MS137:

Modeling Female and Minority Representation in Society

Organizers

Kaitlin Hill, U. of Minnesota, Wake Forest University

Sara M. Clifton, U. of Illinois, St. Olaf College

Speakers
Sara M. Clifton, U. of Illinois
Luís Amaral, Northwestern U.
S. John Hogan, U. of Bristol

Daniel P. Maes, U. of Michigan

Women are 46\% of the workforce, but their representation falls in more senior positions

Many industries are structured hierarchically

- business
- medicine
- law
- politics
- academia
- education
- journalism
- entertainment

Build a minimal model

Fact 1

People self-segregate (called "homophily")

Build a minimal model

Fact 2

Bias by hiring
committees exists

Build a minimal model

Both bias and homophily impact the ascension of people through professional hierarchies

group eligible for promotion (40\% women)

行

HOMOPHILY $\left\{\begin{array}{l}\text { probability that man applies for promotion: } 50 \%\end{array}\right.$ probability that woman applies for promotion: 25%
group eligible for promotion (40% women)

group applying for promotion (25% women)

HOMOPHILY $\left\{\begin{array}{l}\text { probability that man applies for promotion: } 50 \%\end{array}\right.$ probability that woman applies for promotion: 25%

BIAS $\left\{\begin{array}{l}\text { probability that man is promoted: } 67 \% \\ \text { probability that woman is promoted: } 50 \%\end{array}\right.$
group applying for promotion (25% women)

HOMOPHILY $\left\{\begin{array}{l}\text { probability that man applies for promotion: } 50 \%\end{array}\right.$ probability that woman applies for promotion: 25%

group granted a promotion (20\% women)

BIAS $\left\{\begin{array}{l}\text { probability that man is promoted: } 67 \% \\ \text { probability that woman is promoted: } 50 \%\end{array}\right.$
group applying for promotion (25% women)

Model

behavior:

 no bias and no homophily

Model behavior: effect of bias

Model behavior: effect of homophily

Model behavior: effect of homophily

Model

behavior:

effect of homophily

Model

behavior:

effect of homophily

What does the model

 say about the real world?
Academic

Clinical Medicine

Academic
 Psychology

Intervention: target hiring committees

Intervention:
target potential applicants

Future steps

allow bias and homophily to vary

Future steps

Future steps

Future steps

Thanks

Undergraduate researchers Grace Sun, Alan Zhou, and Patrick McMahon

Mathways grant DMS 1449269

Illinois Geometry Lab

QSIDE
Institute for the Quantitative Study of Inclusion, Diversity, and Equity

Eric Autry (Duke)

Kaitlin Hill
(U. Minnesota)
 (Northwestern)

Supplemental

"Leaky Pipeline" Model

Shaw \& Stanton (2012)

Modeling bias and homophily

Bias

Definition: the fraction of those promoted who are women if the applicant pool is evenly split by gender

Applied

Homophily

Definition: the sensitivity of potential applicants to demographic deviations from their current position

$$
\begin{aligned}
& \text { promoted from } \\
& \begin{aligned}
\frac{1}{R_{L}} \frac{\mathrm{~d} x_{L}}{\mathrm{~d} t} & =\overbrace{f\left(x_{L}, x_{L-1} ; b\right)}^{\begin{array}{c}
\text { promoted from } \\
\text { lower layer }
\end{array}}-\overbrace{x_{L}}^{\begin{array}{c}
\text { retire out } \\
\text { of layer }
\end{array}} \\
\frac{1}{R_{j}} \frac{\mathrm{~d} x_{j}}{\mathrm{~d} t} & =\left(1+r_{j}\right) f\left(x_{j}, x_{j-1} ; b\right)-x_{j}-r_{j} f\left(x_{j+1}, x_{j} ; b\right)
\end{aligned} \\
& f(u, v ; b)=\frac{b v P(u)}{b v P(u)+(1-b)(1-v) P(1-u)} \\
& \frac{1}{R_{1}} \frac{\mathrm{~d} x_{1}}{\mathrm{~d} t}=\underbrace{\left(1+r_{1}\right) f\left(x_{1}, \frac{1}{2} ; b\right)}_{\begin{array}{c}
\text { hired from } \\
\text { general pool }
\end{array}}-\underbrace{x_{1}}_{\begin{array}{c}
\text { leave } \\
\text { field }
\end{array}}-\underbrace{r_{1} f\left(x_{2}, x_{1} ; b\right)}_{\begin{array}{c}
\text { promoted to } \\
\text { next layer }
\end{array}}
\end{aligned}
$$

Model

behavior:

both bias and homophily

Fit model to data

UəسOM UO!!ナед

Fit model to data
fraction women

*
time

Fit model to data

time

Fit model

to data

Fit model

to data

initial guess

Fit model

to data

initial guess
a minimum

Fit model

to data

Fit model

to data

Academic
Engineering

Academic Chemistry

Academic Biology
Academic Comp. Sci.

Engineering

Practice

Journalism

Film

Law
Cl

Academic Medicine (basic science)

Nursing

Academic Math \& Stats

Medical
Practice

Academic Medicine (clinical)

Academic
 Physics

Politics

Academic Psychology

