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Four dimensional
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4D STEM Experiments

Converged electron probe rastered over sample (TEAM I)
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4D STEM Experiments

2D Crystal

.. Tungsten Disulphide
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1920x1792 CBED image sizes.
(420 gigabytes) in =3 minutes.
Data manipulation / analysis
requires fast and robust
software methods.

= Experimental K2 IS dataset,
256x256 probe positions,
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electron beam
-STEM can measure

4D

thin film stack,
solid state
battery

structure and properties
over functional length scales

substrate

diffraction
patterns

EBIC cathode channel
EBIC anode channel

structure classification

degree of crystallinity
local lattice strain
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bright field image

dark field image

‘Why do 4D-STEM?
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4D-STEM ptychography.
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STEM Diffraction from Crystalline Samples

» |deally, the diffracted signal is simply a 2D
Fourier transform of the projected
potential, multiplied by the probe intensity.

* Thus the position and intensity of Bragg
disks of each diffraction pattern acts as a
fingerprint for the local structure and
orientation of the (crystal) sample.

- » [nterpretation is complicated by multiple /
dynamical scattering (thickness effects),

overlapping grains, background signals.
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4D-STEM Diffraction from Amorphous Samples

» |deally, the diffracted signal is simply a 2D
| Fourier transform of the projected
;j potential, multiplied by the probe intensity.

= The position and shape of amorphous
halos of each diffraction pattern acts as a
fingerprint for the local structure factor,
given by the mean atomic arrangement.

* Interpretation is complicated by multiple
/ dynamical scattering (thickness effects),
background, more than crystal diffraction!
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Complex Sample Analysis with 4D-STEM

Gadolinium Titanate 4D-STEM
experiment
single crystal amorphous

pyrochlore
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recrystallized fluorite mixed  polycrystalline fluorite mixed

FOUNDRY Ia B Savitzky et al., Microscopy and Microanalysis (2021).



<«— converged electron beam scanned over surface —>

ion bombardment

4D-STEM Analysis

< Created by Benjamin
o > ® s, Savitzky & Colin Ophus.
’ ‘. .‘ ‘ ﬁu

Primarily
.. ‘ ‘“‘ . . funded by A
t. .c ‘ e ..; Core developer team also
includes Steve Zetmann, 27 B B B B O\
Steph Ribet, Alex Rakowski,

py4 D ST E M and George,Varnavides.

Teaching Workshop at M&M

= == By o
b [

annealed
sample

pyrochlore crystal recrystallized fluorite polycrystalline mixed region amorphous structure

py4DSTEM can measure:

Virtual imaging (bright field and dark field).
Structure classification.

Phase, orientation and strain mapping of crystal materials.
Short range ordering (SRO) & FEM of amorphous materials.
Phase contrast imaging methods:

o Differential phase contrast

- o Parallax imaging
- tinyurl.com/ [ S o Ptychography
py4dDSTEM " o Ptychographic atomic tomography
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FOUNDRY B Savitzky et al., Microscopy and Microanalysis 27, 712 (2021).



O .

4D-STEM — Irradiated & Annealed Gd,Ti,0;

s
e

Ordered (~pyrochlore) Amorphous In-plane orientation

Disordered (~fluorite) Composite Out-of-plane orientation

Ordered (~pyrochlore)
Disordered (~fluorite) N
Amorphous Il

FOUNDRY Ia B Savitzky et al., manuscript in preparation 11




Characterization of Battery Electrolyte @ -30°C

ethylene carbonate / diethyl carbonate

(EC / DEC) complex mixture of phases on
Sandwiched Liquid cell

carbon TEM grid sample

functional length scales:

| Cryo-TEM
holder

Liquid N2 DEC ——

LiPFe /

Temperature
controller

FOUNDRY Hﬂ Y Xie et al., Science Advances 9, eadc9721 (2023)



4D-STEM Characterization of Battery Electrolyte

<«— converged probes —
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— Phase |
— Phase ||
— Phase lli

Intensity (arb. unit) m

0?2 OL_4 . 0.0 '
Scattering vector (A=)  LiPFg amorphous ‘liquid’
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4D-STEM of Liquid Battery Electrolyte at -30°C

300

250

200

150

Counts

100 ¢

50 1

0.25 0.30 0.35 0.40 0.45
Lattice parameter (nm-)

[hkI] d[A] d*[1/A]

LiPFg [113] 2.167 0.462
LiF [010] 2.556 0.391
LiPFs | [0-1-2] | 3.602 0.278
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4D-STEM of Liquid Battery Electrolyte at -30°C

namics simulations
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FOUNDRY Ia Y Xie et al., Science Advances 9, eadc9721 (2023)




4D-STEM - Crystal Strain Mapping
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Correlative Imaging & Inverse Learning of LiFePO,
4D-STEM strain mapping of battery cathode particles.

FOUNDRY ]a HD Deng et al., Nature Materials 21, 547 (2022). 18



Correlative Imaging & Inverse Learnlng of LiIFePO,

X-ray spectroscopic ptychography using a TEM holder e
Biphasic LixFePO, |_|0 sFePO,

...........................................................................................................................................................................................................

LFP é . | 1 FP2
L|079FePO4 LI066F6P04 L|0_51 FePO4

..................................................................

FES
Lio.soFePO, Lig.02FePO,

P3 P1(*) P2
LFP1
LFP2

B FP1
LFP3 5 - Lio 22FePO,
3 Liy -,FePO, Liy 5,FePO,

FOUNDRY Ia HD Deng et al., Nature Materials 21, 547 (2022).



Correlative Imaging & Inverse Learning of LiFePO,

Alignment and correlation of all channels = inverse learning of constitutive law
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Eigenstrain, ¢°

Chemistry

Multi-featured image stack (S)
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Dynamical Diffraction Complicates Disk Detection

® 0. 00
0 000000
I i 000000
Diffraction 0%%%% %% %" %
pattern from
using small
convergence

angle, thin

sample :0:0:0:0:0:0:':0' Can machine lea rning

correlation detection methods help us when
our conventional image

"2y st o e .
Diffraction -a%g;da“f’!"hu analysis pipelines fail?
pattern from B3ege, S0
using large *%°
SNl Rty

convergence
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sample

correlation detection

FOUNDRY Hﬂ J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)




Simulation Pipeline Infrastructure

4D-SCRAPE 4D-MAKE 4D-PREP 4D-OPTIMIZE Many open source

. software tools used:
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Solving Diffraction with Deep Learning — crystal4D

Complex Conv 2D + BN + ReLU Conv 2D + BN + ReLLU mmm Inverse FFT layer
p

CBED 1 Max pool 2D / Spectral pool 2D [ Upsample 2D mmm FFT layer
= Pooling connection = Upsample connection ® Multiply

Skip connections (Copy + Concatenate)

128 64
512 512 256
— =

128 256

256 X 256 X2

Atomic
potential (V,)

Probe

FOUNDRY Iﬂ J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)



Solving Diffraction with Deep Learning — FCU-Net
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Solving Diffraction with Deep Learning — FCU-Net

1.5
: a ~ Correlation : : b :
§ i - - N
. i - FCU-Net i P
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FOUNDRY Iﬂ J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)



Dynamical Diffraction Defeated by Deep Learning
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FOUNDRY Ia J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)



Strain Mapping of SiGe Multilayers w/ Deep Learning

Diffraction pattern Cross correlation

~100 nm
thickness

crystal4D prediction Disk positions

]

Virtual dark field image correlation crystaldD

FOUNDRY Ia J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)



Strain Mapping of SiGe Multilayers w/ Deep Learning

_____ Strain Exx Strain Eyy
virwal right field E = : T
N 8 9 ] ':'{ ';"; _:':- " p
ES T_) " ere - - '..._, o ,'J b -J'
’g : t ’ . s : '::.i".r
; 7
< £F
Composition (%Si) 8 W
L é 10 nm
relative thickness
: PRI ey 3%
Correlation
201 — FCU-Net

Strain mapping of alternating

multilayers of Si and SiGe.

- Estimated

25 50 75 100 125 150 175 2000 25 50 75 100 125 150 175 200

Probe Position [nm]

Probe Position [nm]

= Our deep learning approach significantly improves the measurement accuracy
over conventional correlation, and does not require any labeled training data.

FOUNDRY Hﬂ J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)



Blind Identification of Crystal Structures with ML

Our existing phase mapping methods work well for known crystal structures.

But what happens when we sce an KRR e Cd e Rl
unknown pattern in an experiment? -----------

For example, high-throughput
structure discovery experiments.

Could we predict crystal system, space group, or even the lattice params with ML?




Blind Identification of Crystal Structures with ML

Diffraction Patterns & Vector Encodings
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FOUNDRY iﬂ A Gleason, A Rakowski, B Savitzky, M Henderson, J Ciston, and C Ophus, manuscript in preparation




Blind Identification of Crystal Structures with ML

Prediction accuracy (square brackets) and true positive rate (round brackets)

Individual Pattern

Fraction of Test Test Crystal System Space Group Median Lattice Contant Error (A)
0% 5% 10% 15% 20%  Structure True Pos Rate (Sensitivity) Accuracy a b c
Individual Pattern Confusion Matrix — m— - —
8| 10 01 >01 02 05 08| Cubic . 0.92 (0.86) 0.86 0.03 =a =a
) a .| =120
E,' 02 74 02 09 12 28| Hexagonal i e 0.78 (0.58) 0.65 0.12 =a 0.26
g . \ETAN R
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: s O
%; 02 05 o1 13 5 n Orthorhombic '! 0.57 (0.74) 0.31 0.61 0.76 1.37
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§ 1 01 0 01 05 07 | Cubic a 0.95 (0.89) 0.90 0.02 =a =a
e a\h o [120°
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;’; gl 01 05 38 07 14 15| Trigonal ’, ’ 0.97 (0.48) 0.85 0.06 =a 0.41
=" v,
Eg; §| 02 o2 o R 16 31 [Fgtragonal ﬁ 0.85 (0.70) 0.72 0.07 =a 0.28
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FOUNDRY Ia A Gleason, A Rakowski, B Savitzky, M Henderson, J Ciston, and C Ophus, manuscript in preparation



Blind Identification of Crystal Structures with ML

® Innacurate Crystal System
® True Crystal System C ryStaI SySte m
Cubic Hexagonal Trigonal Tetragonal Orthorhombic Monoclinic
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FOUNDRY Ia A Gleason, A Rakowski, B Savitzky, M Henderson, J Ciston, and C Ophus, manuscript in preparation



Ptychographic Atomic Electron Tomography

Different STEM
Imaging modes: ,
(50-120 mrads)

FOUNDRY iﬂ P Pelz et al., Nature Communications 14, 7906 (2023) 33



Ptychographic Atomic Electron Tomography

source

experimental
geometry

pixelated direct
electron detector
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Ptychographic Atomic Electron Tomography

MOLECULAR
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Ptychographic Atomic Electron Tomography

Zr-Te sandwich
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More Info — contact me at clophus@Ibl.gov

4D-STEM analysis:

Microscopy .. y4DSTEM

Microanalysis

github.com / py4dstem
tinyurl.com / py4dstem

Quantitative STEM
Imaging, Diffraction,
SIS N ek | Spectroscopy and
4D-STEM Review =1y a8 Tomography

C Ophus, Microscopy and ER ' Colin Ophus, Annual Review of
Microanalysis 25, 563 (2019) LA i | ettt | & 8 Materials Research 53, 105 (2023).
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