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Y. Privat, E. Trélat1, E. Zuazua

1Univ. Paris 6 (Labo. J.-L. Lions) et Institut Universitaire de France

SIAM Conference on Analysis of Partial Differential Equations, 2015
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What is the best shape and placement of sensors?

- Reduce the cost of instruments.
- Maximize the efficiency of reconstruction and estimations.
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The observed system may be described by:

wave equation ∂tt y = 4y
or

Schrödinger equation i∂t y = 4y

general parabolic equations ∂t y = Ay (e.g., heat or Stokes equations)

in some domain Ω, with either Dirichlet, Neumann, mixed, or Robin boundary conditions

For instance, when dealing with the heat equation:

What is the optimal shape and placement of
a thermometer?
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Waves propagating in a cavity:
∂tt y −∆y = 0

y(t , ·)|∂Ω = 0
Observable
y(t , ·)|ω

Observability inequality

The observability constant CT (ω) is the largest nonnegative constant such that

∀(y0, y1) ∈ L2(Ω)× H−1(Ω) CT (ω)‖(y0, y1)‖2
L2×H−1 ≤

Z T

0

Z
ω
|y(t , x)|2 dx dt

The system is said observable on [0,T ] if CT (ω) > 0 (otherwise, CT (ω) = 0).
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Waves propagating in a cavity:
∂tt y −∆y = 0

y(t , ·)|∂Ω = 0
Observable
y(t , ·)|ω

Observability inequality

The observability constant CT (ω) is the largest nonnegative constant such that

∀(y0, y1) ∈ L2(Ω)× H−1(Ω) CT (ω)‖(y0, y1)‖2
L2×H−1 ≤

Z T

0

Z
ω
|y(t , x)|2 dx dt

Bardos-Lebeau-Rauch (1992): Observability holds if the pair (ω,T ) satisfies the
Geometric Control Condition (GCC) in Ω:

Every ray of geometrical optics that propagates in Ω and is reflected on its
boundary ∂Ω intersects ω in time less than T .
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Waves propagating in a cavity:
∂tt y −∆y = 0

y(t , ·)|∂Ω = 0
Observable
y(t , ·)|ω

Observability inequality

The observability constant CT (ω) is the largest nonnegative constant such that

∀(y0, y1) ∈ L2(Ω)× H−1(Ω) CT (ω)‖(y0, y1)‖2
L2×H−1 ≤

Z T

0

Z
ω
|y(t , x)|2 dx dt

Q: What is the ”best possible” subdomain ω of fixed given measure? (say, |ω| = L|Ω| with 0 < L < 1)

N.B.: we want to optimize not only the placement but also the shape of ω,
over all possible measurable subsets.
(they do not have a prescribed shape, they are not necessarily BV, etc)
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Related problems

1) What is the ”best domain” for achieving HUM optimal control?

ytt −∆y = χωu

2) What is the ”best domain” domain for stabilization (with localized damping)?

ytt −∆y = −kχωyt

Existing works by

- P. Hébrard, A. Henrot: theoretical and numerical results in 1D for optimal stabilization.

- A. Münch, P. Pedregal, F. Periago: numerical investigations (fixed initial data).

- S. Cox, P. Freitas, F. Fahroo, K. Ito, ...: variational formulations and numerics.

- M.I. Frecker, C.S. Kubrusly, H. Malebranche, S. Kumar, J.H. Seinfeld, ...: numerical
investigations over a finite number of possible initial data.

- M. Demetriou, K. Morris, S.L. Padula, O. Sigmund, M. Van de Wal, ...: actuator
placement (predefined set of possible candidates), Riccati approaches.

- A. Armaou, M. Demetriou, K. Chen, C. Rowley, K. Morris, S. Yang, W. Kang, S. King,
L. Xu, ...: H2 optimization, frequency methods, LQ criteria, Gramian approaches.
- ...
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The model

Observability inequality

∀y solution CT (ω)‖(y(0, ·), ∂t y(0, ·))‖2
L2×H−1 ≤

Z T

0

Z
ω
|y(t , x)|2 dx dt

Let L ∈ (0, 1) and T > 0 fixed.

It is a priori natural to model the problem as: sup
ω⊂Ω
|ω|=L|Ω|

CT (ω)

with

CT (ω) = inf

( R T
0

R
ω |y(t , x)|2 dx dt

‖(y(0, ·), ∂t y(0, ·))‖2
L2×H−1

˛̨
(y(0, ·), ∂t y(0, ·)) ∈ L2(Ω)× H−1(Ω) \ {(0, 0)}

)

BUT...

E. Trélat Optimal shape and location of sensors



Modeling Solving

The model

Observability inequality

∀y solution CT (ω)‖(y(0, ·), ∂t y(0, ·))‖2
L2×H−1 ≤

Z T

0

Z
ω
|y(t , x)|2 dx dt

Let L ∈ (0, 1) and T > 0 fixed.

It is a priori natural to model the problem as: sup
ω⊂Ω
|ω|=L|Ω|

CT (ω)

BUT:

1 Theoretical difficulty due to crossed terms in the spectral expansion (cf Ingham
inequalities).

2 In practice: many experiments, many measures. This deterministic constant is
pessimistic: it gives an account for the worst case.

−→ optimize shape and location of sensors in average, over a large number of
measurements

−→ define an averaged observability inequality
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Randomized observability constant

Averaging over random initial data:

Randomized observability inequality (wave equation)

CT ,rand(ω) ‖(y(0, ·), yt (0, ·))‖2
L2×H−1 ≤ E

„Z T

0

Z
ω
|yν(t , x)|2 dx dt

«

where

yν(t , x) =
+∞X
j=1

“
βν1,j aj e

iλj t + βν2,j bj e
−iλj t

”
φj (x)

with βν1,j , β
ν
2,j i.i.d. random variables (e.g., Bernoulli, Gaussian) of mean 0

(inspired from Burq-Tzvetkov, Invent. Math. 2008)

with (φj )j∈N∗ Hilbert basis of eigenfunctions

Randomization • generates a full measure set of initial data
• does not regularize
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Randomized observability constant

Theorem

∀ω measurable CT ,rand(χω) = T inf
j∈N∗

γj

Z
ω
φj (x)2 dx

with

γj =

8>>><>>>:
1/2 for the wave equation

1 for the Schrödinger equation

e
2λ2

j T
−1

2λ2
j

for the heat equation

with (φj )j∈N∗ a fixed Hilbert basis of eigenfunctions of4

Remark

There holds CT ,rand(χω) > CT (χω).

For the wave equation, the randomized observability constant is a spectral quantity ignoring the rays’ contribution.
(→ spectral criterion = half of the truth!)

There are examples where the inequality is strict:

in 1D: Ω = (0, π), T 6= kπ.

in multi-D: Ω stadium-shaped, ω containing the wings.
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Randomized observability constant

Theorem

∀ω measurable CT ,rand(χω) = T inf
j∈N∗

γj

Z
ω
φj (x)2 dx

with

γj =

8>>><>>>:
1/2 for the wave equation

1 for the Schrödinger equation

e
2λ2

j T
−1

2λ2
j

for the heat equation

with (φj )j∈N∗ a fixed Hilbert basis of eigenfunctions of4

Conclusion: we model the problem as sup
ω⊂Ω
|ω|=L|Ω|

inf
j∈N∗

γj

Z
ω
φj (x)2 dx
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sup
ω⊂Ω
|ω|=L|Ω|

inf
j∈N∗

γj

Z
ω
φj (x)2 dx

To solve the problem, we distinguish between:

parabolic equations (e.g., heat, Stokes) 6= wave or Schrödinger equations

Remarks

requires some knowledge on the asymptotic behavior of φ2
j

µj = φ2
j dx is a probability measure

⇒ strong difference between γj ∼ eλj T (parabolic) and γj = 1 (hyperbolic)
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Parabolic equations
(e.g.: heat, Stokes, anomalous diffusions)

We assume that Ω is piecewise C1

Theorem

There exists a unique optimal domain ω∗

Quite difficult proof, requiring in particular: Hartung minimax theorem; fine lower
estimates of φ2

j by J. Apraiz, L. Escauriaza, G. Wang, C. Zhang (JEMS 2014)

Algorithmic construction of the best observation set ω∗: to be followed (further)
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Wave and Schrödinger equations

Optimal value

Under appropriate spectral assumptions:

sup
ω⊂Ω
|ω|=L|Ω|

inf
j∈N∗

Z
ω
φj (x)2 dx = L

Proof: 1) convexification (relaxation), 2) no-gap (not obvious because not lsc).

Main spectral assumption:

QUE (Quantum Unique Ergodicity): the whole sequence φ2
j dx ⇀

dx
|Ω|

vaguely.

true in 1D, but in multi-D?
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Wave and Schrödinger equations

Optimal value

Under appropriate spectral assumptions:

sup
ω⊂Ω
|ω|=L|Ω|

inf
j∈N∗

Z
ω
φj (x)2 dx = L

Relationship to quantum chaos theory:

what are the possible (weak) limits of the probability measures µj = φ2
j dx?

(quantum limits, or semi-classical measures)

See also Shnirelman theorem: ergodicity implies
Quantum Ergodicity (QE; but possible gap to QUE!)

If QUE fails, we may have scars

QUE conjecture (negative curvature)
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Wave and Schrödinger equations

Optimal value

Under appropriate spectral assumptions:

sup
ω⊂Ω
|ω|=L|Ω|

inf
j∈N∗

Z
ω
φj (x)2 dx = L

Remark: The above result holds true as well in
the disk. Hence the spectral assumptions are
not sharp.

(proof: requires the knowledge of all quantum
limits in the disk, Privat Hillairet Trélat)

µjk ⇀ δr=1

(this is one QL: whispering galleries)
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Wave and Schrödinger equations

Optimal value

Under appropriate spectral assumptions:

sup
ω⊂Ω
|ω|=L|Ω|

inf
j∈N∗

Z
ω
φj (x)2 dx = L

Supremum reached? Open problem in general.

in 1D: reached⇔ L = 1/2 (infinite number of optimal sets)

in 2D square: reached over Cartesian products⇔ L ∈ {1/4, 1/2, 3/4}

Conjecture: Not reached for generic domains Ω and generic values of L.

Construction of a maximizing sequence (by a kind of homogenization)
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Spectral approximation

Following Hébrard-Henrot (SICON 2005), we consider the finite-dimensional spectral
approximation:

sup
ω⊂Ω
|ω|=L|Ω|

min
1≤j≤N

γj

Z
ω
φ2

j (x) dx

Theorem

The problem has a unique solution ωN .

Moreover, ωN is semi-analytic and thus has a finite number of connected components.
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Wave and Schrödinger equations

The complexity of ωN is increasing with N.

Spillover phenomenon: the best domain ωN

for the N first modes is the worst possible
for the N + 1 first modes.

Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=10 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.2
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Ω = (0, π)2 L = 0.2
4, 25, 100, 500 eigenmodes

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption:
(satisfied, e.g., by (−∆)α with α > 1/2)

The sequence of optimal sets ωN is
stationary:

∃N0 | ∀N ≥ N0 ωN = ωN0 = ω∗

with ω∗ the optimal set for all modes.
In particular, ω∗ is semi-analytic and thus has a finite

number of connected components.
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Wave and Schrödinger equations

The complexity of ωN is increasing with N.

Spillover phenomenon: the best domain ωN

for the N first modes is the worst possible
for the N + 1 first modes.

Problem 2 (Dirichlet case): Optimal domain for N=1 and L=0.2 Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.2

Problem 2 (Dirichlet case): Optimal domain for N=10 and L=0.2 Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.2

Ω = unit disk L = 0.2
1, 25, 100, 400 eigenmodes

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption:
(satisfied, e.g., by (−∆)α with α > 1/2)

The sequence of optimal sets ωN is
stationary:

∃N0 | ∀N ≥ N0 ωN = ωN0 = ω∗

with ω∗ the optimal set for all modes.
In particular, ω∗ is semi-analytic and thus has a finite

number of connected components.
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Wave and Schrödinger equations

The complexity of ωN is increasing with N.

Spillover phenomenon: the best domain ωN

for the N first modes is the worst possible
for the N + 1 first modes.

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption:
(satisfied, e.g., by (−∆)α with α > 1/2)

The sequence of optimal sets ωN is
stationary:

∃N0 | ∀N ≥ N0 ωN = ωN0 = ω∗

with ω∗ the optimal set for all modes.
In particular, ω∗ is semi-analytic and thus has a finite

number of connected components.

→ no fractal set!

Ω = (0, π)2

1, 4, 9, 16, 25, 36 eigenmodes

L = 0.2, T = 0.05

→ optimal thermometer in a square
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Conclusion and perspectives

Same kind of analysis for the optimal design of the control domain.

Intimate relations between domain optimization and quantum chaos (quantum
ergodicity properties).

Optimal design for boundary observability (P. Jounieaux’ PhD):

sup
|ω|=L|∂Ω|

inf
j∈N∗

γj

Z
ω

1
λj

„
∂φj

∂ν

«2
dHn−1

Strategies to avoid spillover?

Discretization issues: do the numerical optimal designs converge to the
continuous optimal design as the mesh size tends to 0?

Y. Privat, E. Trélat, E. Zuazua,

Optimal observation of the one-dimensional wave equation, J. Fourier Analysis Appl. (2013).
Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. H. Poincaré (2013).
Complexity and regularity of maximal energy domains for the wave equation with fixed initial data,
Discrete Contin. Dyn. Syst. (2015).
Optimal shape and location of sensors for parabolic equations with random initial data,
Arch. Ration. Mech. Anal. (2015).
Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic
domains, to appear in J. Europ. Math. Soc. (2015).
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Conclusion and perspectives

What can be said for the classical (deterministic) observability constant?

A result for the wave observability constant:
(Humbert Privat Trélat, ongoing)

lim
T→+∞

CT (ω)

T
=

1
2

min

0B@ inf
j∈N∗

Z
ω
φ2

j dx| {z }, lim
T→+∞

inf
{γ ray}

1
T

Z T

0
χω(γ(t)) dt| {z }

1CA
Two quantities: spectral geometric (rays)

↓
randomized obs. constant
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Remark: another way of arriving at the criterion (wave equation)

Averaging in time:
Time asymptotic observability inequality:

C∞(χω)‖(y(0, ·), yt (0, ·))‖2
L2×H−1 ≤ lim

T→+∞

1
T

Z T

0

Z
ω
|y(t , x)2| dx dt ,

with

C∞(χω) = inf

8<: lim
T→+∞

1

T

R T
0
R
ω |y(t, x)|2 dx dt

‖(y(0, ·), yt (0, ·))‖2
L2×H−1

˛̨
(y(0, ·), yt (0, ·)) ∈ L2 × H−1 \ {(0, 0)}

9=; .

Theorem

If the eigenvalues of4g are simple then C∞(χω) =
1
2

inf
j∈N∗

Z
ω
φj (x)2 dx =

1
2

J(χω).

Remarks

C∞(χω) ≤
1

2
inf

j∈N∗

Z
ω
φj (x)2 dx .

lim sup
T→+∞

CT (χω)

T
≤ C∞(χω). There are examples where the inequality is strict.
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A remark for fixed initial data

If we maximize ω 7→
R T

0

R
ω |y(t , x)|2 dx dt with fixed initial data, then, using a

decreasing rearrangement argument:

There always exists (at least) one optimal set ω.
The regularity of ω depends on the initial data: it may be a Cantor set of
positive measure, even for C∞ data.

α1 α2 α3 α4 π0

ϕ∗
γ ,T(Lπ) ϕ∗

γ ,T(Lπ)

Lπ π0

→ In our model, we consider an infimum over all initial data.
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A remark on the class of subdomains

Let A > 0 fixed. If we restrict the search to

{ω ⊂ Ω | |ω| = L|Ω| and PΩ(ω) ≤ A} (perimeter)

or

{ω ⊂ Ω | |ω| = L|Ω| and ‖χω‖BV (Ω) ≤ A} (total variation)

or

{ω ⊂ Ω | |ω| = L|Ω| and ω satisfies the 1/A-cone property}
or

ω ranges over some finite-dimensional (or ”compact”) prescribed set...

then there always exists (at least) one optimal set ω.

→ but then...
- the complexity of ω may increase with A
- we want to know if there is a ”very best” set (over all possible measurable)
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Remedies (wave and Schrödinger equations)

1. Existence of a maximizer

Ensured if UL is replaced with any of the following choices:

VL = {χω ∈ UL | PΩ(ω) ≤ A} (perimeter)

VL = {χω ∈ UL | ‖χω‖BV (Ω) ≤ A} (total variation)

VL = {χω ∈ UL | ω satisfies the 1/A-cone property}

where A > 0 is fixed.
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Remedies (wave and Schrödinger equations)

2. Weighted observability inequality

CT ,σ(χω)
“
‖(y0, y1)‖2

L2×H−1 + σ‖y0‖2
H−1

”
≤
Z T

0

Z
ω
|y(t , x)|2 dx dt ,

where σ ≥ 0: weight.

Note that CT ,σ(χω) ≤ CT (χω).

Randomization⇒ 2 CT ,σ,rand(χω) = TJσ(χω), where

Jσ(χω) = inf
j∈N∗

σj

Z
ω
φj (x)2 dx ,

with σj =
λ2

j
σ+λ2

j
.
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Remedies (wave and Schrödinger equations)

Theorem

Assume that L∞-QUE holds. If σ1 < L < 1 then there exists N ∈ N∗ such that

sup
χω∈UL

inf
j∈N∗

σj

Z
ω
φ2

j = max
χω∈UL

inf
1≤j≤n

σj

Z
ω
φ2

j ≤ σ1 < L,

for every n ≥ N. In particular there is a unique solution χωN . Moreover if M is analytic
then ωN is semi-analytic and has a finite number of connected components.

The condition σ1 < L < 1 seems optimal (see numerical simulations).

This result holds as well in any torus, or in the Euclidean n-dimensional square
for Dirichlet or mixed Dirichlet-Neumann conditions.
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L = 0.2

L = 0.4

L = 0.6

L = 0.9
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An additional remark

Anomalous diffusion equations, Dirichlet: ∂t y + (−4)αy = 0 (α > 0 arbitrary)

with a surprising result:

In the square Ω = (0, π)2, with the usual basis (products of sine): the optimal domain
ω∗ has a finite number of connected components, ∀α > 0.

In the disk Ω = {x ∈ R2 | ‖x‖ < 1}, with the usual basis (Bessel functions), the
optimal domain ω∗ is radial, and

α > 1/2 ⇒ ω∗ = finite number of concentric rings (and d(ω, ∂Ω) > 0)

α < 1/2 ⇒ ω∗ = infinite number of concentric rings accumulating at ∂Ω!
(or α = 1/2 and T small enough)

The proof is long and very technical. It uses in particular the knowledge of quantum limits in the disk.

(L. Hillairet, Y. Privat, E.Trélat)
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Ω = unit disk 1, 4, 9, 16, 25, 36 eigenmodes

L = 0.2, T = 0.05, α = 1
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Ω = unit disk 1, 4, 25, 100, 144, 225 eigenmodes

L = 0.2, T = 0.05, α = 0.15
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Comparison

sup
χω∈UL

inf
j∈N∗

γj

Z
ω
φ2

j

square disk

relaxed solution a = L relaxed solution a = L

wave or Schrödinger ∃ω for L ∈ { 1
4 ,

1
2 ,

3
4} ∃ω for L ∈ { 1

4 ,
1
2 ,

3
4}

6 ∃ otherwise (conjecture) 6 ∃ otherwise (conjecture)

∃!ω ∀L ∀α > 0 ∃!ω (radial) ∀L ∀α > 0

diffusion (−4)α #c.c.(ω) < +∞ if α > 1/2 then #c.c.(ω) < +∞

if α < 1/2 then #c.c.(ω) = +∞
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