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Quitline ()

o Background and Challenges of PMU Data Processing
e A Low-rank Framework of PMU Data Processing

o Missing Data Recovery

o Detection of Cyber Data Attacks
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Phasor Measurement Units
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@ PMUs (Phasor Measurement Units) provide synchronized phasor
measurements at a sampling rate of 30 (or 60) samples per

second.
@ Multi-channel PMUs can measure bus voltage phasors. line

current phasors. and frequency.
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Big Data in Power Systems i

@ PMU data is envisioned to provide the following capabilities:

@ Improved accuracy of power system state estimation
e Disturbance location and recognition (what kind of disturbance,
e.g.. loss of generation, loss of line)

@ Assessing the severity of the disturbance and its impact on the
power system

@ PMU data is considered to be a source of Big Data in power
systems.

@ Control regions such as New York and New England. will have
about 40 PMUs each, with 6-12 data channels per PMU —
averaging one PMU per 1.000 MW of generation.

Meng Wang (Rensselasr Polytechnic institute)
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Space-Time View of PMU Data
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Low-rankness of PMU data blocks

Meng Wang (Renssalaer Polylechnic Institute )
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Low-rank Property of PMU data
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PMUs in Central NY Power Current magnitudes of Singular values of the
Systems PMU data PMU data matrix

@ 6 PMUs measure 37 voltage/current phasors. 30 samples/second
for 20 seconds.

@ Singular values decay significantly. Mostly close to zero. Singular
values can be approximated by a sparse vector.

@ Low-dimensionality also used in Chen & Xie & Kumar 2013, Dahal
& King & Madani 2012 for dimensionality reduction.

Meng Wang (Renssalaer Polylechnic Institute )
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A Low-rank Approach of Data Processing *@#

@ Power system is an Interconnected network—data measured at
various buses will be driven by some underlying system condition.

@ The system condition may change. but some consistent
relationship between the PMU data from different nearby buses

always exists.

Meng Wang (Renssaiasr Polyiechmc Insiihse )
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A Low-rank Approach of Data Processing L)

@ Power system is an interconnected network—data measured at
various buses will be driven by some underlying system condition.

@ The system condition may change. but some consistent
relationship between the PMU data from different nearby buses
always exists.

@ Mathematical characterization: low-rankness of spatio-temporal
PMU data blocks. No need of power system modeling.

Meng Wang (Rensselasr Polytechnic Institute )
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Low-Rank Matrix Analysis for PMU Data o))

Process spatio-temporal blocks of PMU data for

@ Missing PMU data recovery — low-rank matrix completion,
missing data in correlated locations.

@ Detection of cyber data attacks — matrix decomposition of a
low-rank matrix and a transformed column-sparse matrix,
convex-programming-based method.

@ PMU data compression — inter-channel compression plus
Intra-channel compression.

@ Disturbance detection — when dominating singular values
change.

Wang. Chow, et al., Hawaii International Conference on System Sciences 2015

Meng Wang (Rensselaer Polytechnic institute)
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0 Background and Challenges of PMU Data Processing
e A Low-rank Framework of PMU Data Processing

Q Missing Data Recovery
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Missing Data Recovery (W)

@ Data losses happen due to PMU malfunction or communication
congestion between PMUs and Phasor Data Concentrator (PDC).

@ Existing missing data recovery: interpolation from measurements

in the same channel,

Meng Wang (Renssaiasr Polytechmic Institite)
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Missing Data Recovery i

@ Data losses happen due to PMU malfunction or communication
congestion between PMUs and Phasor Data Concentrator (PDC).

@ Existing missing data recovery: interpolation from measurements
In the same channel.

@ Our approach: leverage low-rankness of PMU data blocks.
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Meng Wang (Rensselasr Polytechnic institute)
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Low-rank Matrix Completion i@ﬁ
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Low-rank Matax with Missing Entaes

Meng Wang (Rensselaer Polylechnic Institute)
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Low-rank Mawmx wath Missing Entaes
@ Nuclear norm minimization (Fazel 2002). recover the missing data

by solving a convex program.
rr)lgnHX'_ . = sum of singular values of X

_ s.L. X is consistent with the observed entries.
@ Quite a few recovery algorithms exist. e.g.. singular value

thresholding (SVT) (Cai et al. 2010), information cascading matrix
completion (ICMC) (Meka et al. 2009).

@ Applications in collaborative filtering. computer vision. machine
learning. remote sensing. and system identification.

@ Applications in power systems: load forecasting
(Mateos, Giannakis 2013), electricity market inference
(Kekatos.Zhang.Giannakis 2014).

Meng Wang (Hernssalaar Polytechmic institute)
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Low-rank Matrix Completion i

Candés & Recht 09, Gross 11, Recht 11

All entries of a rank-r matrix L =« C™"*"2 can be corrected recovered, as
long as Of mlog2 n)(n=max(ny.n2)) randomly selected entries of L
are observed.

@ Significant saving in the number of observations when r is small.

@ Existing analysis assumes that the locations of missing points are
selected randomly.

Meng Wang (Renssalaer Polytechmc instiute)
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Missing Data at Correlated Locations L))

The locations of missing PMU data are usually correlated.

@ temporal correlation: loss of consecutive measurements in one
PMU channel.

@ spatial correlation: loss of measurements in mulitiple PMU
channels simultaneously.

Meng Wang (Renssaiasr Polytechmic Institute)
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Missing Data at Correlated Locations '@ﬁ

The locations of missing PMU data are usually correlated.

@ temporal correlation: loss of consecutive measurements in one
PMU channel.

@ spatial correlation: loss of measurements in multiple PMU
channels simultaneously.

Recovery guarantee of missing data at correlated locations?

Our Model of correlated missing points:

@ temporal correlation: with prob. 1 — p, tr consecutive erasures
staring from a fix data point in one channel.

@ spatial correlation: with prob. 1 — g, all measurements in a
d-channel PMU are lost at a fixed sampling instant.

Meng Wang (Renssalaer Polytechnic Instifute)
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Recaovery of tomporally correlated missing points
For every positive 7, there exists a positive constant ¢(y) such that if

c(y)trl .,
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holds. then ICMC correctly recovers M with probability at least 1 —n7,

Correct recovery from partial measurements

Although the locations of the missing entries of a rank-r matrix are
temporally or spatially correlated, all missing entries can be correctly

1 ! | :
recovered as long as O(n°~ 7 r= log™" n) entries are cbserved.

Gaoc, Wang, Ghiccel. Chow, IEEE Power & Energy Society General Mesting 2014 accepled lo
IEEE Trans Powear Systems 2015
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Simulation )
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Recovery of Temporally Correlated Erasures

If a channel in a particular PMU is . TRt |
lost at a particular time, there is a -§ dgpi=toena
probability that t trailing data points & —t===2 ;
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Simulation
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Cyber Data Attacks (9

The worst-case interacting bad data. (Liu & Ning & Reiter 11).

Meng Wang (Rensselaer Polylechnic Institute)
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Cyber Data Attacks )

The worst-case interacting bad data. (Liu & Ning & Reiter 11).
@ Measurements V;. V5, /2. and
[13. Estimate V.

@ Redundancy in measurements
[13 + = can be used to detect bad data.

e N Biis 3 @ Cyber data attack: manipulate /45
and /13 simultaneously.

Meng Wang (Rensseiaser Polylechnic institute )
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Existing Approaches ()]

Cyber attacks that are unobservable at one given sampling iInstant.

@ Usually protect key measurement units to avoid these attacks.
(Kosut & Jia & Thomas & Tong 10, Cui & Han & Kar & Kim & Poor
& Tajer 12. Bobba et al. 10. Dan & Sandberg 10)

Meang Wang (Rensseiaser Polyiechmic Insibuge )
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Existing Approaches

Cyber attacks that are unobservable at one given sampling instant.

@ Usually protect key measurement units to avoid these attacks.
(Kosut & Jia & Thomas & Tong 10, Cui & Han & Kar & Kim & Poor
& Tajer 12, Bobba et al. 10. Dan & Sandberg 10)

@ Detection of cyber data attacks in SCADA system.
(Sedghi & Jonckheere 13, Liu & Esmalifalak & Ding & Emesih &

Han 14 )
Assume the intruder attacks a different set of measurements at

each time instant.

Meng Wang (Rensseiaar Polytechnic instiiuta)
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Our Contributions

@ A new detection method of cyber data attacks when the intruder
Injects attacks to a fixed set of PMUs constantly.

@ Bad Scenario: no correct information from affected PMUs.

@ Intuition of detection: the injected dynamics is different from
system dynamics.

@ Method: the PMU channels under attack can be identified by
solving a convex optimization problem.

@ Advantage: the detection method can identify the attacks even
when the system is under disturbance.

Wang, Gao, Ghiocel. Chow. Fardanesh. Stefopoulos, Razanousky. IEEE SmartGridComm 2014,

submission to IEEE Trans. Signal Processing 2015

Meng Wang (Rensselasr Polytechnic Institute )
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Problem Formulation o

M=L-CW'™ =N
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Measurements under attack

@ L: low-rank. From correlations in measurements.
@ C: column sparse. The intruder has limited access to the system.
@ N: |IN|g<Le.

Given M and W, how could we identify L and C?

Meng Wang (Rensselasr Polylechmic instifute)
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Connection to Related Work

@ Xu & Caramanis & Sanghavi 12: Decomposition of a low-rank
matrix and a column-sparse matrix.

I

!

Measnrements  Low Rank Column Sparse Nogse

Our methods and proofs are built upon these in Xu & Caramanis &
Sanghavi 12. Extension to general cases.
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Meng Wang (Hensssiaer Polyiechmc irmlihde
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Connection to Related Work

@ Mardani & Mateos & Giannakis 13: Decomposition of a low-rank
matrix plus a compressed sparse matrix. Internet traffic anomaly
detection.

I ]
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Our focus: column-sparse matrices. W is arbitrary.
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Meng Wang (Rensseiaer Polylechnic institute)
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Our Approach )

@ Find (L*, C*), the optimum solution to the following optimization
problem

min  ||LIl.=A||Clli2 st [[L=CWT—-M|e<e (2

L=CtP CeCl~n

IL||.: sum of singular values of L. | Cl||; 2: sum of column norms of
C.

@ Compute the SVD of L* = U T*V*".

@ Find column support of D* = C*W', denoted by .#*.

@ Return L}.,_-,.. U and #~.

(2) Is convex and can be solved efficiently.

Meng Wang (Rensselaer Polytechnic instituta)




= SIAMZ015 pof

Theoretical Guarantee el

Noiseless measurements, N =0

If A belongs to certain range, the solution returned by our method
Q identifies the PMU channels under attack.
Q identifies the measurements that are not attacked.
Q recovers the correct subspace spanned by actual phasors.

Wang, Gao, Ghiocel. Chow, Fardanesh. Stelopoulos, Razanousky. [EEE SmartGridComm 2014,

submission 1o |IEEE Trans. Signal Processing 2015

Meng Wang (Henssalaer Polytechmic Instifute)




Theoretical Guarantee iiﬁtj}

Noiseless measurements. N—0

If A belongs o certain range, the solution returned by our method
Q identifies the PMU channels under attack.
Q identifies the measurements that are not attacked.
Q recovers the correct subspace spanned by actual phasors.

Noisy measurements, N # 0

If A belongs to certain range. the solution returned by our method is
sufficiently close (with distance depending on the noise level) to a
solution that meets 1-3.

Wang, Gao, Ghiacel Chow, Faraanesh Stelcpouios, Razanousky, IEEE SmartGndCamm 20114

submission 1o IEEE Trars. Signal Processing 2015

Meng Wang | Ferssaisess Volytlecnmic |rminss)
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Numerical Results S
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Meng Wang (Rensselaer Polylechnic Institute)
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: P
Conclusion o))

@ A low-rank approach of PMU data analysis. Leverage the
low-dimensional structures in various PMU data management
tasks.

@ Missing data recovery: theoretical guarantee of successful
recovery when the locations of the missing points are correlated.

@ Detection of cyber data attacks: theoretical guarantee of
decomposition of a low-rank and a transformed column-sparse
matrix using convex optimization.

@ Ongoing work: disturbance classification and localization.

Meng Wang (Rensselaer Polytechnic Institute)
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