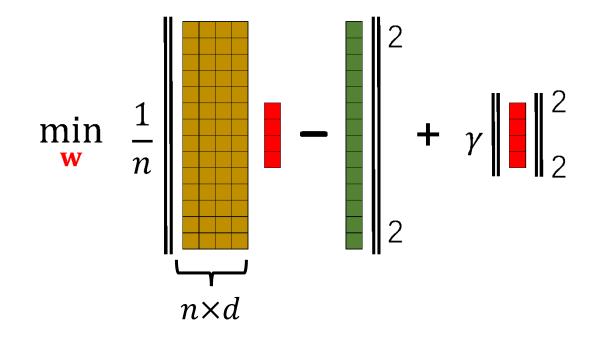


Optimization and Statistical Perspectives

Shusen WangAlex GittensMichael MahoneyUC BerkeleyRPIUC Berkeley

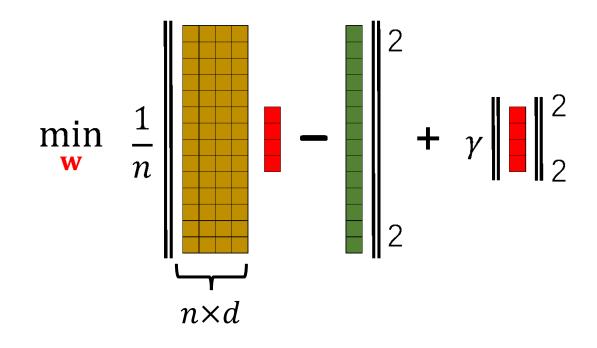
Overview

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$



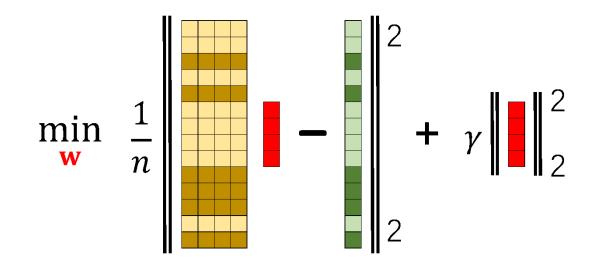
Over-determined: $n \gg d$

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$



- Efficient and approximate solution?
- Use only part of the data?

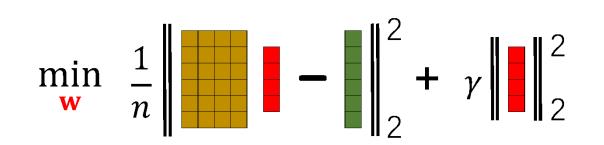
$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$



Matrix Sketching:

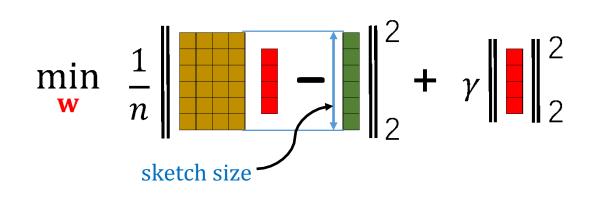
- Random selection
- Random projection

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$



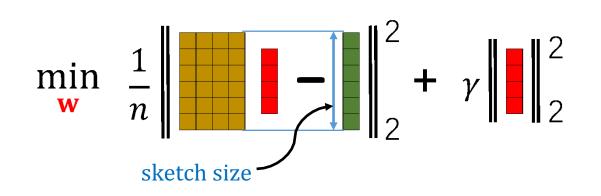
• Sketched solution: w^s

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$



- Sketched solution: w^s
- Sketch size $\tilde{O}\left(\frac{d}{\epsilon}\right)$

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$

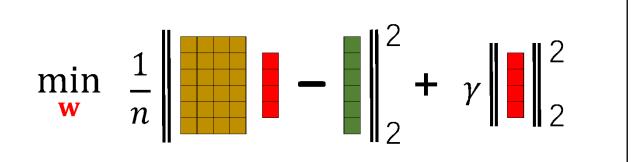


- Sketched solution: w^s
- Sketch size $\tilde{O}\left(\frac{d}{\epsilon}\right)$

•
$$f(\mathbf{w}^{s}) \le (1 + \epsilon) \min_{\mathbf{w}} f(\mathbf{w})$$

Optimization Perspective

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$



Statistical Perspective

• Bias

• Variance

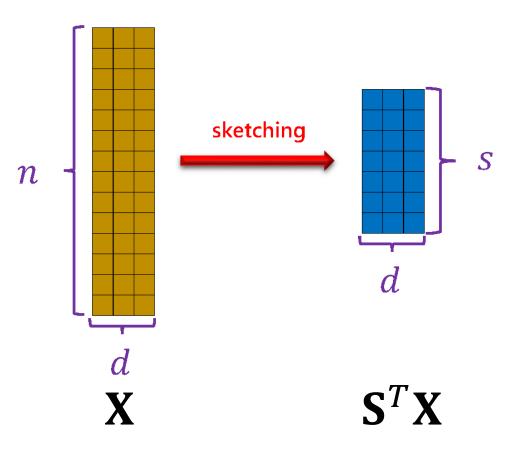
Related Work

• Least squares regression: $\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$

Reference

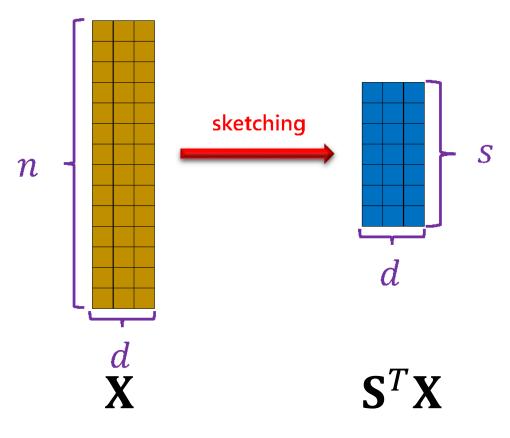
- Drineas, Mahoney, and Muthukrishnan: Sampling algorithms for I2 regression and applications. In SODA, 2006.
- Drineas, Mahoney, Muthukrishnan, and Sarlos: Faster least squares approximation. Numerische Mathematik, 2011.
- Clarkson and Woodruff: Low rank approximation and regression in input sparsity time. In STOC, 2013.
- Ma, Mahoney, and Yu: A statistical perspective on algorithmic leveraging. *Journal of Machine Learning Research*, 2015.
- Pilanci and Wainwright: Iterative Hessian sketch: fast and accurate solution approximation for constrained least squares. *Journal of Machine Learning Research*, 2015.
- Raskutti and Mahoney: A statistical perspective on randomized sketching for ordinary least-squares. *Journal of Machine Learning Research*, 2016.
- Etc ...

Matrix Sketching



- Turn big matrix into smaller one.
- $\mathbf{X} \in \mathbb{R}^{n \times d} \implies \mathbf{S}^T \mathbf{X} \in \mathbb{R}^{s \times d}$.
- $\mathbf{S} \in \mathbb{R}^{n \times s}$ is called *sketching matrix, e.g.,*
 - Uniform sampling
 - Leverage score sampling
 - Gaussian projection
 - Subsampled randomized Hadamard transform (SRHT)
 - Count sketch (sparse embedding)
 - Etc.

Matrix Sketching



- Some matrix sketching methods are efficient.
 - Time cost is o(nds) lower than multiplication.
- Examples:
 - Leverage score sampling: $O(nd \log n)$ time
 - SRHT: $O(nd \log s)$ time

• Objective function:

$$f(\mathbf{w}) = \frac{1}{n} \left| \left| \mathbf{X} \mathbf{w} - \mathbf{y} \right| \right|_{2}^{2} + \gamma \left| \left| \mathbf{w} \right| \right|_{2}^{2}$$

• Optimal solution:

$$\mathbf{w}^{\star} = \underset{\mathbf{w}}{\operatorname{argmin}} f(\mathbf{w})$$
$$= (\mathbf{X}^{T}\mathbf{X} + n\gamma \mathbf{I}_{d})^{\dagger} (\mathbf{X}^{T}\mathbf{y})$$

• Time cost: $O(nd^2)$ or O(ndt)

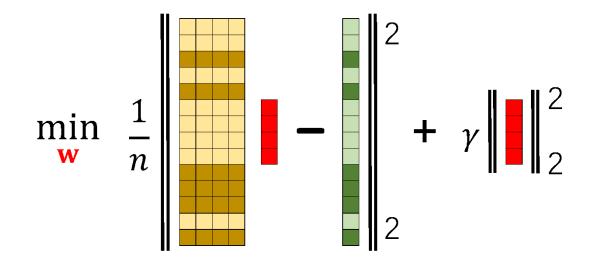
• Goal: *efficiently* and *approximately* solve

$$\underset{\mathbf{w}}{\operatorname{argmin}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}.$$

• Goal: *efficiently* and *approximately* solve

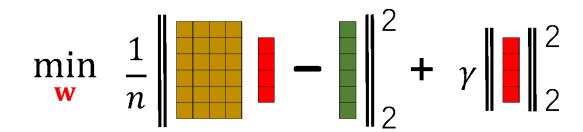
argmin
$$\left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}.$$

• Approach: reduce the size of X and y by matrix sketching.



• Sketched solution:

$$\mathbf{w}^{\mathbf{s}} = \underset{\mathbf{w}}{\operatorname{argmin}} \left\{ \frac{1}{n} \left| |\mathbf{S}^{T} \mathbf{X} \mathbf{w} - \mathbf{S}^{T} \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$
$$= (\mathbf{X}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{X} + n\gamma \mathbf{I}_{d})^{\dagger} (\mathbf{X}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{y})$$



• Sketched solution:

$$\mathbf{w}^{\mathbf{s}} = \underset{\mathbf{w}}{\operatorname{argmin}} \left\{ \frac{1}{n} \left| |\mathbf{S}^{T} \mathbf{X} \mathbf{w} - \mathbf{S}^{T} \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$
$$= (\mathbf{X}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{X} + n\gamma \mathbf{I}_{d})^{\dagger} (\mathbf{X}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{y})$$

- Time: $O(sd^2) + T_s$
 - T_s is the cost of sketching $\mathbf{S}^T \mathbf{X}$
 - E.g. $T_s = O(nd \log s)$ for SRHT.
 - E.g. $T_s = O(nd \log n)$ for leverage score sampling.

Theory: Optimization Perspective

- Recall the objective function $f(\mathbf{w}) = \frac{1}{n} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2 + \gamma ||\mathbf{w}||_2^2$.
- Bound $f(\mathbf{w}^{s}) f(\mathbf{w}^{\star})$.

•
$$\frac{1}{n} \left| |\mathbf{X}\mathbf{w}^{\mathsf{S}} - \mathbf{X}\mathbf{w}^{\star}| \right|_{2}^{2} \leq f(\mathbf{w}^{\mathsf{S}}) - f(\mathbf{w}^{\star}).$$

For the sketching methods

- SRHT or leverage sampling with $s = \tilde{O}\left(\frac{\beta d}{\epsilon}\right)$,
- uniform sampling with $s = O\left(\frac{\mu \beta d \log d}{\epsilon}\right)$,

 $f(\mathbf{w}^{s}) - f(\mathbf{w}^{\star}) \le \epsilon f(\mathbf{w}^{\star})$ holds w.p. 0.9.

X ∈ ℝ^{n×d}: the design matrix
γ: the regularization parameter
β = ||x||²/₂ ∈ (0, 1]
μ ∈ [1, ⁿ/_d]: the row coherence of X

For the sketching methods

- SRHT or leverage sampling with $s = \tilde{O}\left(\frac{\beta d}{\epsilon}\right)$,
- uniform sampling with $s = O\left(\frac{\mu \beta d \log d}{\epsilon}\right)$,

 $f(\mathbf{w}^{s}) - f(\mathbf{w}^{\star}) \le \epsilon f(\mathbf{w}^{\star})$ holds w.p. 0.9.

$$\implies \frac{1}{n} ||\mathbf{X}\mathbf{w}^{\mathsf{s}} - \mathbf{X}\mathbf{w}^{\star}||_{2}^{2} \leq \epsilon f(\mathbf{w}^{\star}).$$

Theory: Statistical Perspective

Statistical Model

- $\mathbf{X} \in \mathbb{R}^{n \times d}$: fixed design matrix
- $\mathbf{w}_0 \in \mathbb{R}^d$: the *true* and *unknown* model
- $\mathbf{y} = \mathbf{X}\mathbf{w}_0 + \mathbf{\delta}$: observed response vector
 - $\delta_1, \cdots, \delta_n$ are random noise
 - $\mathbb{E}[\boldsymbol{\delta}] = \boldsymbol{0}$ and $\mathbb{E}[\boldsymbol{\delta}\boldsymbol{\delta}^T] = \xi^2 \mathbf{I}_n$

• Risk:
$$R(\mathbf{w}) = \frac{1}{n} \mathbb{E} ||\mathbf{X}\mathbf{w} - \mathbf{X}\mathbf{w}_0||_2^2$$

• \mathbb{E} is taken w.r.t. the random noise δ .

• Risk:
$$R(\mathbf{w}) = \frac{1}{n} \mathbb{E} ||\mathbf{X}\mathbf{w} - \mathbf{X}\mathbf{w}_0||_2^2$$

- \mathbb{E} is taken w.r.t. the random noise δ .
- Risk measures prediction error.

• Risk:
$$R(\mathbf{w}) = \frac{1}{n} \mathbb{E} ||\mathbf{X}\mathbf{w} - \mathbf{X}\mathbf{w}_0||_2^2$$

•
$$R(\mathbf{w}) = bias^2(\mathbf{w}) + var(\mathbf{w})$$

• Risk:
$$R(\mathbf{w}) = \frac{1}{n} \mathbb{E} ||\mathbf{X}\mathbf{w} - \mathbf{X}\mathbf{w}_0||_2^2$$

• $R(\mathbf{w}) = \text{bias}^2(\mathbf{w}) + \text{var}(\mathbf{w})$
Optimal
• $\text{bias}(\mathbf{w}^*) = \gamma \sqrt{n} ||(\Sigma^2 + n\gamma \mathbf{I}_d)^{-1} \Sigma \mathbf{V}^T \mathbf{w}_0||_2^2$,
• $\text{var}(\mathbf{w}^*) = \frac{\xi^2}{n} ||(\mathbf{I}_d + n\gamma \Sigma^{-2})^{-1}||_2^2$,
Sketched
• $\text{bias}(\mathbf{w}^S) = \gamma \sqrt{n} ||(\Sigma \mathbf{U}^T \mathbf{S} \mathbf{S}^T \mathbf{U} \Sigma + n\gamma \mathbf{I}_d)^{\dagger} \Sigma \mathbf{V}^T \mathbf{w}_0||_2^2$,
• $\text{var}(\mathbf{w}^S) = \frac{\xi^2}{n} ||(\mathbf{U}^T \mathbf{S} \mathbf{S}^T \mathbf{U} \Sigma + n\gamma \mathbf{I}_d)^{\dagger} \mathbf{S} \mathbf{V}^T \mathbf{w}_0||_2^2$,

• Here $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ is the SVD.

Statistical Perspective

For the sketching methods

- SRHT or leverage sampling with $s = \tilde{O}\left(\frac{d}{\epsilon^2}\right)$,
- uniform sampling with $s = O\left(\frac{\mu d \log d}{\epsilon^2}\right)$,

the followings hold w.p. 0.9:

$$1 - \epsilon \leq \frac{\text{bias}(\mathbf{w}^{s})}{\text{bias}(\mathbf{w}^{\star})} \leq 1 + \epsilon, \qquad \text{Good!}$$
$$(1 - \epsilon) \frac{n}{s} \leq \frac{\text{var}(\mathbf{w}^{s})}{\text{var}(\mathbf{w}^{\star})} \leq (1 + \epsilon) \frac{n}{s}. \qquad \text{Bad!}$$

• $\mathbf{X} \in \mathbb{R}^{n \times d}$: the design matrix • $\mu \in \left[1, \frac{n}{d}\right]$: the row coherence of \mathbf{X}

Bad! Because $n \gg s$.

Statistical Perspective

For the sketching methods

- SRHT or leverage sampling with $s = \tilde{O}\left(\frac{d}{\epsilon^2}\right)$,
- uniform sampling with $s = O\left(\frac{\mu d \log d}{\epsilon^2}\right)$,

the followings hold w.p. 0.9:

$$1 - \epsilon \leq \frac{\operatorname{bias}(\mathbf{w}^{s})}{\operatorname{bias}(\mathbf{w}^{\star})} \leq 1 + \epsilon,$$
$$(1 - \epsilon)\frac{n}{s} \leq \frac{\operatorname{var}(\mathbf{w}^{s})}{\operatorname{var}(\mathbf{w}^{\star})} \leq (1 + \epsilon)\frac{n}{s},$$

If **y** is noisy \Rightarrow variance dominates bias \Rightarrow $R(\mathbf{w}^{s}) \gg R(\mathbf{w}^{\star}).$

• $\mathbf{X} \in \mathbb{R}^{n \times d}$: the design matrix • $\mu \in \left[1, \frac{n}{d}\right]$: the row coherence of **X**

Conclusions

- Use sketched solution to initialize numerical optimization.
 - Xw^s is close to Xw^{*}.

Optimization Perspective

Conclusions

- Use sketched solution to initialize numerical optimization.
 - Xw^s is close to Xw^{*}.

Optimization Perspective

•
$$\mathbf{w}^{(t)}$$
: output of the *t*-th iteration of CG algorithm.
• $\frac{\left|\left|\mathbf{X}\mathbf{w}^{(t)}-\mathbf{X}\mathbf{w}^{\star}\right|\right|_{2}^{2}}{\left|\left|\mathbf{X}\mathbf{w}^{(0)}-\mathbf{X}\mathbf{w}^{\star}\right|\right|_{2}^{2}} \leq 2\left(\frac{\sqrt{\kappa(\mathbf{X}^{T}\mathbf{X})}-1}{\sqrt{\kappa(\mathbf{X}^{T}\mathbf{X})}+1}\right)^{t}$.
• Initialization is important.

Conclusions

- Use sketched solution to initialize numerical optimization.
 - Xw^s is close to Xw^{*}.
- Never use sketched solution to replace the optimal solution.
 - Much higher variance → bad generalization.

Optimization Perspective

Statistical Perspective

Model Averaging

Model Averaging

- Independently draw $\mathbf{S}_1, \cdots, \mathbf{S}_g$.
- Compute the sketched solutions $\mathbf{w}_1^{s}, \cdots, \mathbf{w}_g^{s}$.
- Model averaging: $\mathbf{w}^{s} = \frac{1}{g} \sum_{i=1}^{g} \mathbf{w}_{i}^{s}$.

• For sufficiently large s,

 $\frac{f(\mathbf{w}_1^{\mathrm{s}}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \leq \epsilon \quad \text{holds w.h.p.}$

Without model averaging

• For sufficiently large s,

 $\frac{f(\mathbf{w}_1^{\mathrm{S}}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \leq \epsilon \quad \text{holds w.h.p.}$

• Using the same matrix sketching and same s,

 $\frac{f(\mathbf{w}^s) - f(\mathbf{w}^\star)}{f(\mathbf{w}^\star)} \le \frac{\epsilon}{g} + \epsilon^2 \quad \text{holds w.h.p.}$

Without model averaging

• For sufficiently large s,

 $\frac{f(\mathbf{w}_1^s) - f(\mathbf{w}^*)}{f(\mathbf{w}^*)} \leq \frac{\epsilon}{\epsilon} \quad \text{holds w.h.p.}$

Without model averaging

• Using the same matrix sketching and same s,

 $\frac{f(\mathbf{w}^{s}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \leq \frac{\epsilon}{g} + \epsilon^{2} \text{ holds w.h.p.}$

• For sufficiently large s,

 $\frac{f(\mathbf{w}_1^{\mathrm{S}}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \leq \frac{\epsilon}{\epsilon} \quad \text{holds w.h.p.}$

Without model averaging

• Using the same matrix sketching and same s,

$$\frac{f(\mathbf{w}^{s}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \leq \frac{\epsilon}{g} + \epsilon^{2} \quad \text{holds w.h.p.}$$

If
$$s \gg d \implies \epsilon^2$$
 is very small \implies error bound $\propto \frac{\epsilon}{g}$.

• Risk:
$$R(\mathbf{w}) = \frac{1}{n} \mathbb{E} ||\mathbf{X}\mathbf{w} - \mathbf{X}\mathbf{w}_0||_2^2 = \text{bias}^2(\mathbf{w}) + \text{var}(\mathbf{w})$$

• Model averaging :

• bias(
$$\mathbf{w}^{s}$$
) = $\gamma \sqrt{n} \left\| \frac{1}{g} \sum_{i=1}^{g} (\Sigma \mathbf{U}^{T} \mathbf{S}_{i} \mathbf{S}_{i}^{T} \mathbf{U} \Sigma + n \gamma \mathbf{I}_{d})^{\dagger} \Sigma \mathbf{V}^{T} \mathbf{w}_{0} \right\|_{2}^{2}$
• var(\mathbf{w}^{s}) = $\frac{\xi^{2}}{n} \left\| \frac{1}{g} \sum_{i=1}^{g} (\mathbf{U}^{T} \mathbf{S}_{i} \mathbf{S}_{i}^{T} \mathbf{U} + n \gamma \Sigma^{-2})^{\dagger} \mathbf{U}^{T} \mathbf{S}_{i} \mathbf{S}_{i}^{T} \right\|_{2}^{2}$.

• Here
$$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$
 is the SVD.

• For sufficiently large *s*, the followings hold w.h.p.:

$$\frac{\text{bias}(\mathbf{w}^s)}{\text{bias}(\mathbf{w}^*)} \le 1 + \epsilon \quad \text{and} \quad \frac{\text{var}(\mathbf{w}^s)}{\text{var}(\mathbf{w}^*)} \le \frac{n}{s} (1 + \epsilon).$$

• For sufficiently large *s*, the followings hold w.h.p.:

 $\frac{\text{bias}(\mathbf{w}^{s})}{\text{bias}(\mathbf{w}^{\star})} \leq 1 + \epsilon \quad \text{and} \quad \frac{\text{var}(\mathbf{w}^{s})}{\text{var}(\mathbf{w}^{\star})} \leq \frac{n}{s} (1 + \epsilon).$

Without model averaging

• Using the **same** sketching methods and **same** *s*, the followings hold w.h.p.:

$$\frac{\text{bias}(\mathbf{w}^{s})}{\text{bias}(\mathbf{w}^{\star})} \le 1 + \epsilon \quad \text{and} \quad \frac{\text{var}(\mathbf{w}^{s})}{\text{var}(\mathbf{w}^{\star})} \le \frac{n}{s} \left(\frac{1}{\sqrt{g}} + \epsilon\right)^{2}$$

• For sufficiently large *s*, the followings hold w.h.p.:

$$\frac{\text{bias}(\mathbf{w}^s)}{\text{bias}(\mathbf{w}^\star)} \le 1 + \epsilon \quad \text{and} \quad \frac{\text{var}(\mathbf{w}^s)}{\text{var}(\mathbf{w}^\star)} \le \frac{n}{s} (1 + \epsilon).$$

• Using the **same** sketching methods and **same** *s*, the followings hold w.h.p.:

With model averaging

 $\frac{\text{bias}(\mathbf{w}^{s})}{\text{bias}(\mathbf{w}^{\star})} \le 1 + \epsilon \quad \text{and} \quad$

$$\frac{\operatorname{var}(\mathbf{w}^{s})}{\operatorname{var}(\mathbf{w}^{\star})} \lesssim \frac{n}{s} \left(\frac{1}{\sqrt{g}} + \epsilon\right)^{2}$$

• For sufficiently large *s*, the followings hold w.h.p.:

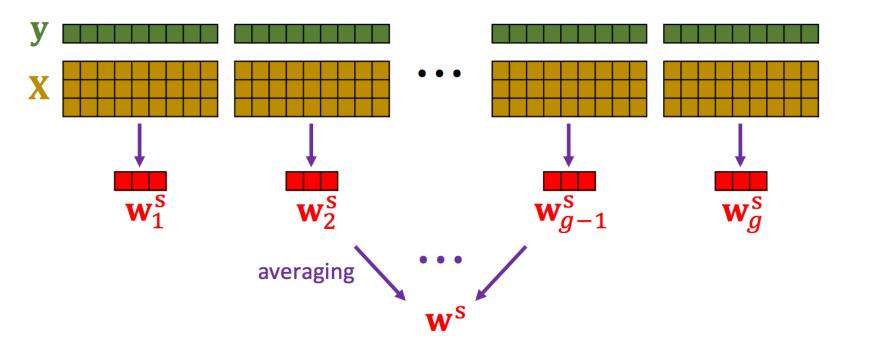
$$\frac{\text{bias}(\mathbf{w}^s)}{\text{bias}(\mathbf{w}^\star)} \le 1 + \epsilon \quad \text{and} \quad \frac{\text{var}(\mathbf{w}^s)}{\text{var}(\mathbf{w}^\star)} \le \frac{n}{s} (1 + \epsilon).$$

 Using the same sketching methods and same s, the followings hold w.h.p.:

 $\frac{\text{bias}(\mathbf{w}^{s})}{\text{bias}(\mathbf{w}^{\star})} \leq 1 + \epsilon \quad \text{and} \quad \frac{\text{var}(\mathbf{w}^{s})}{\text{var}(\mathbf{w}^{\star})} \leq \frac{n}{s} \left(\frac{1}{\sqrt{g}} + \epsilon\right)^{2}$ If ϵ is small, then $\text{var}(\mathbf{w}^{s}) \propto \frac{1}{q}$.

Applications to Distributed Optimization

- $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ are (randomly) split among *g* machines.
- Equivalent to uniform sampling with $s = \frac{n}{g}$.



- Application to distributed optimization:
 - If $s = \frac{n}{g} \gg d$, w^s is very close to w^{*} (provably).
 - w^s is good initialization of distributed optimization algorithms.

- Application to distributed machine learning:
 - If $s = \frac{n}{g} \gg d$, then $R(\mathbf{w}^s)$ is comparable to $R(\mathbf{w}^{\star})$.
 - If low-precision solution suffices, then \mathbf{w}^{s} is a good substitute of \mathbf{w}^{\star} .
 - One-shot solution.

Thank You!

The paper is at arXiv:1702.04837