SVD Approximations for Large Scale Imaging Problems

James Nagy

Mathematics and Computer Science Emory University Atlanta, GA USA

Better SVD Approximations

- Compute decomposition: $K = \sum_{k=1}^{r} A_k \otimes B_k$
- Compute: $[U_a, \Sigma_a, V_a] = svd(A_1)$, $[U_b, \Sigma_b, V_b] = svd(B_1)$
- Let: $\widetilde{\mathsf{U}} = \mathsf{U}_{\mathsf{a}} \otimes \mathsf{U}_{\mathsf{b}}, \ \widetilde{\mathsf{V}} = \mathsf{V}_{\mathsf{a}} \otimes \mathsf{V}_{\mathsf{b}}, \ \widetilde{\Sigma} = \Sigma_{\mathsf{a}} \otimes \Sigma_{\mathsf{b}}$
- ullet Find a low rank approximation of old K using $\widetilde{old U}$ and $\widetilde{old V}$:

$$K_r = \widetilde{\mathbf{U}}_r^T \mathbf{K} \widetilde{\mathbf{V}}_r$$

- \mathbf{K}_r is a "small" $r \times r$ matrix, so compute its SVD: $\mathbf{K}_r = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^T$.
- Then we can compute an SVD approximation of the original K as:

$$K \approx \widetilde{U}_r U_r \Sigma_r V_r^T \widetilde{V}_r^T$$

Image Deblurring Example

observed image

SVD approx

1 Kron term

SVD approx

5 Kron terms

In this example:

- **K** is $N \times N$, with $N = 65,536 \times 65,536$.
- We used r = 2,601, which means that K_r is an $2,601 \times 2,601$ matrix.

Image Deblurring Example

observed image

SVD approx 1 Kron term

SVD approx 5 Kron terms

In this example:

- **K** is $N \times N$, with $N = 65,536 \times 65,536$.
- We used r = 2,601, which means that K_r is an $2,601 \times 2,601$ matrix.

Image Deblurring Example

In this example:

- **K** is $N \times N$, with $N = 65,536 \times 65,536$.
- We used r = 2,601, which means that K_r is an $2,601 \times 2,601$ matrix.