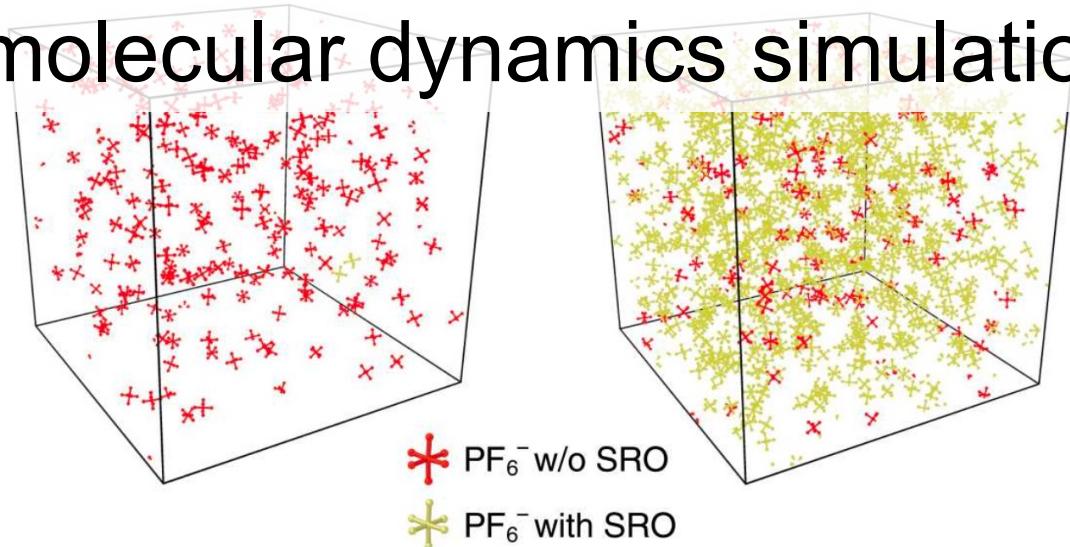
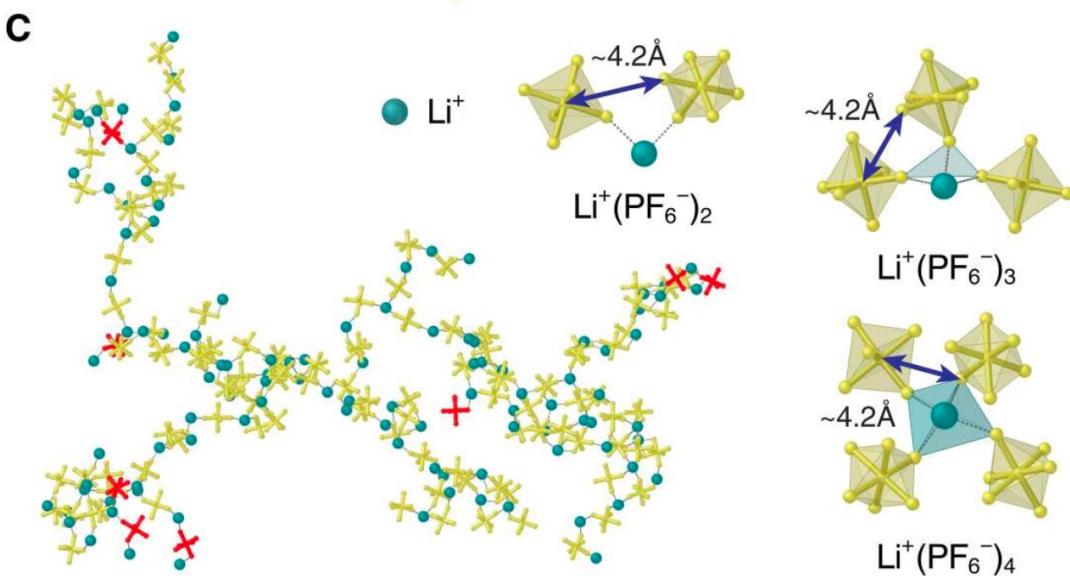
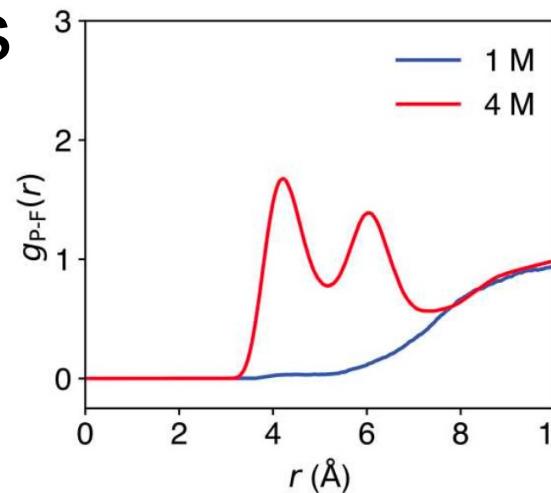
# 4D-STEM of Liquid Battery Electrolyte at -30°C



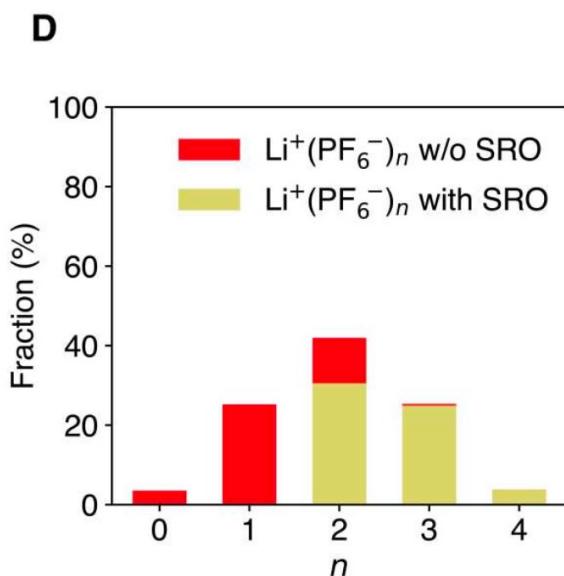
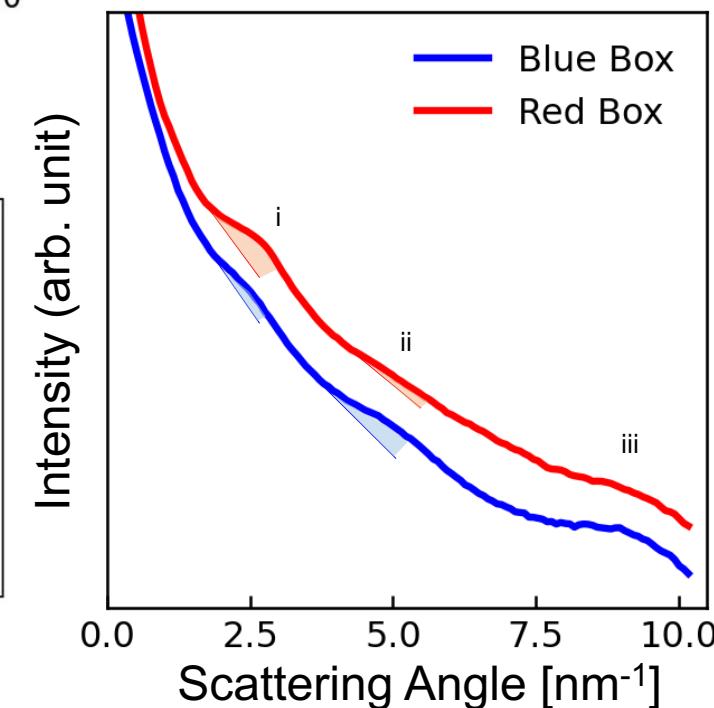
|                   | [hkl]     | d[Å]  | d*[1/Å] |
|-------------------|-----------|-------|---------|
| LiPF <sub>6</sub> | [1 1 3]   | 2.167 | 0.462   |
| LiF               | [0 1 0]   | 2.556 | 0.391   |
| LiPF <sub>6</sub> | [0 -1 -2] | 3.602 | 0.278   |

# 4D-STEM of Liquid Battery Electrolyte at -30°C

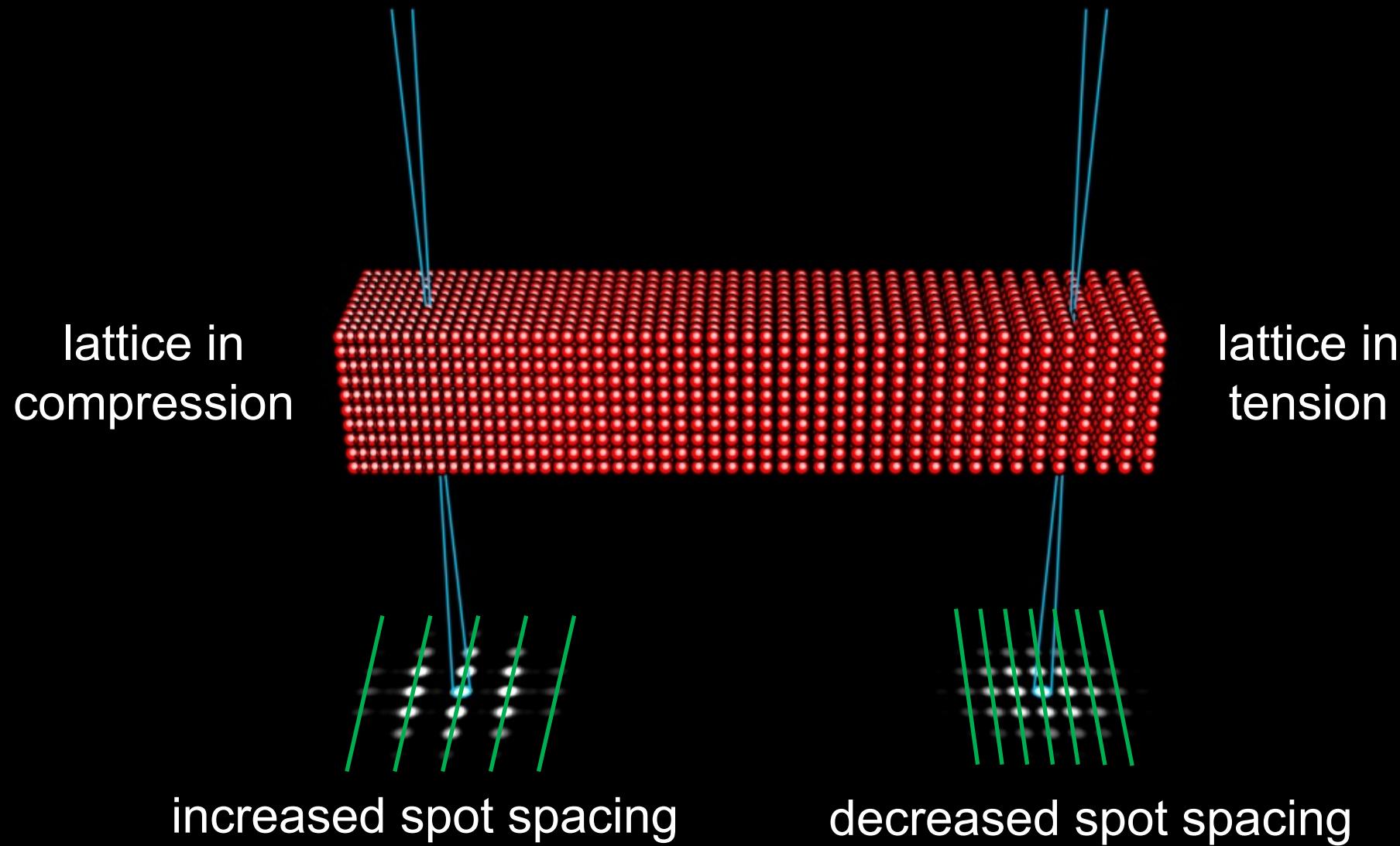
## molecular dynamics simulations



- Red region is more ordered, has higher density → **amorphous / viscous liquid phase**
- Blue region is less ordered, has lower density → **liquid**

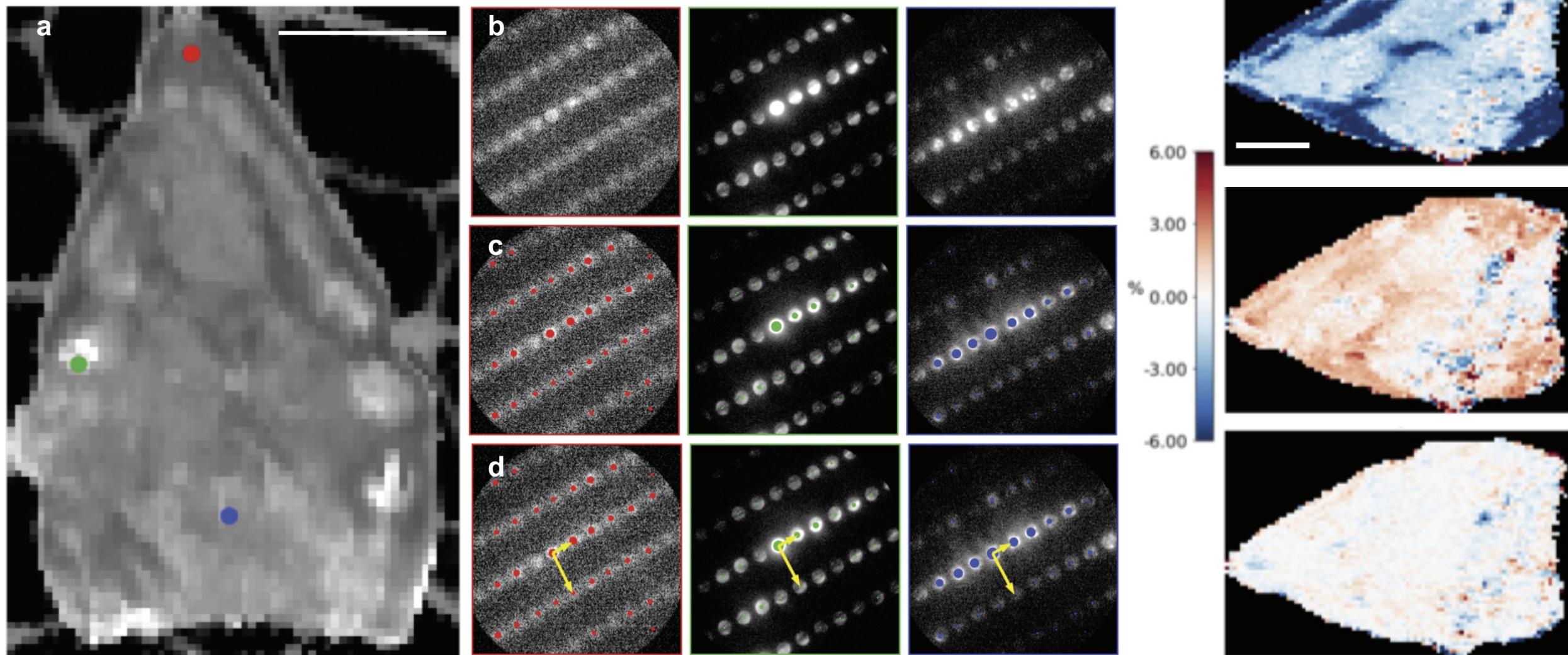


# 4D-STEM – Crystal Strain Mapping



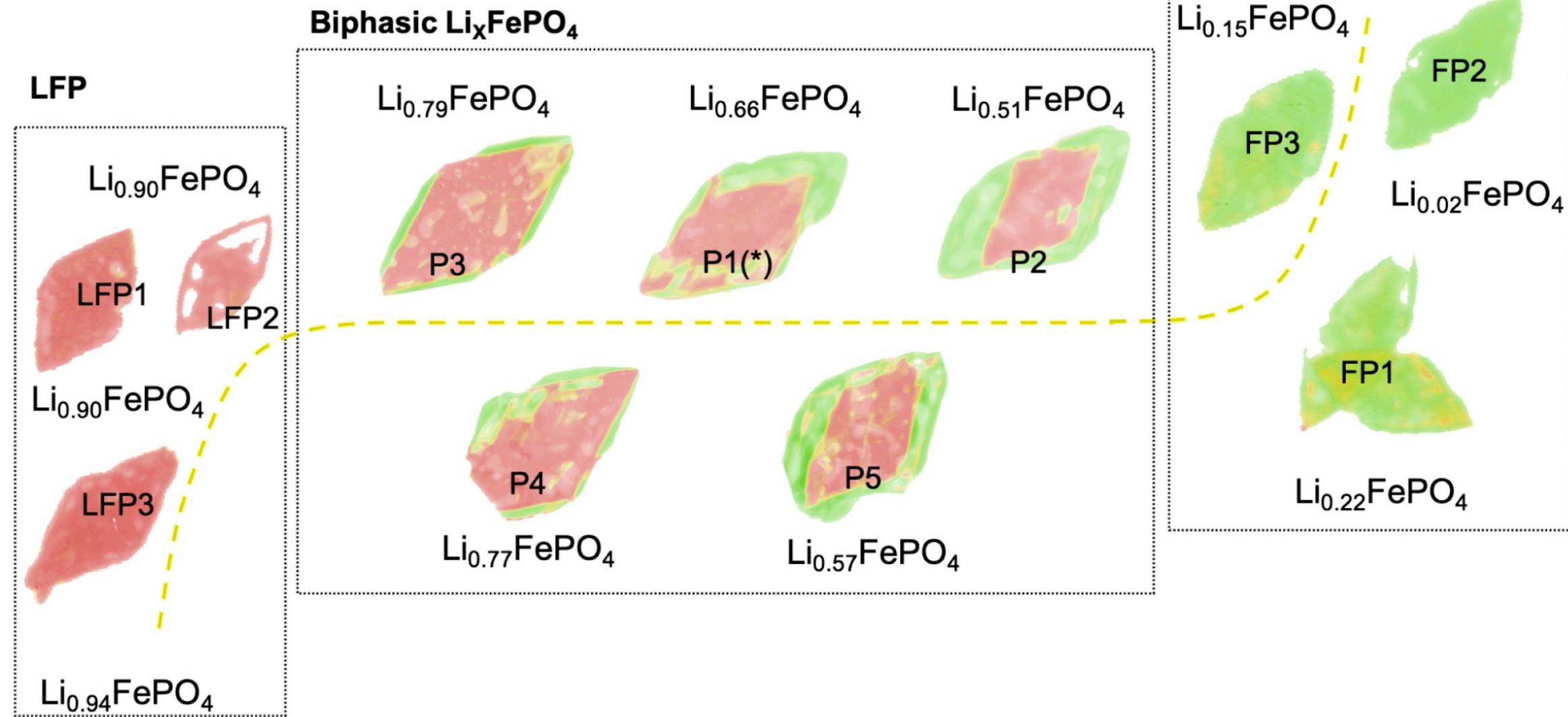
# Correlative Imaging & Inverse Learning of LiFePO<sub>4</sub>

**4D-STEM strain mapping** of battery cathode particles.



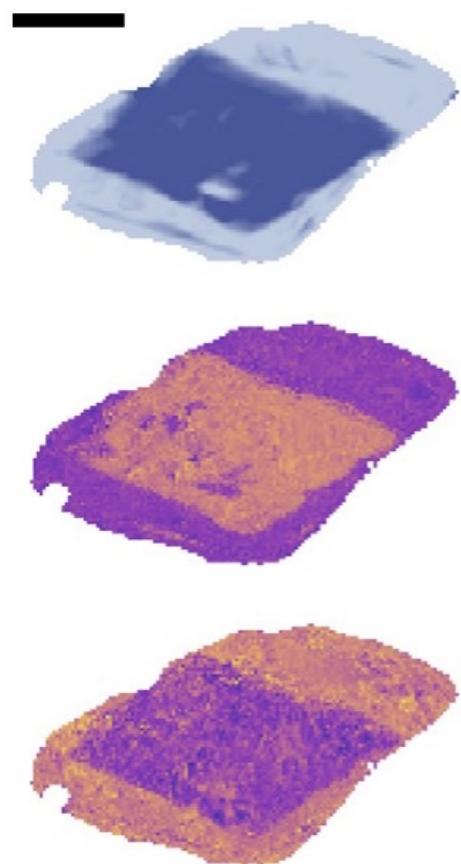
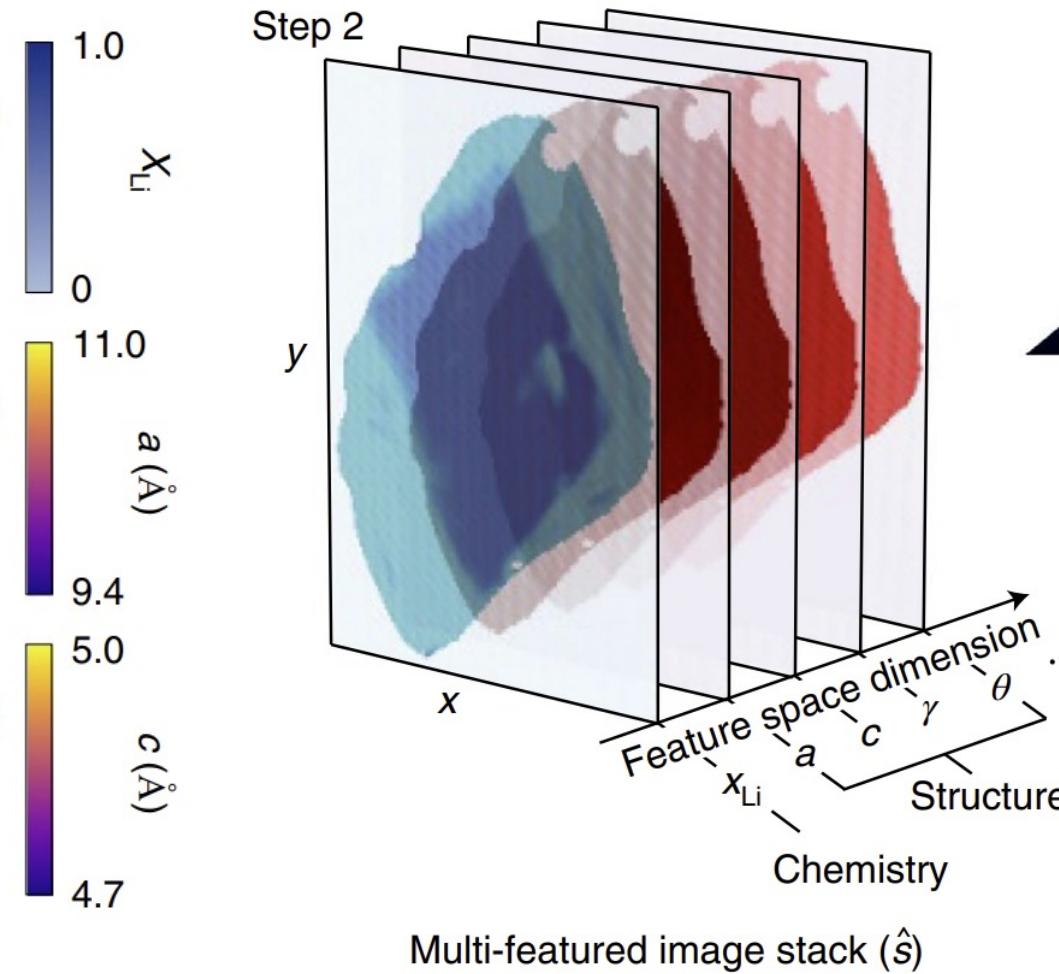
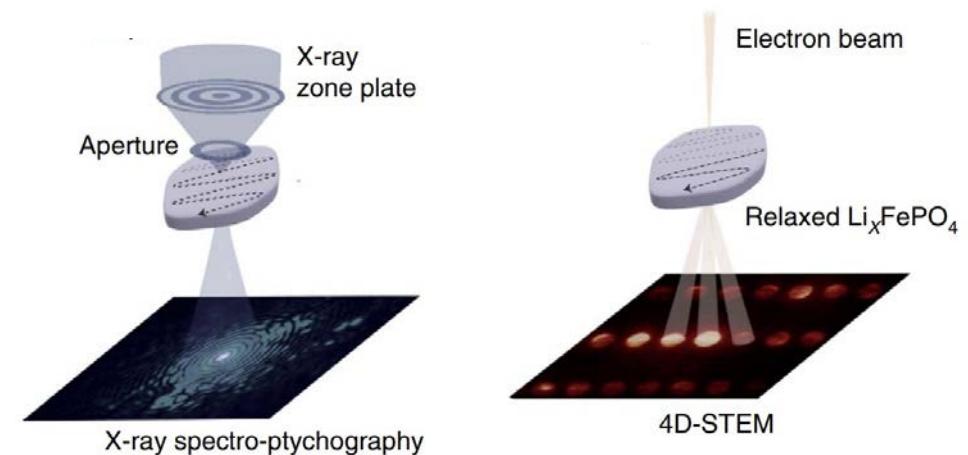
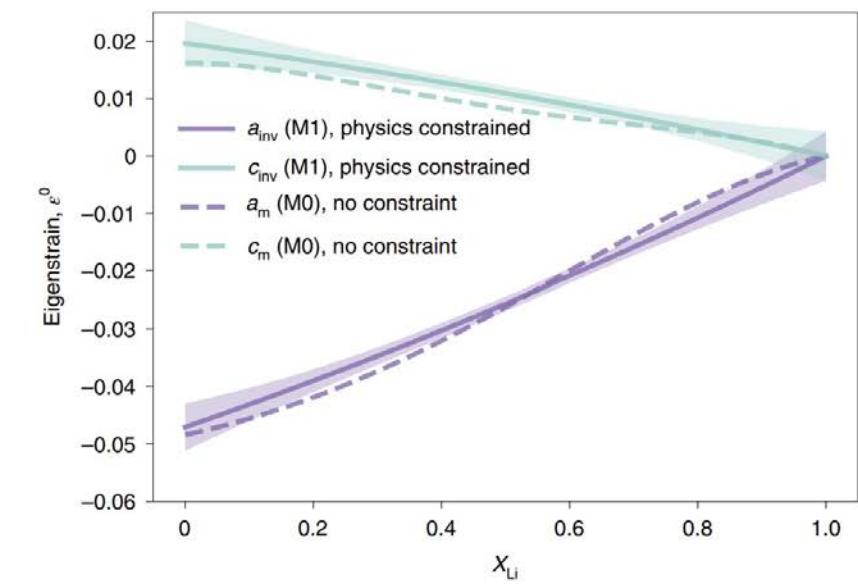
# Correlative Imaging & Inverse Learning of LiFePO<sub>4</sub>

**X-ray spectroscopic ptychography** using a TEM holder



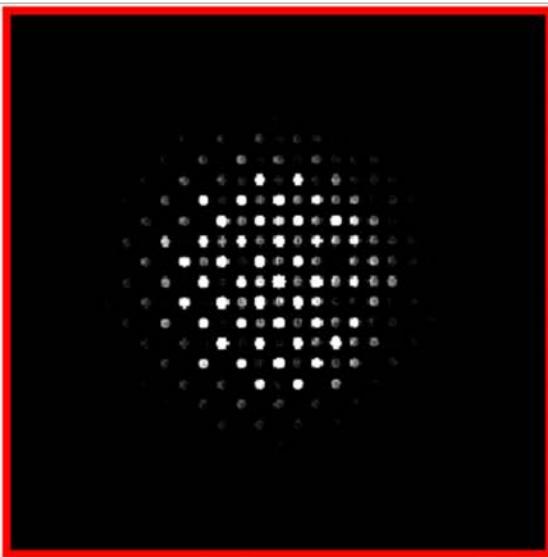
# Correlative Imaging & Inverse Learning of LiFePO<sub>4</sub>

Alignment and correlation of all channels → **inverse learning of constitutive law**

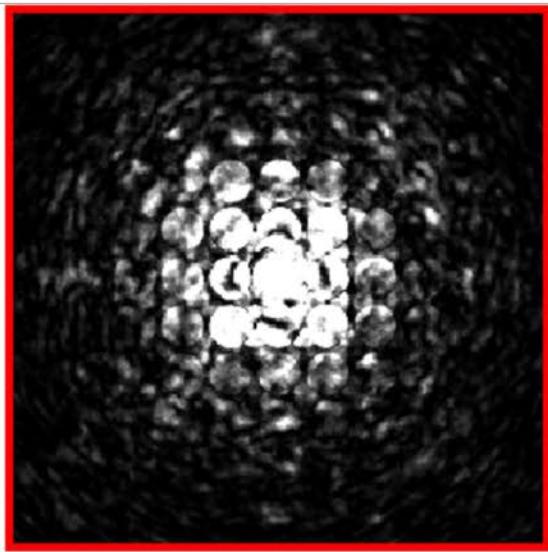
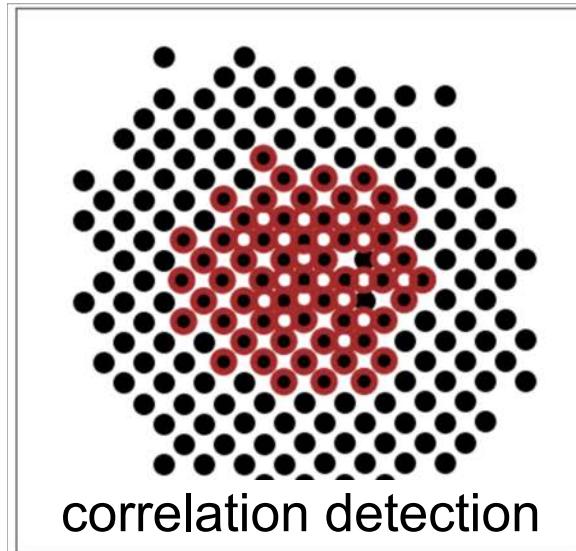
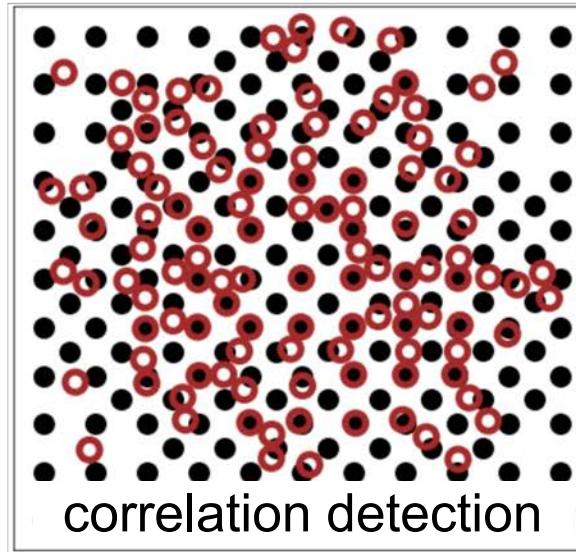


# Dynamical Diffraction Complicates Disk Detection

Diffraction pattern from using small convergence angle, thin sample



Diffraction pattern from using large convergence angle, thick sample



Can machine learning methods help us when our conventional image analysis pipelines fail?

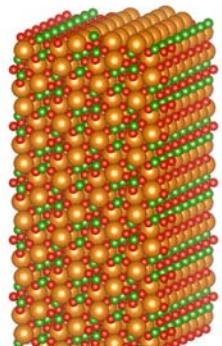
# Simulation Pipeline Infrastructure

## 4D-SCRAPE & Manipulatt

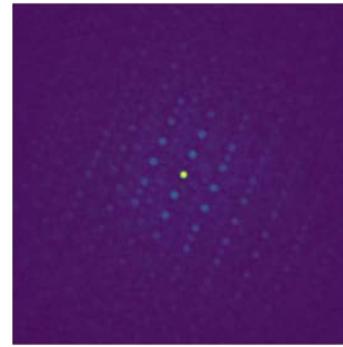
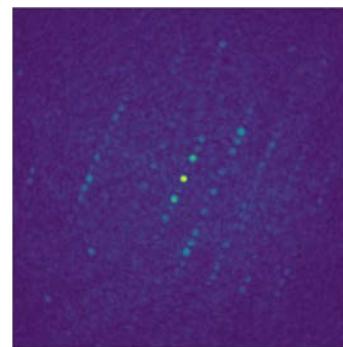


## AFLOW

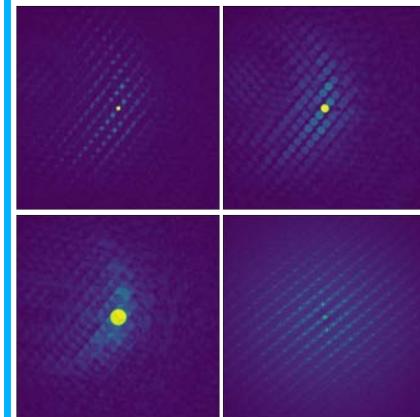
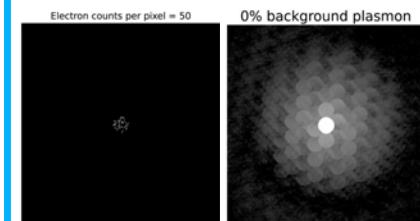
Automatic-FLOW for Materials Discovery



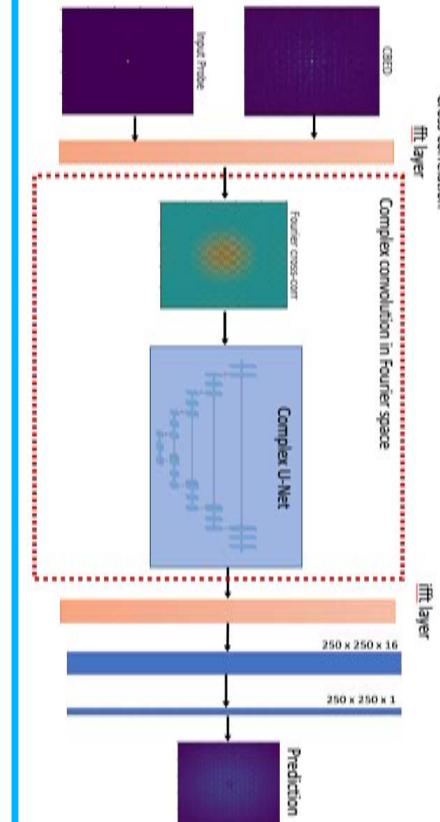
## 4D-MAKE



## 4D-PREP



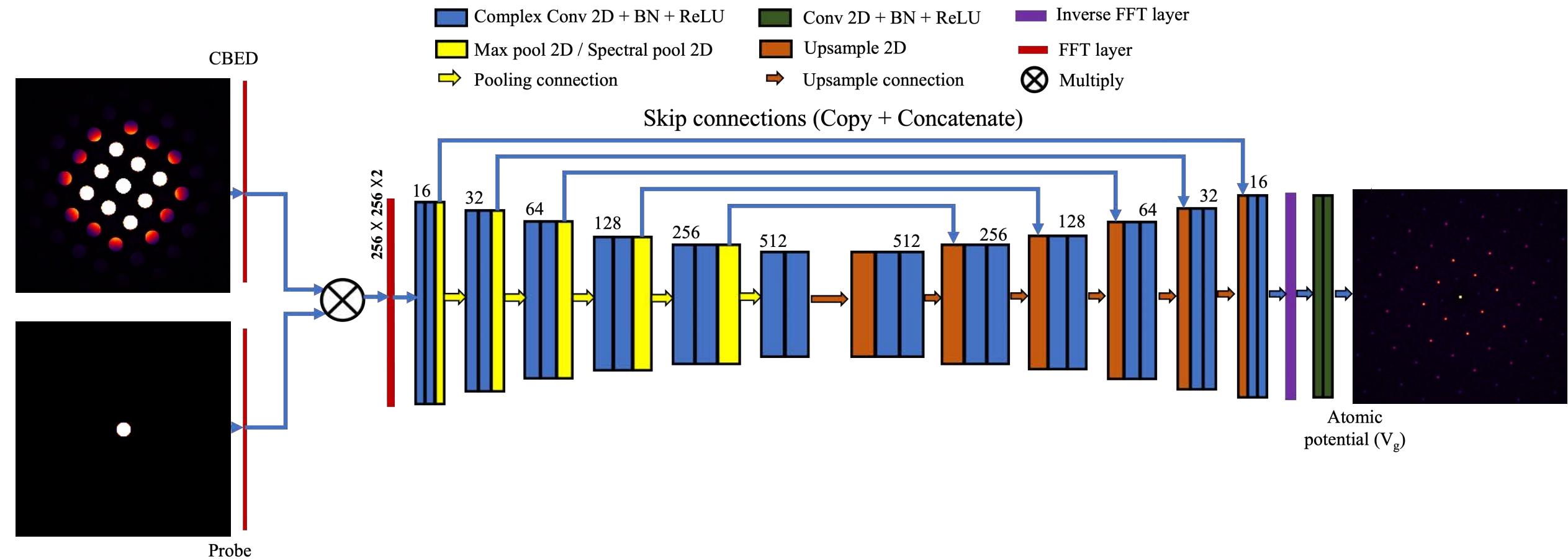
## 4D-OPTIMIZE



Many open source software tools used:

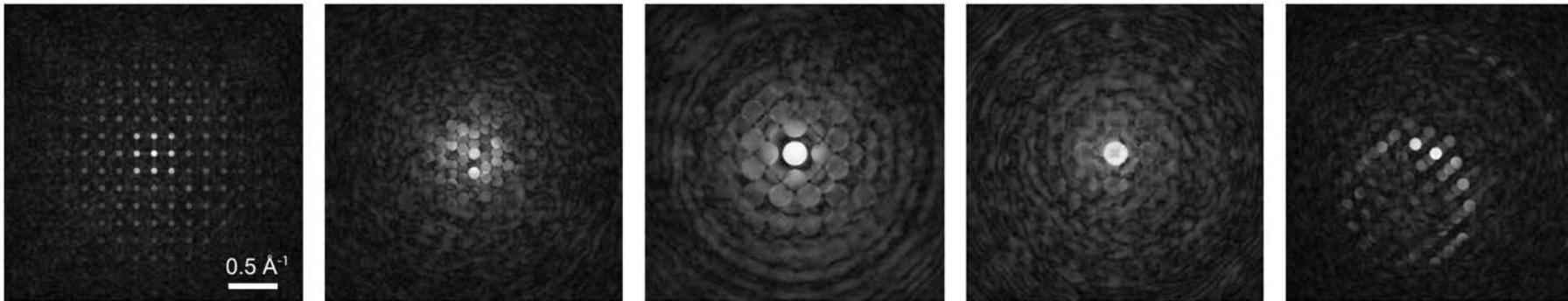


# Solving Diffraction with Deep Learning – crystal4D

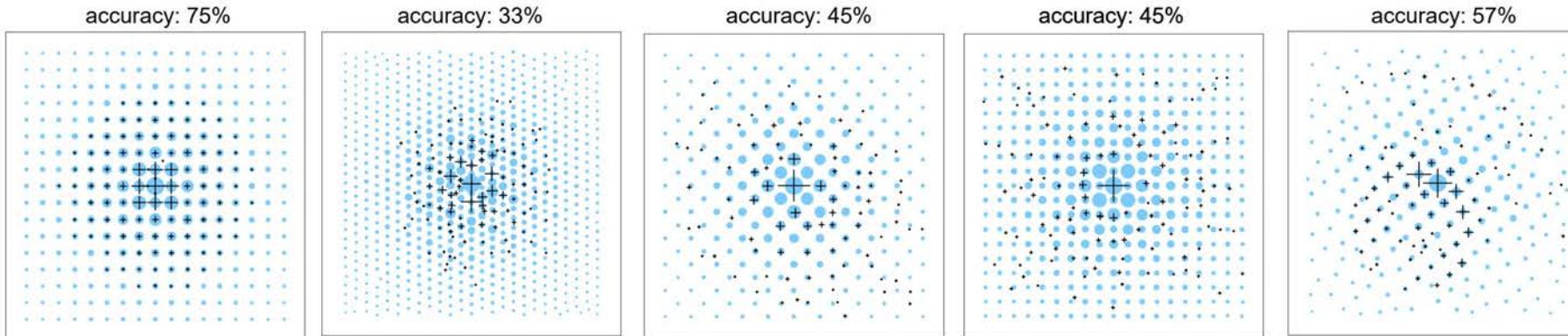


# Solving Diffraction with Deep Learning – FCU-Net

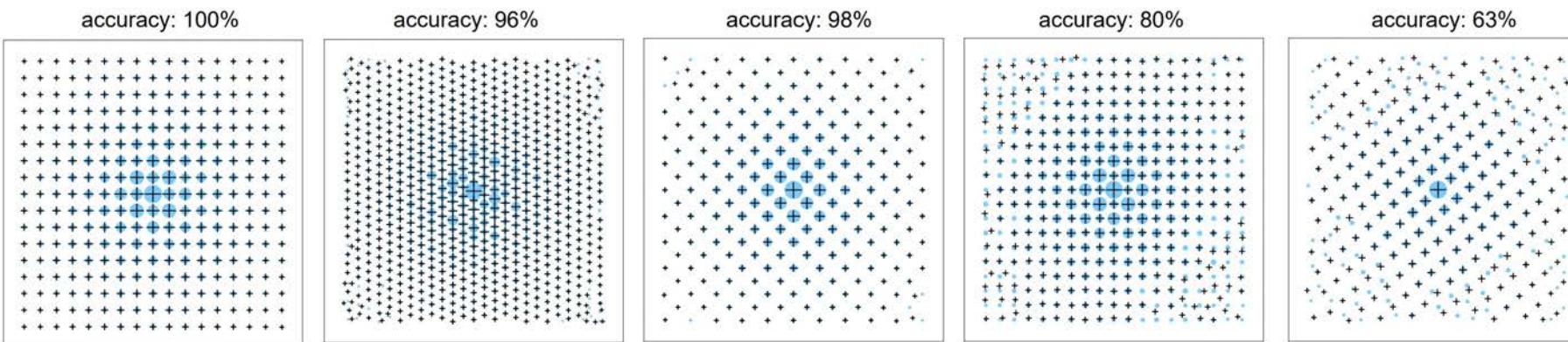
Simulated  
diffraction  
patterns



Correlation  
disk detection

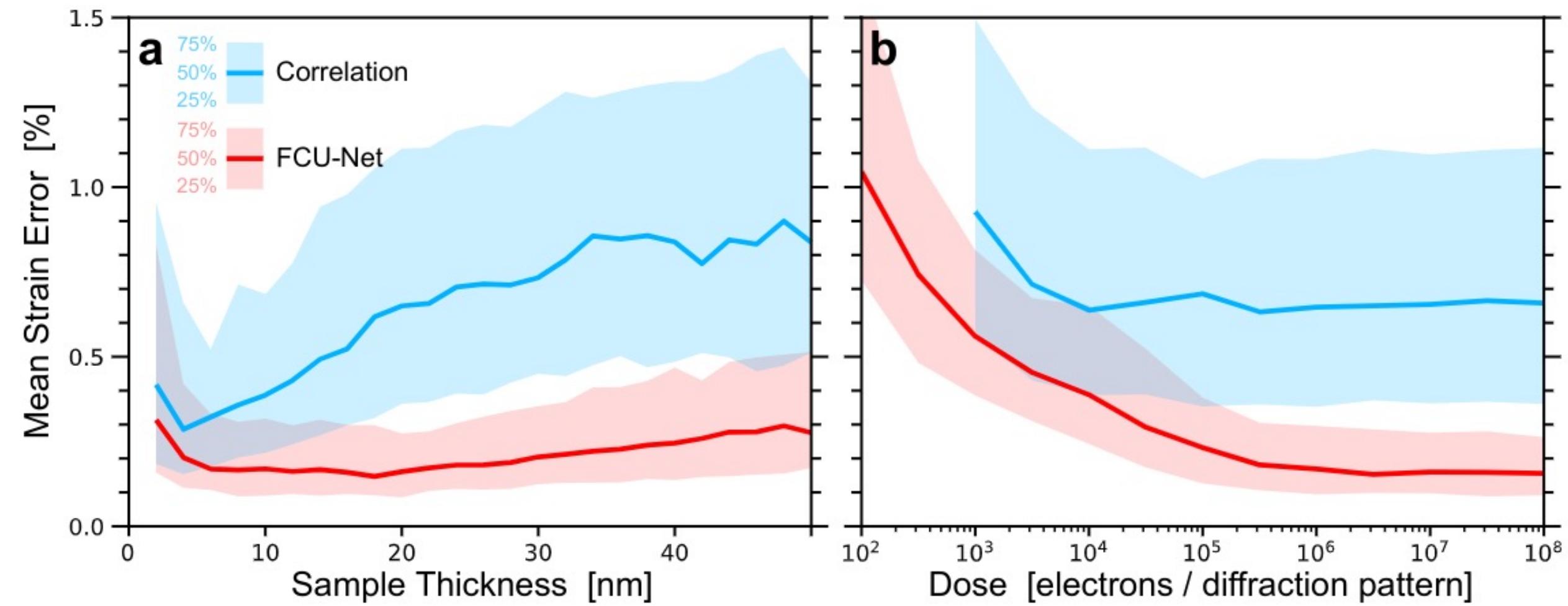


Deep learning  
disk detection



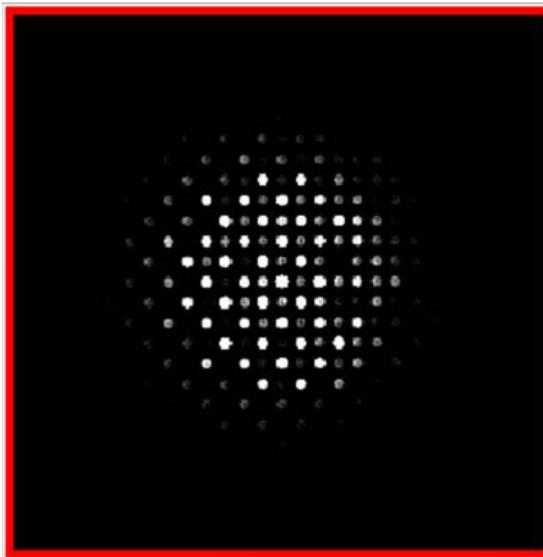
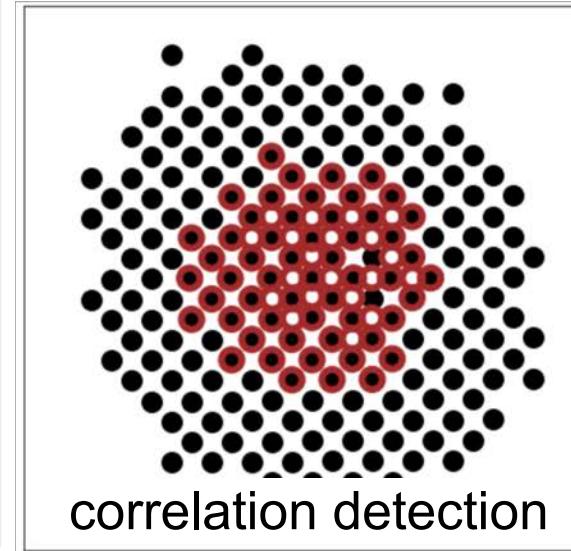
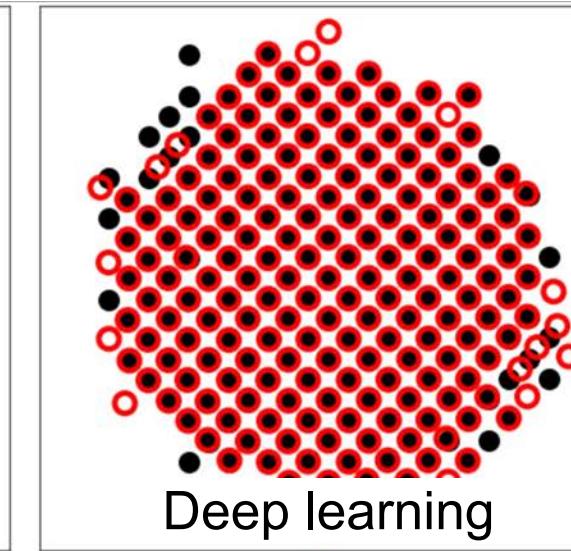
ground truth  
positions  
+  
measured  
positions

# Solving Diffraction with Deep Learning – FCU-Net

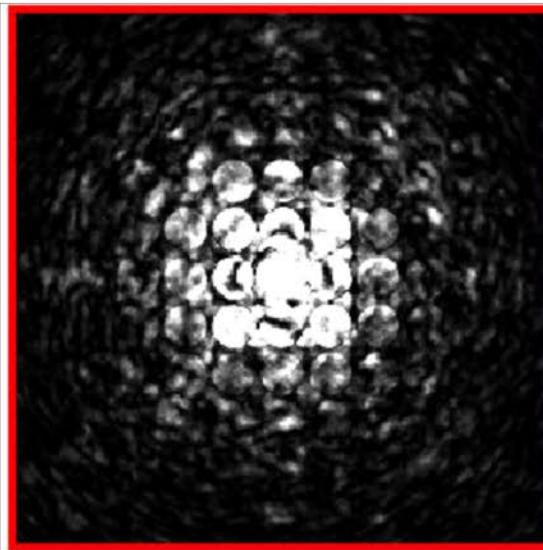
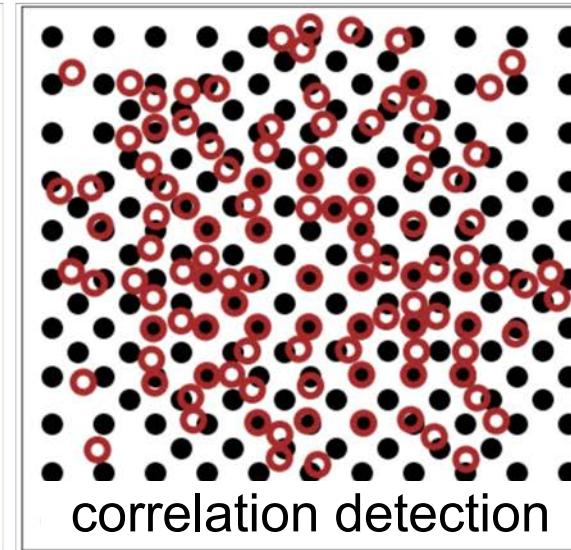
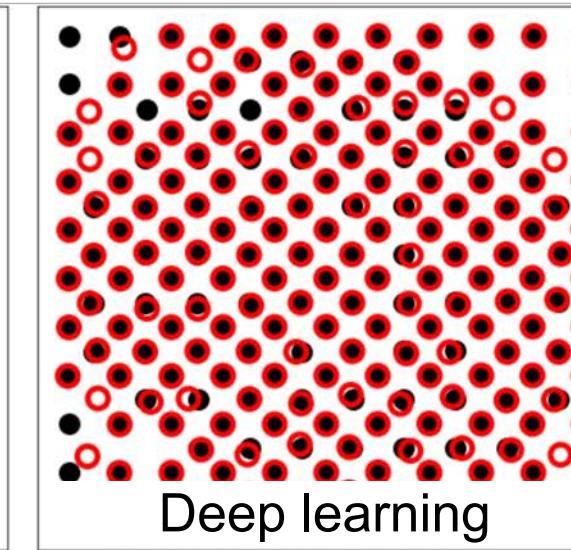


# Dynamical Diffraction Defeated by Deep Learning

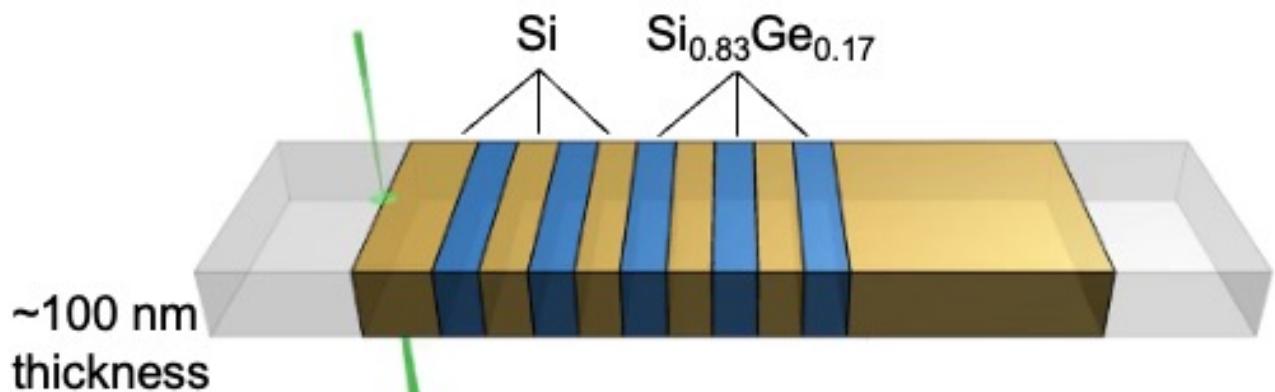
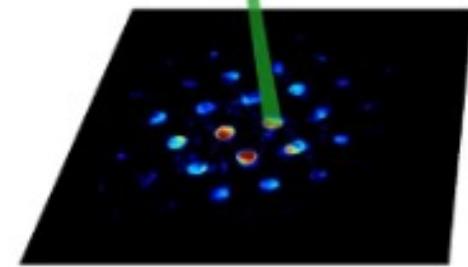
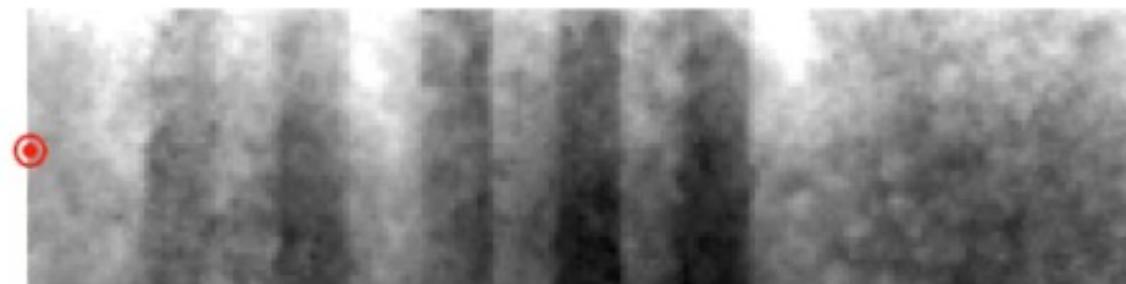
Diffraction pattern from using small convergence angle, thin sample



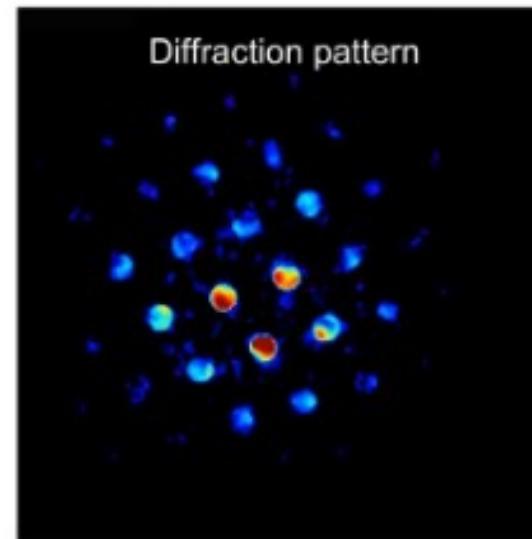
Diffraction pattern from using large convergence angle, thick sample



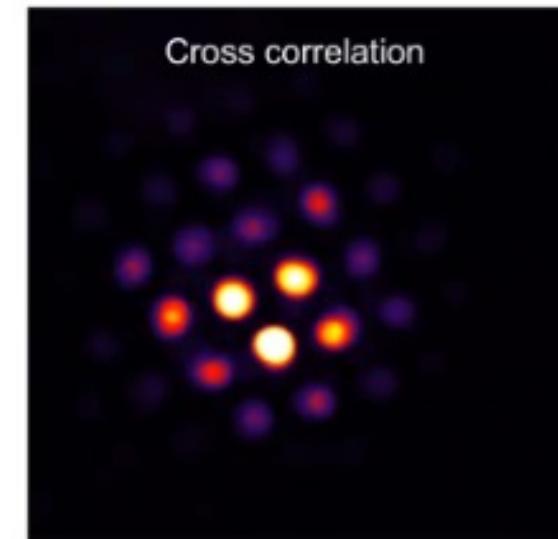
# Strain Mapping of SiGe Multilayers w/ Deep Learning



Virtual dark field image



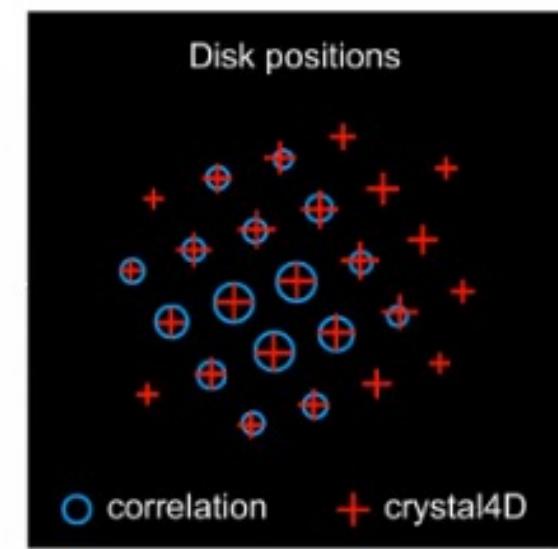
Diffraction pattern



Cross correlation



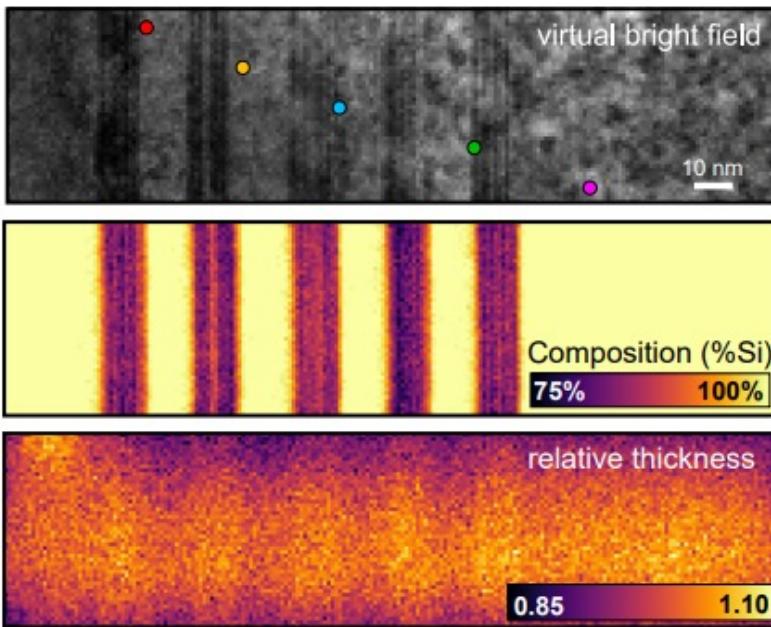
crystal4D prediction



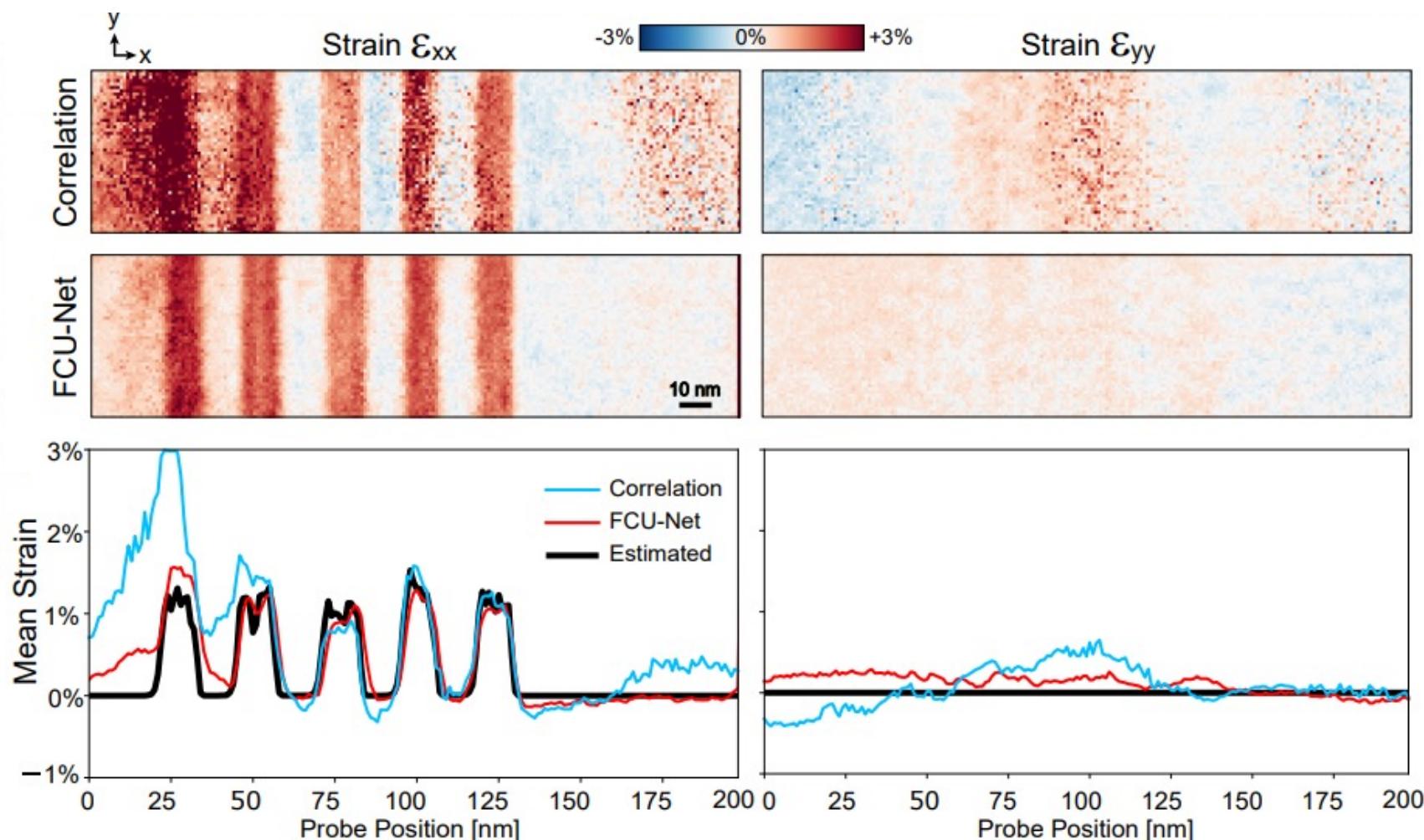
Disk positions

○ correlation    + crystal4D

# Strain Mapping of SiGe Multilayers w/ Deep Learning



Strain mapping of alternating multilayers of Si and SiGe.



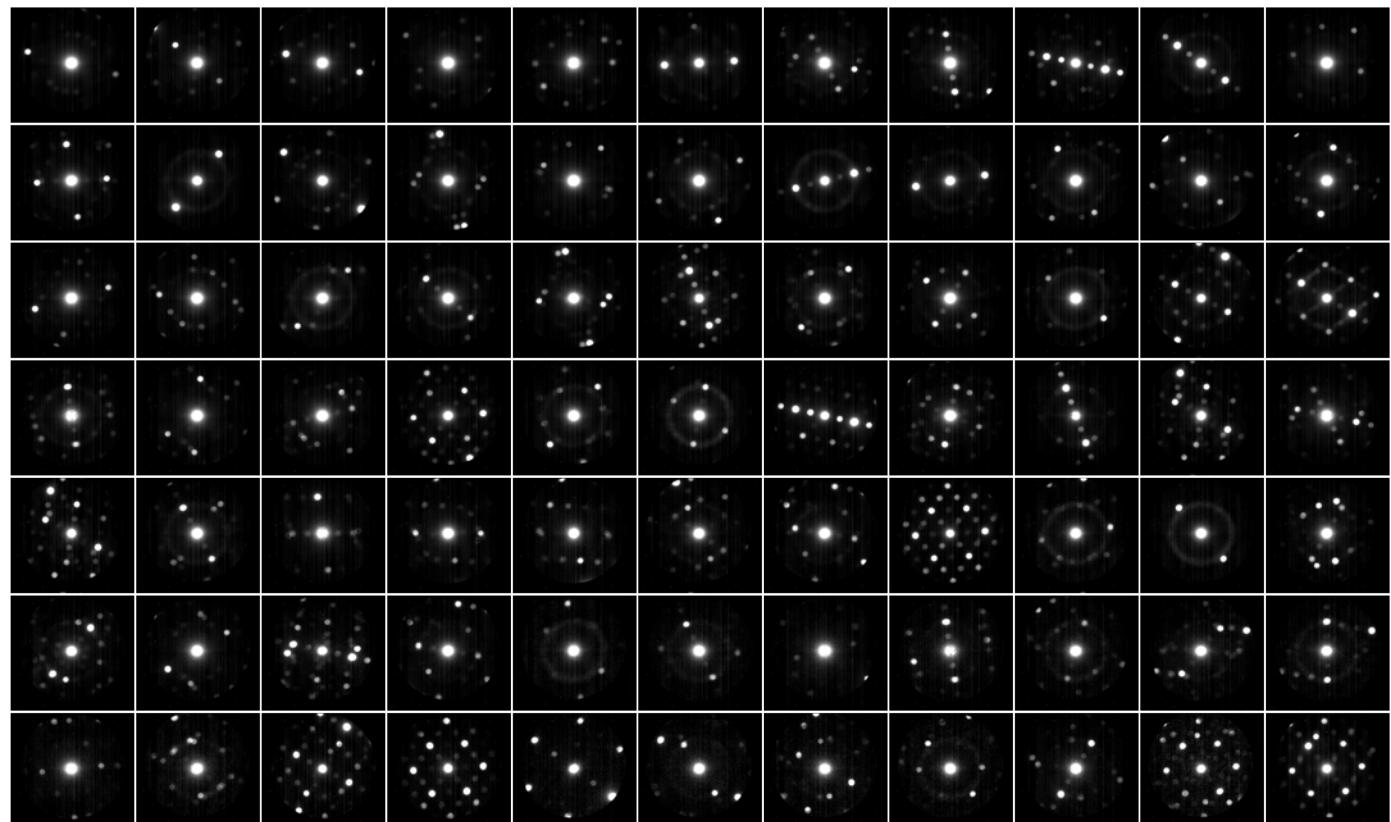
- Our deep learning approach significantly improves the **measurement accuracy** over conventional correlation, and **does not require** any **labeled training data**.

# Blind Identification of Crystal Structures with ML

Our existing **phase mapping** methods work well for **known crystal structures**.

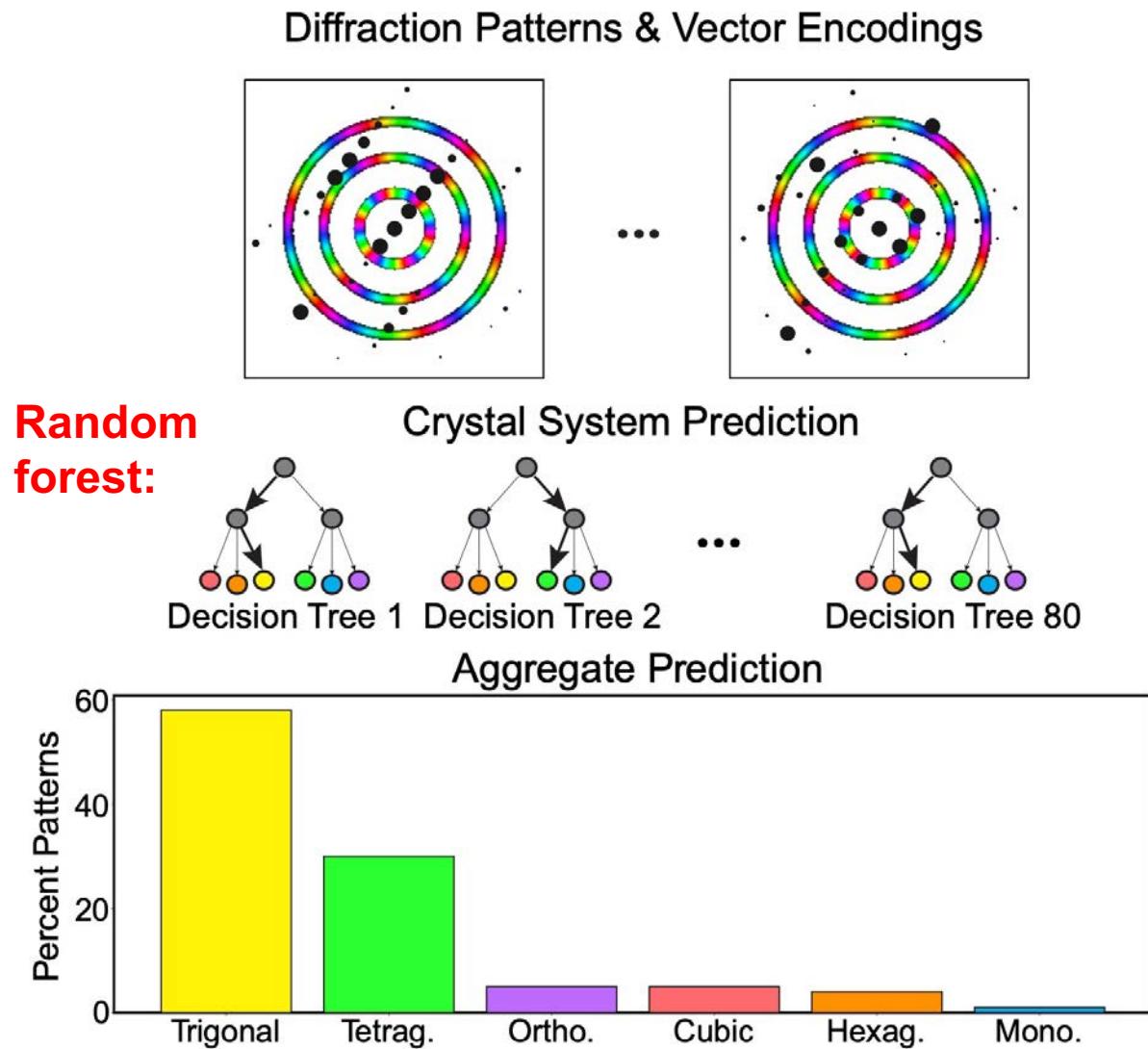
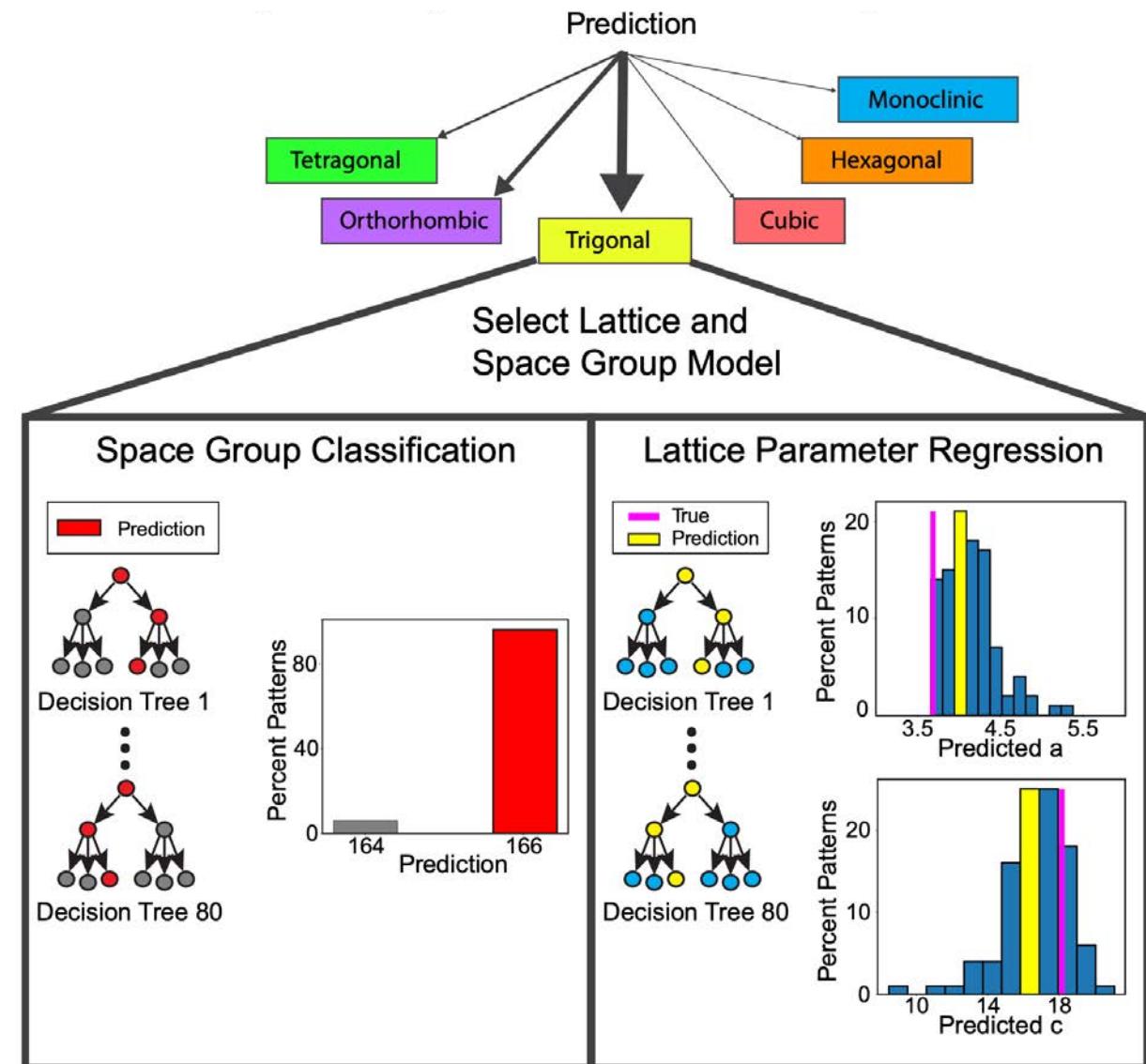
But what happens when we see an **unknown pattern** in an experiment?

For example, **high-throughput** structure **discovery** experiments.



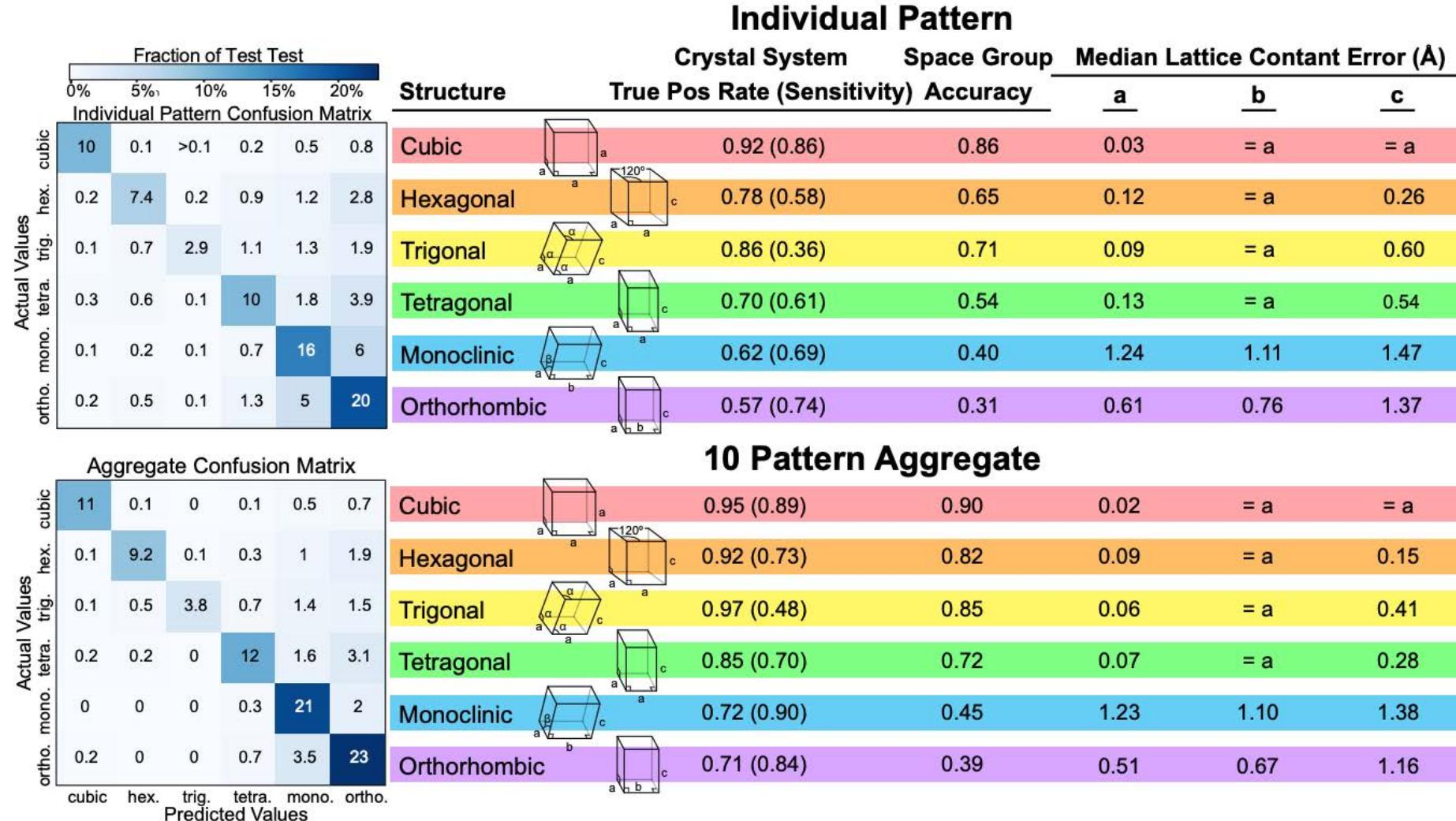
Could we predict **crystal system**, **space group**, or even the **lattice params** with ML?

# Blind Identification of Crystal Structures with ML

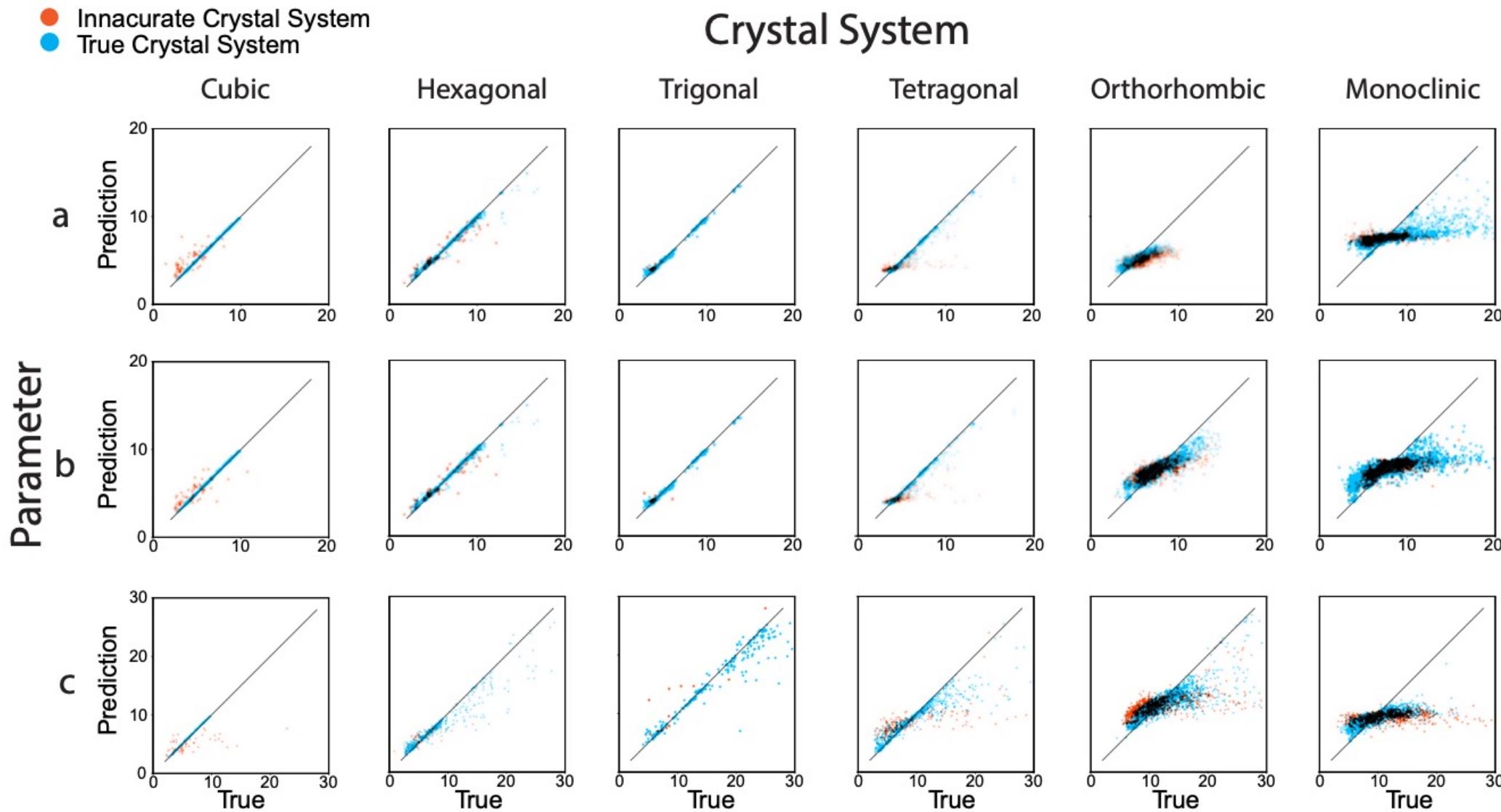


# Blind Identification of Crystal Structures with ML

Prediction accuracy (square brackets) and true positive rate (round brackets)

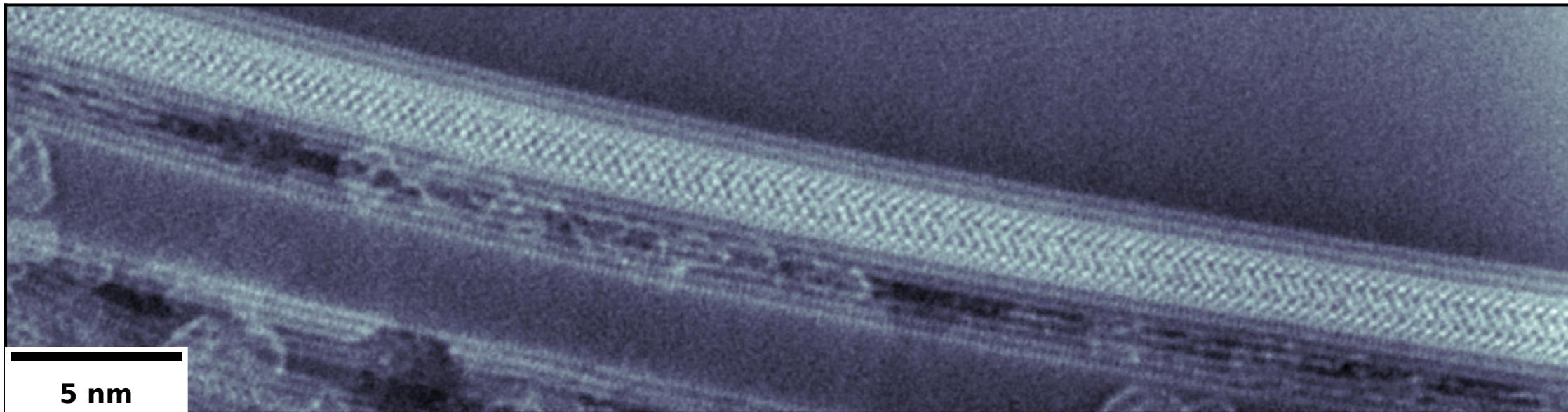


# Blind Identification of Crystal Structures with ML

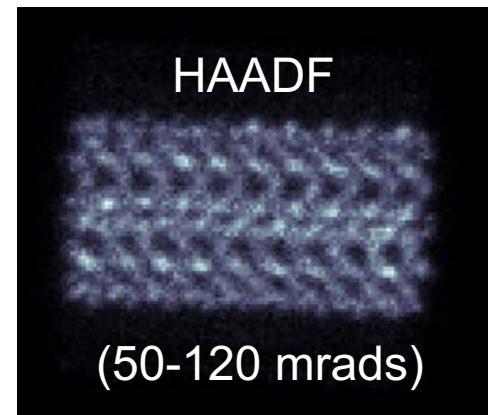
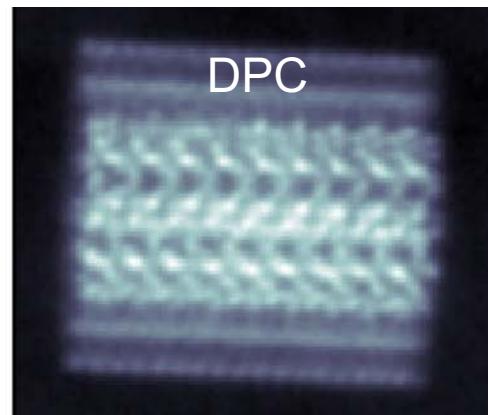
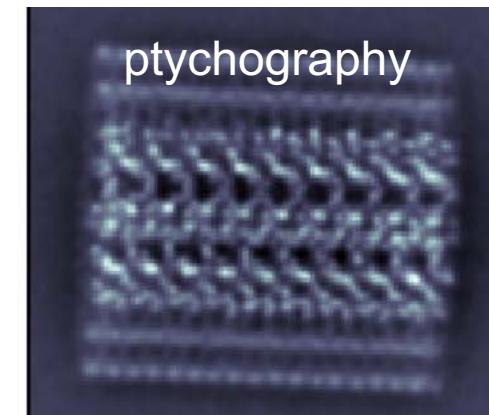


# Ptychographic Atomic Electron Tomography

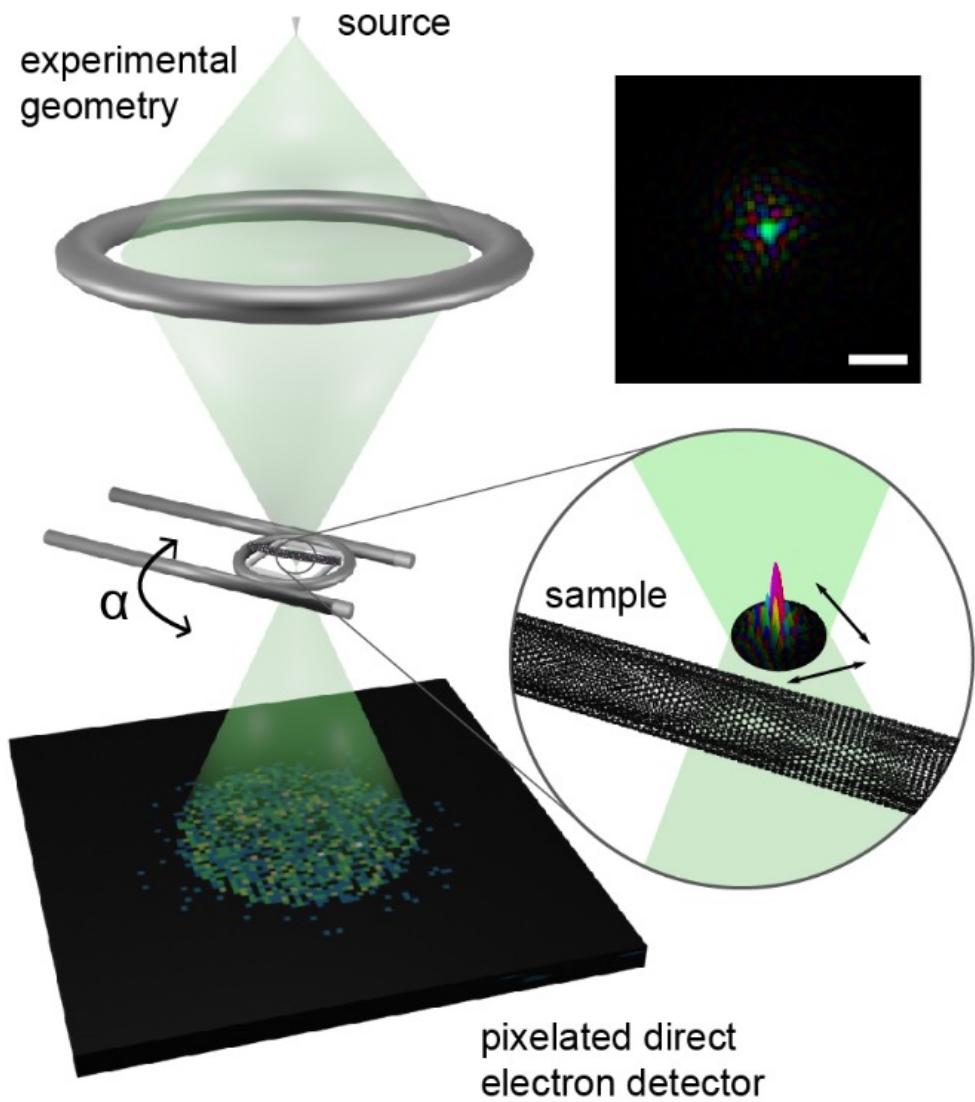
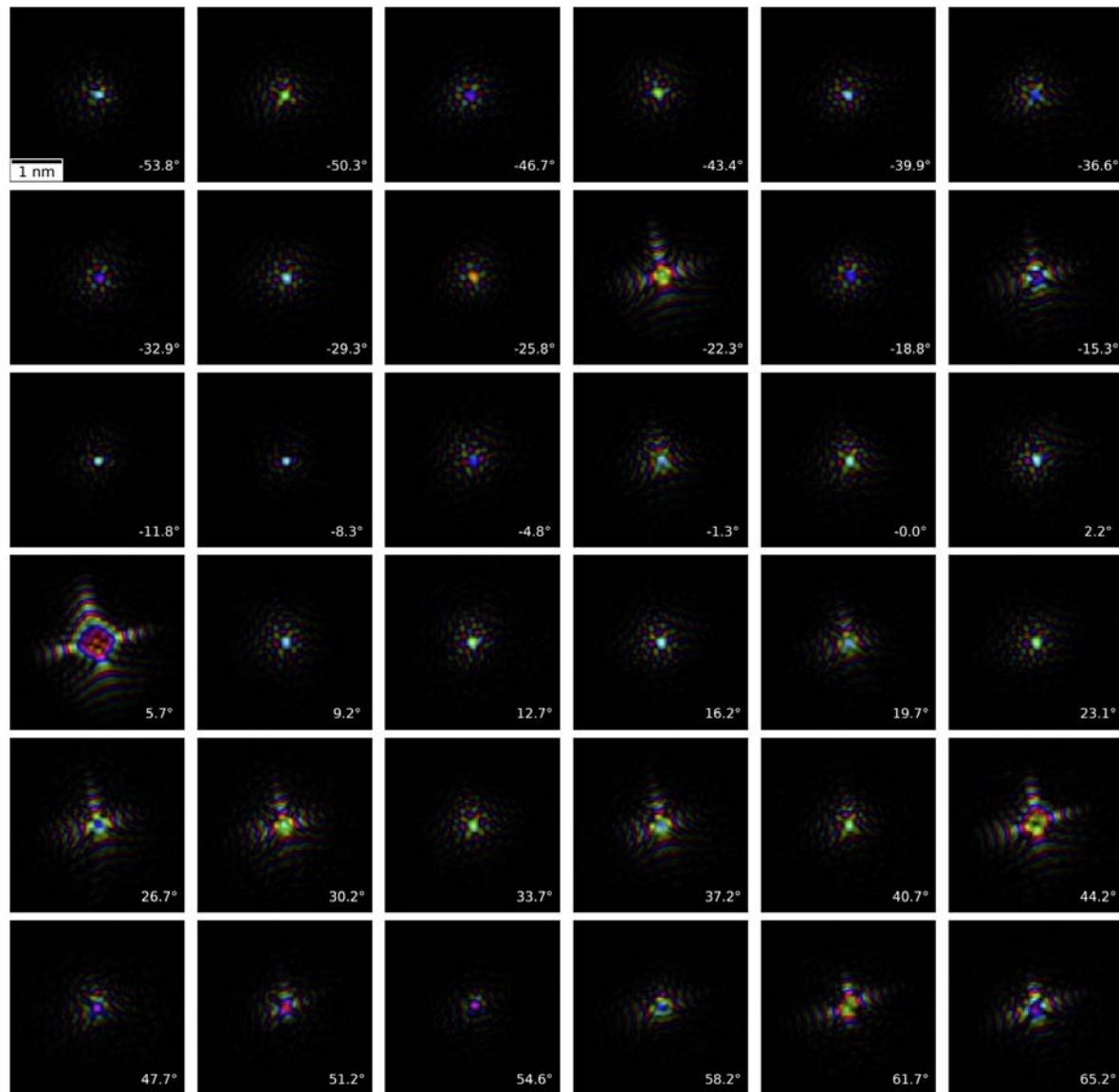
Sample – ZrTe nanowire, encapsulated in double-walled carbon nanotube



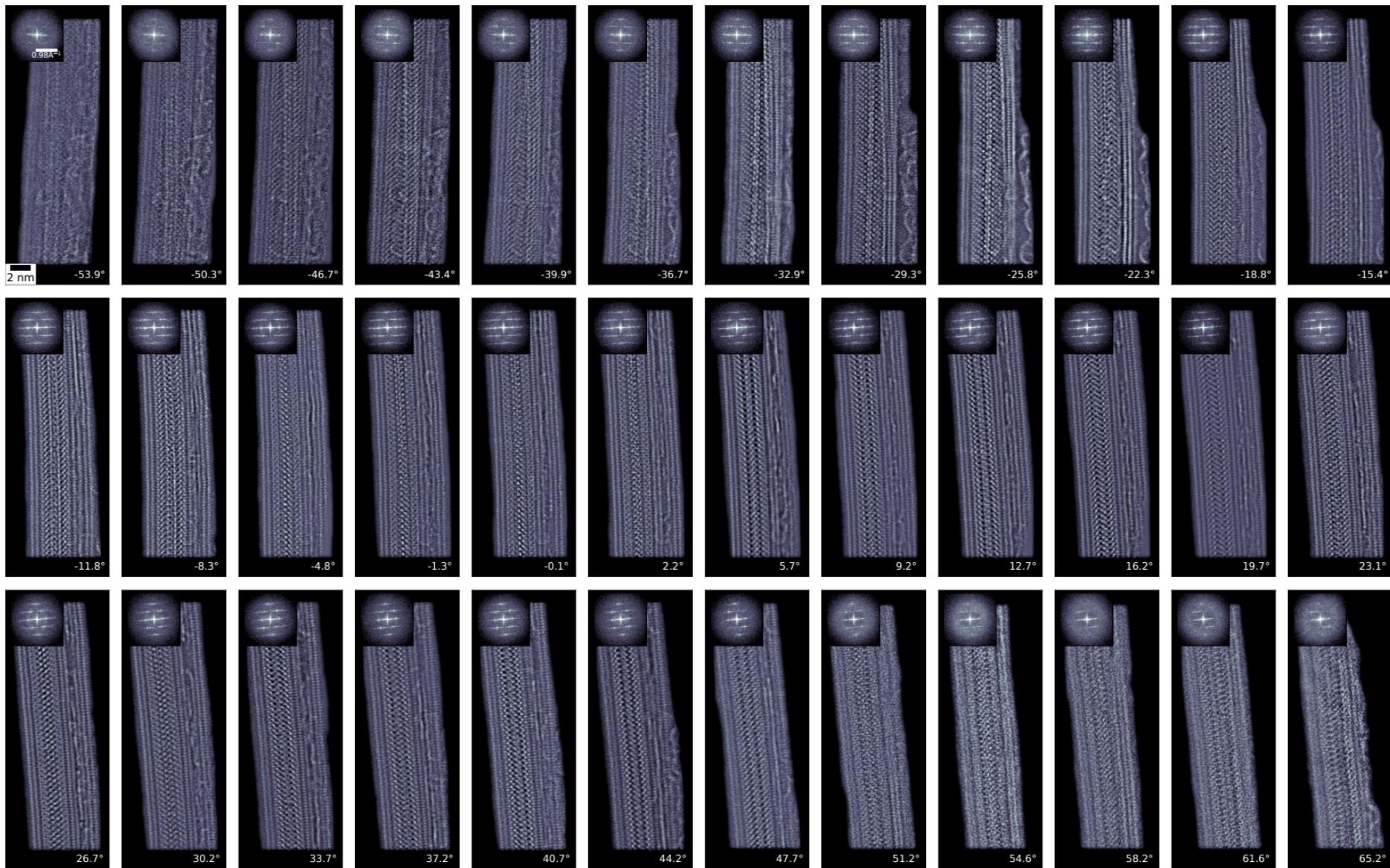
Different STEM  
imaging modes:



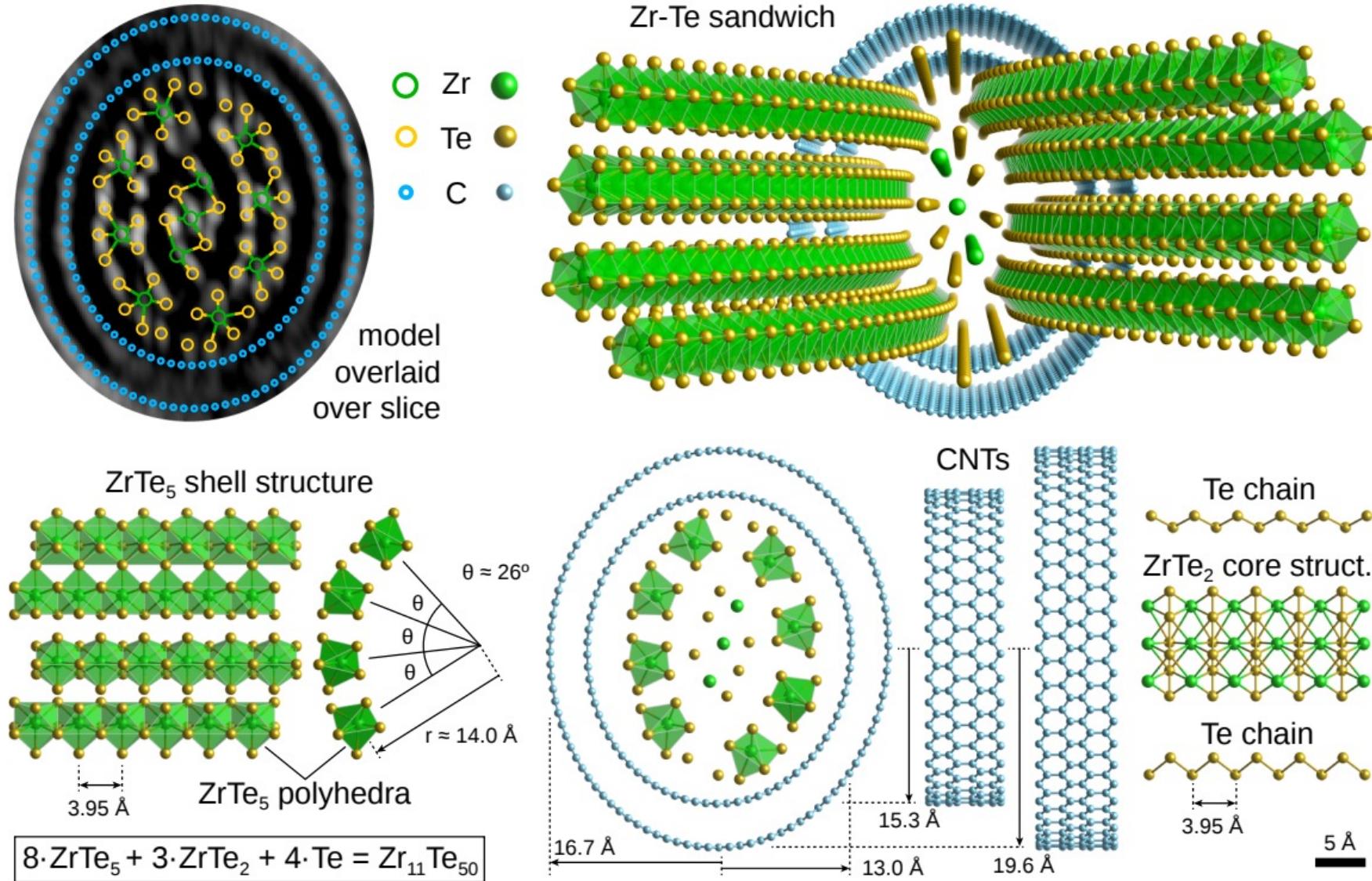
# Ptychographic Atomic Electron Tomography



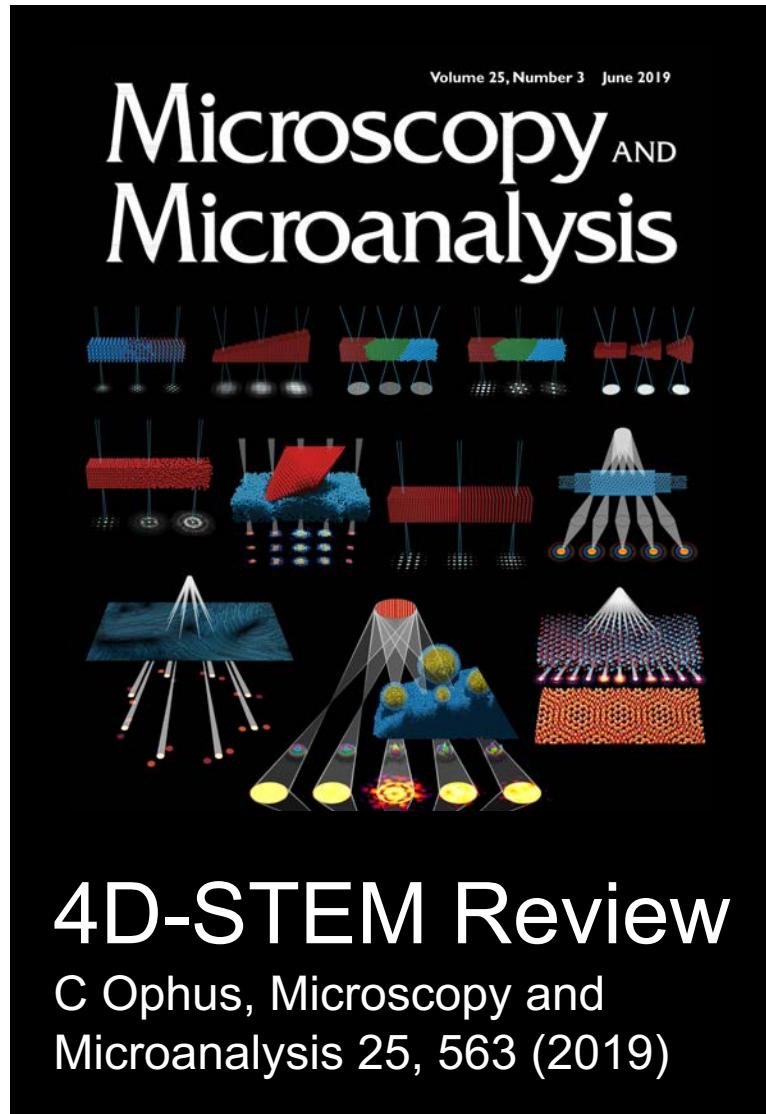
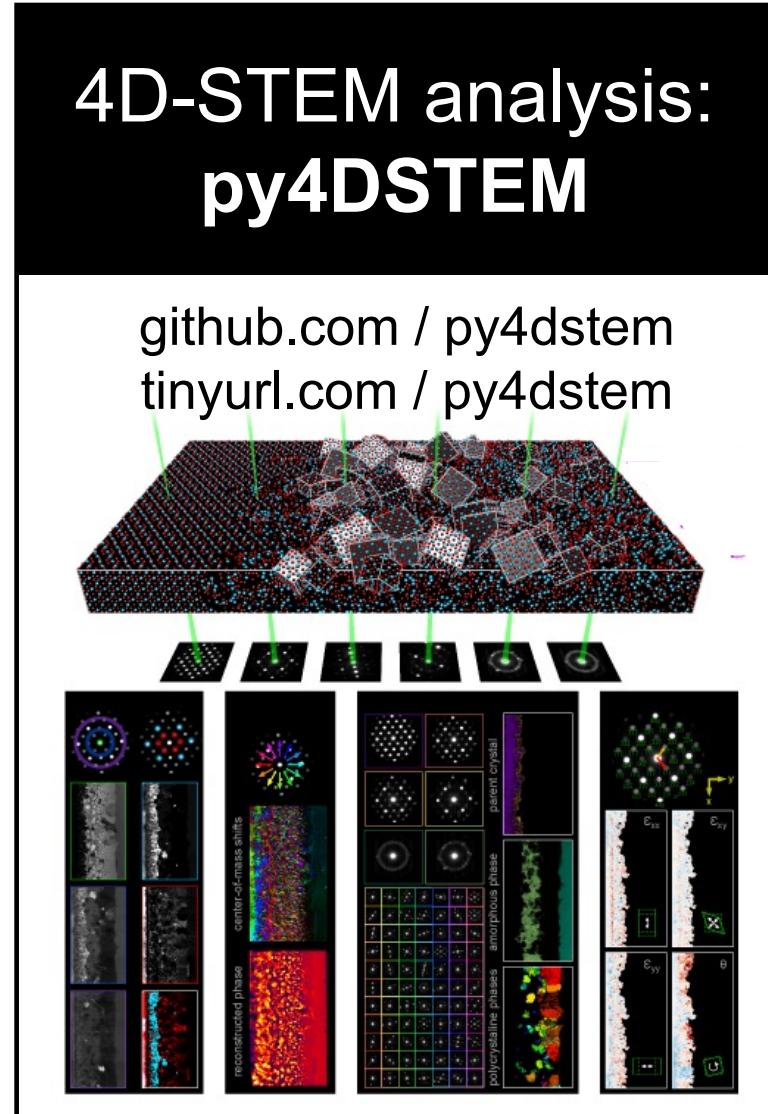
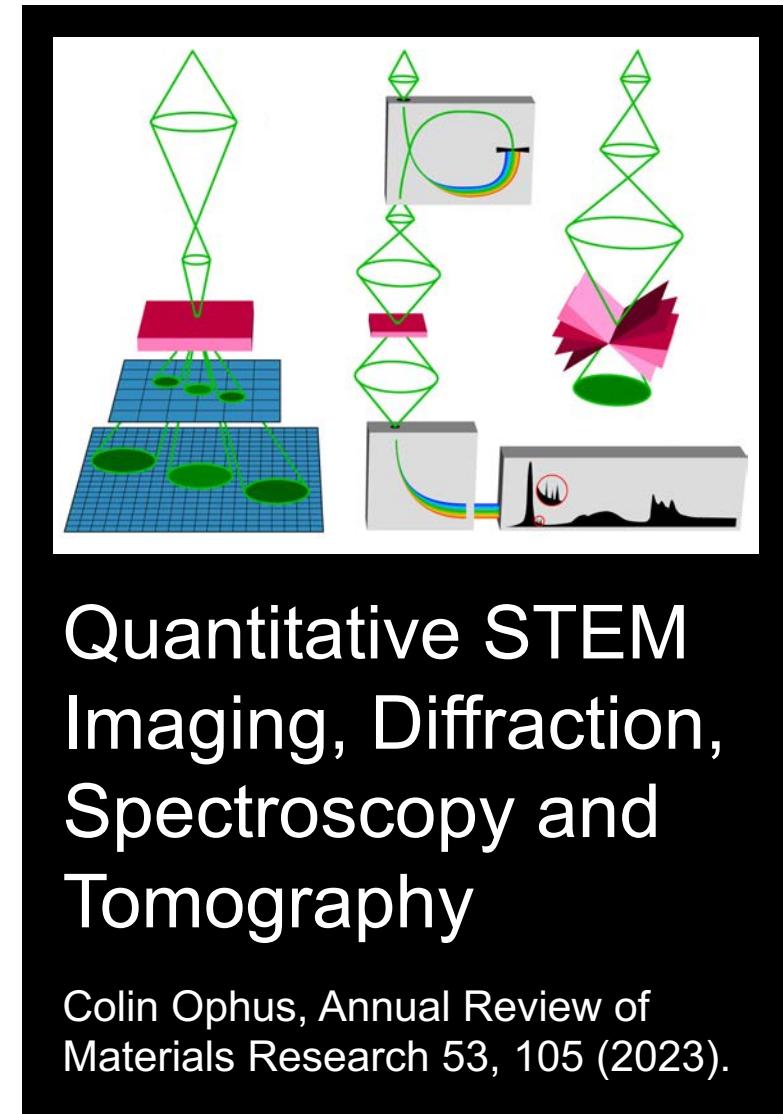
# Ptychographic Atomic Electron Tomography



# Ptychographic Atomic Electron Tomography



More Info – contact me at **clophus@lbl.gov**



# Acknowledgements

## Berkeley National Lab

Benjamin Savitzky  
Stephanie Ribet  
Alexander Rakowski  
Karen Bustillo  
Sinéad Griffin  
Sam Gleason  
Jim Ciston  
Peter Ercius  
Michael Whittaker  
Yang Yang  
Yujun Xie

## Argonne National Lab

Joydeep Munshi  
Maria Chan  
Shinjan Dutta  
Haili Jia

## Northwestern Univ

Roberto dos Reis  
Vinayak Dravid

## UC Berkeley

Georgios Varanides  
Alexandra Bruefach  
Min Chen  
Mary Scott  
Andrew Minor  
Hannah Devyldere  
Ellis Kennedy  
Luis Rangel DaCosta  
Alexandra Bruefach  
David Ren  
Tiffany Chien  
Laura Waller  
Nathanael Kazmierczak  
Madeline Van Winkle  
Isaac Craig  
Kwabena Bediako  
Scott Stonemeyer  
Derek Popple  
Alex Zettl  
Jun Ding  
Mark Asta

## Cornell University

Steven Zeltmann  
Yue Yu

## U Erlangen Nürnberg

Mingjian Wu  
Philipp Pelz  
Christina Harreiss,  
Erdmann Specker

## Arizona State U

Sandhya Susarla

## UC Los Angeles

Yao Yang  
John Miao

## University of Michigan

Jonathan Schwartz  
Suk Hyun  
Robert Hovden

## Monash University

E Terzoudis-Lumsden  
Tim Petersen  
Scott Findlay

## University of Melbourne

Hamish Brown

## Stanford / SLAC

Chris Takacs  
Yael Tsarfati  
Dean Deng  
William Chueh  
Jingyang Wang  
Alberto Salleo  
Yi Cui

## KAIST

Juhyeok Lee  
Hyesung Jo  
Yongsoo Yang