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§  We are a user facility at the Berkeley Lab, operated by the US Department of Energy.
§  Anyone can submit a proposal (including for computation, simulation or analysis!).
§  If accepted by independent review board, access to microscopes and staff is free. 

Molecular Foundry User Facility – Sept 2024 – foundry.lbl.gov
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Intro to Scanning TEM converged electron probe

sample

annular dark field 
(ADF) detector

diffraction pattern

pixelated detector

2D images recorded
over a 2D grid of probe positions:

Four dimensional
scanning transmission electron microscopy

(4D-STEM)
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4D STEM Experiments

Each image is 
40 x 40 positions 
averaged … 
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4D STEM Experiments

§ Experimental K2 IS dataset, 
256x256 probe positions, 
1920x1792 CBED image sizes.

§ 225 billion pixels                       
(420 gigabytes) in ≈3 minutes.

§ Data manipulation / analysis 
requires fast and robust 
software methods.

Each image is 
7 x 7 positions 
averaged … 
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Motivation – Why do 4D-STEM?
Few layer BN

1 nmConventional dark field STEM

4D-STEM ptychography

4D-STEM can 
improve resolution 
and signal-to-noise

4D-STEM can measure 
structure and properties 

over functional length scales
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STEM Diffraction from Crystalline Samples

§ Ideally, the diffracted signal is simply a 2D 
Fourier transform of the projected 
potential, multiplied by the probe intensity.

§ Thus the position and intensity of Bragg 
disks of each diffraction pattern acts as a 
fingerprint for the local structure and 
orientation of the (crystal) sample.

§ Interpretation is complicated by multiple / 
dynamical scattering (thickness effects), 
overlapping grains, background signals.
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4D-STEM Diffraction from Amorphous Samples

§ Ideally, the diffracted signal is simply a 2D 
Fourier transform of the projected 
potential, multiplied by the probe intensity.

§ The position and shape of amorphous 
halos of each diffraction pattern acts as a 
fingerprint for the local structure factor, 
given by the mean atomic arrangement.

§ Interpretation is complicated by multiple 
/ dynamical scattering (thickness effects), 
background, more than crystal diffraction!
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Complex Sample Analysis with 4D-STEM
Gadolinium Titanate 4D-STEM

experiment

recrystallized fluorite mixed polycrystalline fluorite mixed

single crystal 
pyrochlore amorphous

B Savitzky et al., Microscopy and Microanalysis (2021).
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4D-STEM Analysis
Created by Benjamin 
Savitzky & Colin Ophus.

Primarily 
funded by 

Core developer team also 
includes Steve Zeltmann, 
Steph Ribet, Alex Rakowski, 
and George Varnavides.

Teaching Workshop at M&M

ColinAlexGeorge

Steve Ben Steph

py4DSTEM can measure:
§ Virtual imaging (bright field and dark field).
§ Structure classification.
§ Phase, orientation and strain mapping of crystal materials.
§ Short range ordering (SRO) & FEM of amorphous materials.
§ Phase contrast imaging methods:

⋄ Differential phase contrast
⋄ Parallax imaging
⋄ Ptychography
⋄ Ptychographic atomic tomography

tinyurl.com / 
py4DSTEM 
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4D-STEM – Irradiated & Annealed Gd2Ti2O7

[111]
[011]

[001]

Ordered (~pyrochlore)
Disordered (~fluorite)

Amorphous

Ordered (~pyrochlore) Amorphous

CompositeDisordered (~fluorite) Out-of-plane orientation

In-plane orientation
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Characterization of Battery Electrolyte @ -30ºC

Y Xie et al., Science Advances 9, eadc9721  (2023)

ethylene carbonate / diethyl carbonate 
(EC / DEC) complex mixture of phases on 

functional length scales:
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4D-STEM Characterization of Battery Electrolyte
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4D-STEM Characterization of Battery Electrolyte

250 nm 250 nm

LiPF6 ‘liquid’amorphous

EC

DEC

solid liquid

5 um 250 nm
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4D-STEM of Liquid Battery Electrolyte at -30ºC

Lattice parameter (nm-1)

C
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[hkl] d[Å] d*[1/Å]

LiPF6 [1 1 3] 2.167 0.462

LiF [0 1 0] 2.556 0.391

LiPF6 [0 -1 -2] 3.602 0.278

LiPF6

LiPF6

LiPF6

Y Xie et al., Science Advances 9, eadc9721  (2023)
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4D-STEM of Liquid Battery Electrolyte at -30ºC

Scattering Angle [nm-1]
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Red region

Blue region

§ Red region is more ordered, has 
higher density à amorphous / 
viscous liquid phase

§ Blue region is less ordered, has 
lower density à liquid

molecular dynamics simulations

Y Xie et al., Science Advances 9, eadc9721  (2023)
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4D-STEM – Crystal Strain Mapping

lattice in 
compression

lattice in 
tension

increased spot spacing decreased spot spacing
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4D-STEM strain mapping of battery cathode particles.

HD Deng et al., Nature Materials 21, 547 (2022).

Correlative Imaging & Inverse Learning of LiFePO4
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X-ray spectroscopic ptychography using a TEM holder
Correlative Imaging & Inverse Learning of LiFePO4
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Alignment and correlation of all channels à inverse learning of constitutive law

HD Deng et al., Nature Materials 21, 547 (2022).

Correlative Imaging & Inverse Learning of LiFePO4
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Dynamical Diffraction Complicates Disk Detection

Diffraction 
pattern from 
using small 

convergence 
angle, thin 

sample

Diffraction 
pattern from 
using large 

convergence 
angle, thick 

sample

correlation detection Deep learning

correlation detection Deep learning

Can machine learning 
methods help us when 
our conventional image 
analysis pipelines fail?

J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)
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Simulation Pipeline Infrastructure
4D-SCRAPE 
& Manipulatt

4D-MAKE 4D-PREP 4D-OPTIMIZE Many open source 
software tools used:

J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)
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Solving Diffraction with Deep Learning – crystal4D

J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)
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Solving Diffraction with Deep Learning – FCU-Net
Simulated 
diffraction 

patterns

Correlation 
disk detection

Deep learning 
disk detection

ground truth 
positions

measured 
positions

J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)
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Solving Diffraction with Deep Learning – FCU-Net

J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)
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Dynamical Diffraction Defeated by Deep Learning

Diffraction 
pattern from 
using small 

convergence 
angle, thin 

sample

Diffraction 
pattern from 
using large 

convergence 
angle, thick 

sample

correlation detection Deep learning

correlation detection Deep learning

J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)
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Strain Mapping of SiGe Multilayers w/ Deep Learning

J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)
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Strain Mapping of SiGe Multilayers w/ Deep Learning

Strain mapping of alternating 
multilayers of Si and SiGe.

§ Our deep learning approach significantly improves the measurement accuracy 
over conventional correlation, and does not require any labeled training data.

J Munshi*, A Rakowski*, et al., npj Computational Materials 8, 254 (2022)
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Blind Identification of Crystal Structures with ML

A Gleason, A Rakowski, B Savitzky, M Henderson, J Ciston, and C Ophus, manuscript in preparation

Our existing phase mapping methods work well for known crystal structures. 

But what happens when we see an 
unknown pattern in an experiment?

For example, high-throughput 
structure discovery experiments.

Could we predict crystal system, space group, or even the lattice params with ML?
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Blind Identification of Crystal Structures with ML

Random 
forest:

A Gleason, A Rakowski, B Savitzky, M Henderson, J Ciston, and C Ophus, manuscript in preparation
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Blind Identification of Crystal Structures with ML

A Gleason, A Rakowski, B Savitzky, M Henderson, J Ciston, and C Ophus, manuscript in preparation

Prediction accuracy (square brackets) and true positive rate (round brackets)
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Blind Identification of Crystal Structures with ML

A Gleason, A Rakowski, B Savitzky, M Henderson, J Ciston, and C Ophus, manuscript in preparation
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Ptychographic Atomic Electron Tomography

P Pelz et al., Nature Communications 14, 7906 (2023)

5 nm

Sample – ZrTe nanowire, encapsulated in double-walled carbon nanotube

Different STEM 
imaging modes:

HAADF

 (50-120 mrads)

DPC ptychography
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Ptychographic Atomic Electron Tomography

P Pelz et al., Nature Communications 14, 7906 (2023)
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Ptychographic Atomic Electron Tomography

P Pelz et al., Nature Communications 14, 7906 (2023)
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Ptychographic Atomic Electron Tomography

P Pelz et al., Nature Communications 14, 7906 (2023)
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More Info – contact me at clophus@lbl.gov

4D-STEM Review
C Ophus, Microscopy and 
Microanalysis 25, 563 (2019)

4D-STEM analysis:
py4DSTEM

github.com / py4dstem
tinyurl.com / py4dstem

Quantitative STEM 
Imaging, Diffraction, 
Spectroscopy and 
Tomography
Colin Ophus, Annual Review of 
Materials Research 53, 105 (2023).
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