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Overview



Ridge Regression

Over-determined:	
𝑛 ≫ 𝑑

min
𝐰
		 𝑓 𝐰 =

1
𝑛 𝐗𝐰 − 𝐲 7

7 + 𝛾 𝐰 7
7

𝑛×𝑑



Ridge Regression

𝑛×𝑑

min
𝐰
		 𝑓 𝐰 =

1
𝑛 𝐗𝐰 − 𝐲 7

7 + 𝛾 𝐰 7
7

• Efficient and approximate solution?
• Use only part of the data?



Ridge Regression

min
𝐰
		 𝑓 𝐰 =

1
𝑛 𝐗𝐰 − 𝐲 7

7 + 𝛾 𝐰 7
7

Matrix	Sketching:
• Random selection
• Random projection



Approximate Ridge Regression
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• Sketched	solution: 𝐰O
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min
𝐰
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• Sketched	solution: 𝐰O

• Sketch	size	𝑂R S
T

• 𝑓 𝐰O ≤ 1 + 𝜖 min
𝐰
𝑓 𝐰

sketch	size	

Optimization	Perspective



Approximate Ridge Regression

min
𝐰
		 𝑓 𝐰 =

1
𝑛 𝐗𝐰 − 𝐲 7

7 + 𝛾 𝐰 7
7

Statistical	Perspective

• Bias

• Variance



Related Work

• Least	squares	regression:				min
𝐰

𝐗𝐰 − 𝐲 7
7
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Sketched Ridge Regression



Matrix Sketching

𝐗 𝐒[𝐗

• Turn	big	matrix	into	smaller	one.
• 𝐗 ∈ ℝ^×S ➡ 	𝐒[𝐗 ∈ ℝ_×S .
• 𝐒 ∈ ℝ^×_ is	called	sketching	matrix,	e.g.,

• Uniform	sampling
• Leverage	score	sampling
• Gaussian	projection
• Subsampled	randomized	Hadamard transform	(SRHT)
• Count	sketch	(sparse	embedding)
• Etc.



Matrix Sketching

𝐗 𝐒[𝐗

• Some	matrix	sketching	methods	are	efficient.
• Time cost is o(𝑛𝑑𝑠) — lower than multiplication.	

• Examples:
• Leverage	score	sampling:	𝑂(𝑛𝑑 log 𝑛) time
• SRHT:				𝑂(𝑛𝑑 log 𝑠) time



Ridge Regression

• Objective	function:		

𝑓 𝐰 =
1
𝑛 𝐗𝐰 − 𝐲 7

7 + 𝛾 𝐰 7
7

• Optimal	solution:			

𝐰⋆ = argmin
𝐰

𝑓 𝐰 																							

= 𝐗[𝐗 + 𝑛𝛾𝐈S e 𝐗[𝐲

• Time	cost:		𝑂 𝑛𝑑7 or 𝑂 𝑛𝑑𝑡



Sketched Ridge Regression

• Goal:	efficiently and	approximately solve

argmin
𝐰

		 𝑓 𝐰 =
1
𝑛 𝐗𝐰 − 𝐲 7

7 + 𝛾 𝐰 7
7 .



Sketched Ridge Regression

• Goal:	efficiently and	approximately solve

argmin
𝐰

		 𝑓 𝐰 =
1
𝑛 𝐗𝐰 − 𝐲 7

7 + 𝛾 𝐰 7
7 .

• Approach:	reduce	the	size	of	𝐗 and	𝐲 by	matrix	sketching.



Sketched Ridge Regression

• Sketched solution:

												

𝐰O = argmin
𝐰

	
1
𝑛 𝐒[𝐗𝐰 − 𝐒[𝐲 7

7 + 𝛾 𝐰 7
7

= 𝐗[𝐒𝐒[𝐗 + 𝑛𝛾𝐈S e 𝐗[𝐒𝐒[𝐲 												



Sketched Ridge Regression

• Sketched solution:

												
• Time: 𝑂 𝑠𝑑7 + 𝑇_
• 𝑇_ is	the	cost	of	sketching	𝐒[𝐗
• E.g.	𝑇_ = 𝑂(𝑛𝑑 log 𝑠) for	SRHT.
• E.g.	𝑇_ = 𝑂 𝑛𝑑 log 𝑛 for	leverage	score	sampling.

𝐰O = argmin
𝐰

	
1
𝑛 𝐒[𝐗𝐰 − 𝐒[𝐲 7

7 + 𝛾 𝐰 7
7

= 𝐗[𝐒𝐒[𝐗 + 𝑛𝛾𝐈S e 𝐗[𝐒𝐒[𝐲 												



Theory: Optimization Perspective



Optimization Perspective

• Recall the objective function 𝑓 𝐰 = i
^ 𝐗𝐰 − 𝐲 7

7 + 𝛾 𝐰 7
7.

• Bound	𝑓 𝐰O − 𝑓 𝐰⋆ .

• i^ 𝐗𝐰O − 𝐗𝐰⋆
7
7 ≤ 𝑓 𝐰O − 𝑓 𝐰⋆ .



Optimization Perspective

For	the	sketching	methods
• SRHT	or	leverage	sampling	with	s = 𝑂R jS

T ,

• uniform	sampling	with	s = 𝑂 k	jS lmn S
T ,

𝑓 𝐰O − 𝑓 𝐰⋆ ≤ 𝜖𝑓 𝐰⋆ holds	w.p. 0.9.

• 𝐗 ∈ ℝ^×S:		the	design	matrix
• 𝛾:	the	regularization	parameter

• 𝛽 =
𝐗 p

p

^qr 𝐗 p
p ∈ (0, 1]

• 𝜇 ∈ 1, ^
S
:	 the	row	coherence	of	𝐗



Optimization Perspective

For	the	sketching	methods
• SRHT	or	leverage	sampling	with	s = 𝑂R jS

T ,

• uniform	sampling	with	s = 𝑂 k	jS lmn S
T ,

𝑓 𝐰O − 𝑓 𝐰⋆ ≤ 𝜖𝑓 𝐰⋆ holds	w.p. 0.9.

i
^ 𝐗𝐰O − 𝐗𝐰⋆

7
7 	≤ 	𝜖𝑓 𝐰⋆ .

• 𝐗 ∈ ℝ^×S:		the	design	matrix
• 𝛾:	the	regularization	parameter

• 𝛽 =
𝐗 p

p

^qr 𝐗 p
p ∈ (0, 1]

• 𝜇 ∈ 1, ^
S
:	 the	row	coherence	of	𝐗



Theory: Statistical Perspective



Statistical Model

• 𝐗 ∈ ℝ^×S:	fixed	design	matrix
• 𝐰x ∈ ℝS:	the	true and	unknown model
• 𝐲 = 𝐗𝐰x + 𝛅:	observed	response	vector
• 𝛿i,⋯ , 𝛿^ are	random	noise
• 𝔼 𝛅 = 𝟎 and 𝔼 𝛅𝛅[ = 𝜉7𝐈^



Bias-Variance Decomposition

• Risk:					𝑅 𝐰 = i
^
𝔼 𝐗𝐰 − 𝐗𝐰x 7

7

• 𝔼 is	taken	w.r.t.	the	random	noise 𝛅.



Bias-Variance Decomposition

• Risk:					𝑅 𝐰 = i
^
𝔼 𝐗𝐰 − 𝐗𝐰x 7

7

• 𝔼 is	taken	w.r.t.	the	random	noise 𝛅.
• Risk measures prediction error.
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Bias-Variance Decomposition

• Risk:					𝑅 𝐰 = i
^
𝔼 𝐗𝐰 − 𝐗𝐰x 7

7

• R 𝐰 = bias7 𝐰 + var 𝐰
• bias 𝐰⋆ = 𝛾 𝑛� 𝚺7 + 𝑛𝛾𝐈S �i𝚺𝐕[𝐰x 7,

• var 𝐰⋆ = �p

^ 𝐈S + 𝑛𝛾𝚺�7 �i
7
7
,

• bias 𝐰O = 𝛾 𝑛� 𝚺𝐔[𝐒𝐒[𝐔𝚺 + 𝑛𝛾𝐈S e𝚺𝐕[𝐰x 7
,

• var 𝐰O = �p

^ 𝐔[𝐒𝐒[𝐔 + 𝑛𝛾𝚺�7 e𝐔[𝐒𝐒[
7

7
,

• Here 𝐗 = 𝐔𝚺𝐕[ is	the	SVD.

Optimal
Solution

Sketched
Solution



Statistical Perspective

For	the	sketching	methods

• SRHT	or	leverage	sampling	with	s = 𝑂R S
Tp ,

• uniform	sampling	with	s = 𝑂 k	S lmn S
Tp ,

the	followings	hold	w.p. 0.9:

1 − 𝜖 ≤
bias 𝐰O

bias 𝐰⋆ ≤ 1 + 𝜖,

1 − 𝜖
𝑛
𝑠 	≤ 	

var 𝐰O

var 𝐰⋆ 	≤ 	 1 + 𝜖
𝑛
𝑠 .

• 𝐗 ∈ ℝ^×S:		the	design	matrix
• 𝜇 ∈ 1, ^

S
:	 the	row	coherence	of	𝐗

Good!

Bad!		Because	𝑛 ≫ 𝑠.



Statistical Perspective

For	the	sketching	methods

• SRHT	or	leverage	sampling	with	s = 𝑂R S
Tp ,

• uniform	sampling	with	s = 𝑂 k	S lmn S
Tp ,

the	followings	hold	w.p. 0.9:

1 − 𝜖 ≤
bias 𝐰O

bias 𝐰⋆ ≤ 1 + 𝜖,

1 − 𝜖
𝑛
𝑠 	≤ 	

var 𝐰O

var 𝐰⋆ 	≤ 	 1 + 𝜖
𝑛
𝑠 .

• 𝐗 ∈ ℝ^×S:		the	design	matrix
• 𝜇 ∈ 1, ^

S
:	 the	row	coherence	of	𝐗

If 𝐲 is noisy

variance dominates bias

𝑅 𝐰_ ≫ 𝑅(𝐰⋆).



Conclusions

• Use	sketched solution to	initialize	numerical	
optimization.
• 𝐗𝐰O is	close	to	𝐗𝐰⋆.

Optimization Perspective



Conclusions

• Use	sketched solution to	initialize	numerical	
optimization.
• 𝐗𝐰O is	close	to	𝐗𝐰⋆.

• 𝐰 � :	output	of	the	𝑡-th iteration	of	CG algorithm.

•
𝐗𝐰 � �𝐗𝐰⋆

p

p

𝐗𝐰 � �𝐗𝐰⋆
p

p 	≤ 	2 � 𝐗�𝐗� �i
� 𝐗�𝐗� ri

�
.

• Initialization	is	important.

Optimization Perspective



Conclusions

• Use	sketched solution to	initialize	numerical	
optimization.
• 𝐗𝐰O is	close	to	𝐗𝐰⋆.

• Never use	sketched	solution	to	replace	the	
optimal	solution.
• Much	higher	variance	è bad	generalization.

Optimization Perspective

Statistical Perspective



Model Averaging



Model Averaging

• Independently	draw	𝐒i,⋯ , 𝐒�.
• Compute	the	sketched solutions	𝐰iO,⋯ ,𝐰�O.

• Model	averaging:	𝐰O = i
�
∑ 𝐰�

O�
��i .



Optimization Perspective

• For	sufficiently large 𝑠,	
� 𝐰�� �� 𝐰⋆

� 𝐰⋆ ≤ 𝜖 holds	w.h.p.
Withoutmodel	averaging
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Optimization Perspective

• For	sufficiently large 𝑠,	
� 𝐰�� �� 𝐰⋆

� 𝐰⋆ ≤ 𝜖 holds	w.h.p.

• Using	the	samematrix	sketching	and same 𝑠,
� 𝐰� �� 𝐰⋆

� 𝐰⋆ ≤ T
� + 𝜖

7 holds	w.h.p.

Withoutmodel	averaging

Withmodel	averaging

If	𝑠 ≫ 𝑑 𝜖7 is very small error bound ∝ T
�
.



Statistical Perspective

• Risk:		𝑅 𝐰 = i
^𝔼 𝐗𝐰 − 𝐗𝐰x 7

7 = bias7 𝐰 + var 𝐰

• Model	averaging	:

• bias 𝐰O = 𝛾 𝑛� i
�
∑ 𝚺𝐔[𝐒�𝐒�[𝐔𝚺 + 𝑛𝛾𝐈S

e𝚺𝐕[𝐰x
�
��i

7
,

• var 𝐰O = �p

^
i
�
∑ 𝐔[𝐒�𝐒�[𝐔 + 𝑛𝛾𝚺�7

e𝐔[𝐒�𝐒�[
�
��i

7

7

.

• Here 𝐗 = 𝐔𝚺𝐕[ is	the	SVD.



Statistical Perspective

• For	sufficiently large 𝑠,		the	followings	hold	w.h.p.:
bias 𝐰O

bias 𝐰⋆ ≤ 1 + 𝜖								and										
var 𝐰O

var 𝐰⋆ 	≤ 	
𝑛
𝑠 	 1 + 𝜖 .

• Using	the	same	sketching	methods	and same 𝑠, the	
followings	hold	w.h.p.:
bias 𝐰O

bias 𝐰⋆ ≤ 1 + 𝜖								and										
var 𝐰O

var 𝐰⋆ 	≲ 	
𝑛
𝑠

1
𝑔� + 𝜖

𝟐

Withoutmodel	averaging
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Statistical Perspective

• For	sufficiently large 𝑠,		the	followings	hold	w.h.p.:
bias 𝐰O
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var 𝐰O

var 𝐰⋆ 	≤ 	
𝑛
𝑠 	 1 + 𝜖 .
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If 𝜖	 is small,	then		var 𝐰O ∝ i
�.



Applications to Distributed Optimization

• 𝐱i, 𝑦i ,⋯ , 𝐱^, 𝑦
are	(randomly)	split	
among	𝑔machines.

• Equivalent	to	uniform	
sampling	with	𝑠 = ^

�.



Optimization Perspective

• Application	to	distributed	optimization:
• If	𝑠 = ^

� ≫ 𝑑,	𝐰O is	very	close	to	𝐰⋆ (provably).

• 𝐰O is	good	initialization	of	distributed	optimization	algorithms.



Statistical Perspective

• Application	to	distributed	machine	learning:
• If	𝑠 = ^

� ≫ 𝑑,	then	𝑅 𝐰O is	comparable	to	𝑅 𝐰⋆ .

• If	low-precision	solution	suffices,	then	𝐰O is	a	good	substitute	of	𝐰⋆.
• One-shot solution.



Thank You!

The	paper	is	at			arXiv:1702.04837


