# Domain Decomposition-based contour integration eigenvalue solvers

Vassilis Kalantzis joint work with Yousef Saad

Computer Science and Engineering Department University of Minnesota - Twin Cities, USA

SIAM ALA 2015, 10-30-2015

# Acknowledgments

- Collaboration with Eric Polizzi and James Kestyn (UM Amherst).
- Special thanks to Minnesota Supercomputing Institute for allowing access to its supercomputers.
- Work supported by NSF and DOE.





University of Minnesota

Supercomputing Institute

### Contents

- Introduction
- The Domain Decomposition framework
- Domain Decomposition-based contour integration
- Implementation in HPC architectures
- Experiments
- 6 Discussion

#### Introduction

## The sparse symmetric eigenvalue problem

$$Ax = \lambda x$$

where  $A \in \mathbb{R}^{n \times n}$ ,  $x \in \mathbb{R}^n$  and  $\lambda \in \mathbb{R}$ . A pair  $(\lambda, x)$  is called an *eigenpair* of A.

#### Focus in this talk

Find all  $(\lambda, x)$  pairs inside the interval  $[\alpha, \beta]$  where  $\alpha, \beta \in \mathbb{R}$  and  $\lambda_1 \leq \alpha, \beta \leq \lambda_n$ .

## Typical approach

Project A on a low-dimensional subspace by

$$V^{\top}AVy = \theta V^{\top}Vy, \quad \tilde{x} = Vy.$$

V: Krylov, (Generalized-Jacobi)-Davidson, contour integration,...

## Contour integration (CINT)

$$V := \mathcal{P}\hat{V} = \frac{1}{2i\pi} \int_{\Gamma} (\zeta I - A)^{-1} d\zeta \ \hat{V} \equiv XX^{\top} \hat{V},$$

with  $\Gamma \to \text{complex contour with endpoints } [\alpha, \beta]$ .

V is an exact invariant subspace

#### Numerical approximation

$$\mathcal{P}\hat{V} \approx \tilde{\mathcal{P}}\hat{V} = \sum_{j=1}^{n_c} \omega_j (\zeta_j I - A)^{-1} \hat{V}, \quad \rho(z) = \sum_{j=1}^{n_c} \frac{\omega_j}{\zeta_j - z}$$

with (weight, pole)  $\equiv (\omega_j, \zeta_j), j = 1, \ldots, n_c$ .

- Trapezoidal, Midpoint, Gauss-Legendre,...
- Zolotarev, Least-Squares,...
- FEAST (Polizzi), Sakurai-Sugiura (SS), SS-CIRR,.....

#### Main characteristics of CINT

- Can be seen as a (rational) filtering technique
- Different levels of parallelism
- Eigenvalue problem → Linear systems with multiple right-hand sides

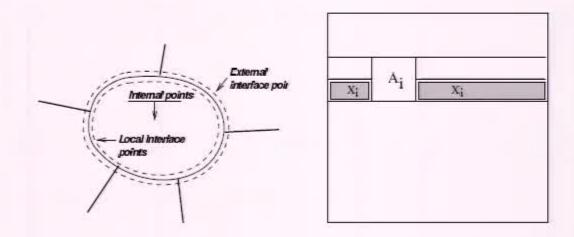
#### In this talk

- We study contour integration from a Domain Decomposition (DD) point-of-view
- Two ideas:
  - Use DD to derive CINT schemes
  - Use DD to accelerate FEAST or other CINT-based method
- We target parallel architectures

#### M · I · · · · CONT

- Introduction
- 2 The Domain Decomposition framework
- Openain Decomposition-based contour integration
- Implementation in HPC architectures
- Experiments
- Discussion

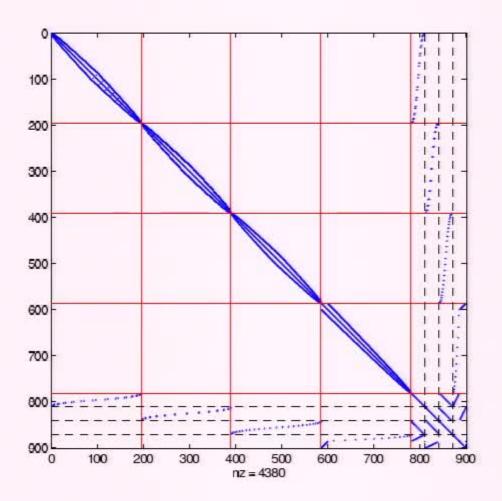
## The local viewpoint – assume M partitions



Stack interior variables  $u_1, u_2, \ldots, u_P$  into u, then interface variables y,

$$\begin{pmatrix}
B_1 & & & E_1 \\
& B_2 & & E_2 \\
& & \ddots & & \vdots \\
& & B_M & E_M \\
E_1^\top & E_2^\top & \cdots & E_M^\top & C
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_M \\
y
\end{pmatrix} = \lambda \begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_M \\
y
\end{pmatrix}$$

#### Pictorially:



Write as

$$A = \begin{pmatrix} B & E \\ E^{\top} & C \end{pmatrix}.$$

## Contents

- Introduction
- The Domain Decomposition framework
- 3 Domain Decomposition-based contour integration
- Implementation in HPC architectures
- Experiments
- Discussion

# Expressing $(A - \zeta I)^{-1}$ in DD

Let  $\zeta \in \mathbb{C}$  and recall that

$$A = \begin{pmatrix} B & E \\ E^{\top} & C \end{pmatrix}.$$

Then

$$(A - \zeta I)^{-1} = \begin{pmatrix} (B - \zeta I)^{-1} + F(\zeta)S(\zeta)^{-1}F(\zeta)^{\top} & -F(\zeta)S(\zeta)^{-1} \\ -S(\zeta)^{-1}F(\zeta)^{\top} & S(\zeta)^{-1} \end{pmatrix},$$

where

$$F(\zeta) = (B - \zeta I)^{-1} E$$
  
$$S(\zeta) = C - \zeta I - E^{T} (B - \zeta I)^{-1} E.$$

# Spectral projectors and DD

As previously,

$$(A - \zeta I)^{-1} = \begin{pmatrix} (B - \zeta I)^{-1} + F(\zeta)S(\zeta)^{-1}F(\zeta)^{\top} & -F(\zeta)S(\zeta)^{-1} \\ -S(\zeta)^{-1}F(\zeta)^{\top} & S(\zeta)^{-1} \end{pmatrix},$$

Then,

$$\mathcal{P}_{DD} = \frac{-1}{2i\pi} \int_{\Gamma} (A - \zeta I)^{-1} d\zeta \equiv \begin{pmatrix} \mathcal{H} & -\mathcal{W} \\ -\mathcal{W}^{\top} & \mathcal{G} \end{pmatrix}$$

$$\begin{cases} \mathcal{H} = \frac{-1}{2i\pi} \int_{\Gamma} [(B - \zeta I)^{-1} + F(\zeta)S(\zeta)^{-1}F(\zeta)^{\top}]d\zeta \\ \mathcal{G} = \frac{-1}{2i\pi} \int_{\Gamma} S(\zeta)^{-1}d\zeta \\ \mathcal{W} = \frac{-1}{2i\pi} \int_{\Gamma} F(\zeta)S(\zeta)^{-1}d\zeta. \end{cases}$$

## Extracting approximate eigenspaces

## Let $\hat{V}$ be a set of mrhs to multiply ${\cal P}$

$$\mathcal{P}_{DD}\begin{pmatrix} \hat{V}_{u} \\ \hat{V}_{s} \end{pmatrix} = \begin{pmatrix} \mathcal{H}\hat{V}_{u} - \mathcal{W}\hat{V}_{s} \\ -\mathcal{W}^{\top}\hat{V}_{u} + \mathcal{G}\hat{V}_{s} \end{pmatrix} \equiv \begin{pmatrix} Z_{u} \\ Z_{s} \end{pmatrix}, \text{ with }$$

$$\begin{cases} Z_u = \frac{-1}{2i\pi} \int_{\Gamma} (B - \zeta I)^{-1} \hat{V}_u d\zeta - \frac{-1}{2i\pi} \int_{\Gamma} F(\zeta) S(\zeta)^{-1} [\hat{V}_s - F(\zeta)^{\top} \hat{V}_u] d\zeta \\ Z_s = \frac{-1}{2i\pi} \int_{\Gamma} S(\zeta)^{-1} [\hat{V}_s - F(\zeta)^{\top} \hat{V}_u] d\zeta. \end{cases}$$

#### In practice:

$$\tilde{Z}_{u} = \sum_{j=1}^{n_{c}} \omega_{j} (B - \zeta_{j} I)^{-1} \hat{V}_{u} - \sum_{j=1}^{n_{c}} \omega_{j} F(\zeta_{j}) S(\zeta)^{-1} [\hat{V}_{s} - F(\zeta)^{\top} \hat{V}_{u}],$$

$$\tilde{Z}_s = \sum_{j=1}^{n_c} \omega_j S(\zeta_j)^{-1} [\hat{V}_s - F(\zeta_j)^\top \hat{V}_u].$$

(ロト (日) (三) (三) (三) (日)

# Pseudocode - Full projector (DD-FP)

```
1: for j = 1 to n_c do

2: W_u := (B - \zeta_j I)^{-1} \hat{V}_u (local)

3: W_s := \hat{V}_s - E^{\top} W_u (local)

4: W_s := S(\zeta_j)^{-1} W_s; \tilde{Z}_s := \tilde{Z}_s + \omega_j W_s (distributed)

5: W_u := W_u - (B - \zeta_j)^{-1} EW_s; \tilde{Z}_u := \tilde{Z}_u + \omega_j W_u (local)

6: end for
```

#### Practical considerations

- For each  $\zeta_j$ ,  $j = 1, \ldots, n_c$ :
  - Two solves with  $B \zeta_i I$  + One solve with  $S(\zeta_i)$
- ullet The procedure can be repeated with an updated  $\hat{V}$
- "Equivalent" to FEAST tied with a DD solver

### An alternative scheme

### CINT along the interface unknowns

$$\mathcal{P}_{DD} = \frac{-1}{2i\pi} \int_{\Gamma} (A - \zeta I)^{-1} d\zeta = [\mathcal{P}_{1}, \mathcal{P}_{2}] \equiv \begin{pmatrix} * & -\mathcal{W} \\ * & \mathcal{G} \end{pmatrix},$$

$$\mathcal{G} = \frac{-1}{2i\pi} \int_{\Gamma} \mathbf{S}(\zeta)^{-1} d\zeta, \qquad -\mathcal{W} = \frac{1}{2i\pi} \int_{\Gamma} (B - \zeta I)^{-1} E \mathbf{S}(\zeta)^{-1} d\zeta.$$

Advantage: Does not involve the inverse of whole matrix.

$$\mathcal{P}_{DD} = XX^{\top}, \ X = \begin{pmatrix} U \\ Y \end{pmatrix} \rightarrow \mathcal{P}_{DD} = \begin{pmatrix} * & UY^{\top} \\ * & YY^{\top} \end{pmatrix}$$

- Just capture the range of  $\mathcal{P}_2 = XY^{\top} \to \mathcal{P}_2 \times \text{randn}()$
- Also: Lanczos on  $\mathcal{P}_2\mathcal{P}_2^{\top}$  (sequential, doubles the work)

# Pseudocode - Partial projector (DD-PP)

```
1: for j = 1 to n_c do

2: W_u := (B - \zeta_j I)^{-1} \hat{V}_u (local)

3: W_s := \hat{V}_s = E^{\top} W_u (local)

4: W_s := S(\zeta_j)^{-1} \hat{V}_s; \tilde{Z}_s := \tilde{Z}_s + \omega_j W_s (distributed)

5: W_u := W_u - (B - \zeta_j)^{-1} EW_s; \tilde{Z}_u := \tilde{Z}_u + \omega_j W_u (local)

6: end for
```

#### Practical considerations

- For each  $\zeta_j$ ,  $j=1,\ldots,n_c$ :
  - One solve with  $B \zeta_j I$  + One solve with  $S(\zeta_j)$
- More like a one-shot method

イロト (部) (三) (三) (日)

# A more detailed analysis of DD-PP

## Spectral Schur complement

- $\lambda \Leftrightarrow \det[S(\lambda)] = 0 \quad (\lambda \notin \sigma(B))$
- The eigenvector satisfies

$$x = \begin{pmatrix} -(B - \lambda I)^{-1}Ey \\ y \end{pmatrix}$$
, with  $y := S(\lambda)y = 0$ .

## If $(B - \zeta I)^{-1}$ analytic in $[\alpha, \beta]$

$$-W = \frac{1}{2i\pi} \int_{\Gamma} (B - \zeta I)^{-1} ES(\zeta)^{-1} d\zeta \rightarrow \{(B - \lambda I)^{-1} Ey\}_{\Gamma}$$

$$\mathcal{G} = \frac{-1}{2i\pi} \int_{\Gamma} S(\zeta)^{-1} d\zeta \rightarrow \{-y\}_{\Gamma}$$

Another idea: Solve  $S(\lambda)y = 0$  directly ([VK,RLi,YS],[VanB,Kra],[Sak])

## Contents

- Introduction
- The Domain Decomposition framework
- Openain Decomposition-based contour integration
- Implementation in HPC architectures
- Experiments
- Discussion

# A closer look at the Schur complement

#### So far:

Eigenvalue problem  $\rightarrow$  Linear systems with mrhs  $\rightarrow$  Schur complement

From the DD framework we have

$$S(\zeta) = \begin{pmatrix} S_1(\zeta) & E_{12} & \dots & E_{1M} \\ E_{21} & S_2(\zeta) & \dots & E_{2M} \\ \vdots & & \ddots & \vdots \\ E_{M1} & E_{M2} & \dots & S_M(\zeta) \end{pmatrix},$$

where

$$S_i(\zeta) = C_i - \zeta I - E_i^T (B_i - \zeta I)^{-1} E_i, i = 1, ..., M,$$

is the "local" Schur complement (complex symmetric).

# Solving linear systems with the Schur complement

## Straightforward approach

- Form and factorize  $S(\zeta)$
- Extremely robust but impractical for 3D problems

## Alternative $\rightarrow$ Use an approximation of $S(\zeta)$

- Lots of ideas (pARMS, LORASC,...)
- Typical preconditioners implemented:
  - Block Jacobi: Use  $C_i$ ,  $C_i \zeta I$  or  $S_i(\zeta)$ , i = 1, ..., M
  - Global approximation: Use C,  $C \zeta I$  or  $\approx S(\zeta)$
- Memory Vs robustness
- Important: magnitude of the imaginary part of a pole

### Contents

- Introduction
- The Domain Decomposition framework
- Domain Decomposition-based contour integration
- Implementation in HPC architectures
- 5 Experiments
- Discussion

# Implementation and computing environment

#### Hardware

- ITASCA HP Linux cluster at Minnesota Supercomputing Inst.
- 1,091 HP ProLiant BL280c G6 blade servers, each with two-socket, quad-core 2.8 GHz Intel Xeon X5560 "Nehalem EP" (24 GB per node)
- 40-gigabit QDR InfiniBand (IB) interconnect

#### Software

- The software was written in C++ and on top of PETSc (MPI)
- Linked to AMD, METIS, UMFPACK, MUMPS, MKL-BLAS, MKL-LAPACK
- Compiled with mpiicpc (-O3)

# Experimental framework

### CINT + Subspace Iteration

- CINT-SI: standard "FEAST" approach
- Direct (MUMPS) or iterative (preconditioned) solver

#### CINT + DD

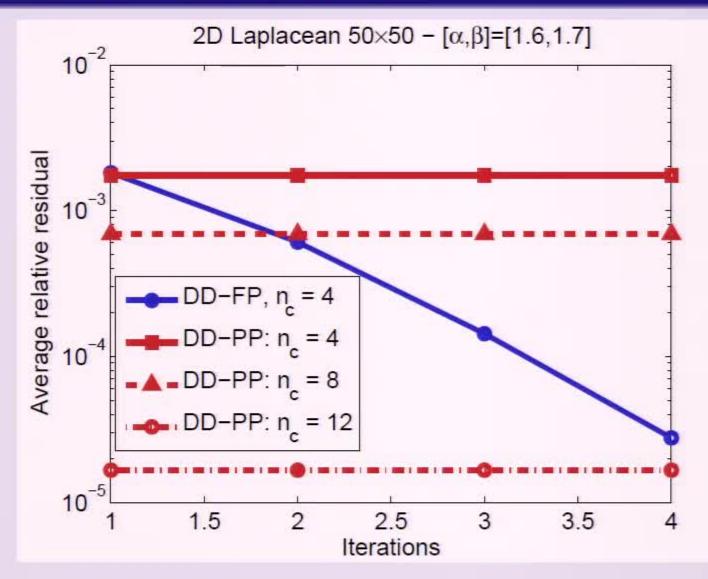
- DD-FP: implements the full projector
- DD-PP: implements the partial projector
- Schur complement: exact or approximate

#### Details

- # MPI processes → # cores
- Quadrature rule: Gauss-Legendre
- Eig/vle tolerance: 1e 8

## Numerical illustration

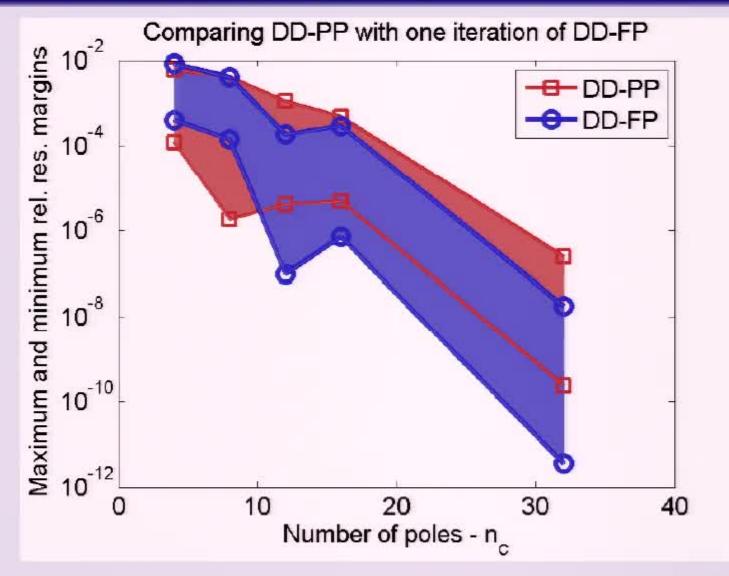
## A comparison of DD-FP and DD-PP I



VK, YS (U of M)

# Numerical illustration (cont. from previous)

## A comparison of DD-FP and DD-PP II



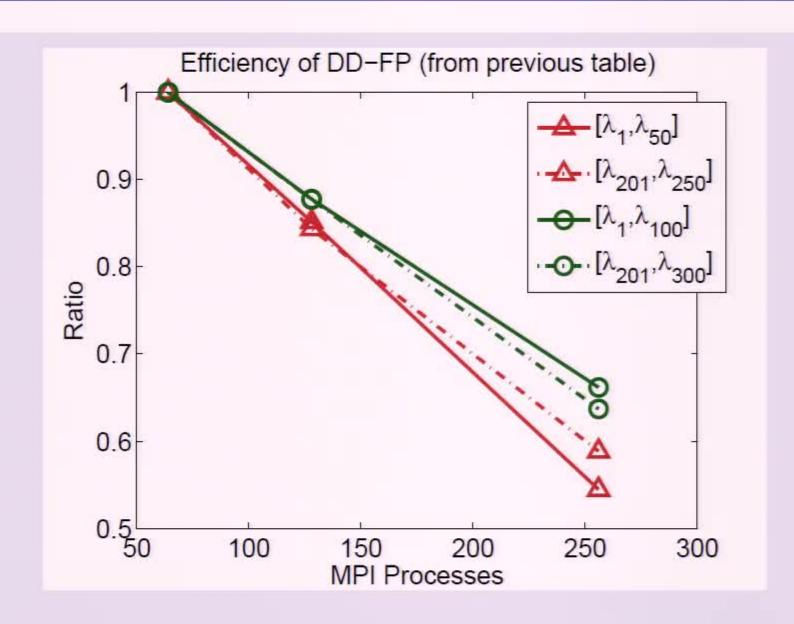
# Test on a 2D $1001 \times 1000$ Laplacian

Table: Time is listed in seconds. A 2-D grid of processors was used.  $S(\zeta)$  factorized explicitly. Number of poles:  $n_c=4$ 

|                 | $[\alpha, \beta]$                | lts | MPI 16 × 4 |       | MPI 32 × 4 |       | MPI 64 × 4 |       |
|-----------------|----------------------------------|-----|------------|-------|------------|-------|------------|-------|
|                 |                                  |     | CINT-SI    | DD-FP | CINT-SI    | DD-FP | CINT-SI    | DD-FP |
| Exterior eigvls |                                  |     |            |       |            |       |            |       |
|                 | $[\lambda_1, \lambda_{20}]$      | 3   | 88         | 37    | 53         | 26    | 42         | 20    |
|                 | $[\lambda_1, \lambda_{50}]$      | 3   | 159        | 65    | 88         | 38    | 65         | 30    |
|                 | $[\lambda_1, \lambda_{100}]$     | 5   | 432        | 172   | 241        | 98    | 136        | 65    |
| Interior eigvls |                                  |     |            |       |            |       |            |       |
|                 | $[\lambda_{201}, \lambda_{220}]$ | 3   | 89         | 37    | 53         | 26    | 42         | 20    |
|                 | $[\lambda_{201}, \lambda_{250}]$ | 4   | 286        | 113   | 164        | 67    | 110        | 48    |
|                 | $[\lambda_{201}, \lambda_{300}]$ | 4   | 440        | 214   | 245        | 122   | 141        | 84    |

- Exterior: Number of right-hand sides  $\equiv$  number of eigvls + 20
- Interior: Number of right-hand sides  $\equiv 2 \times \text{number of eights}$

# Efficiency of DD-FP



## Contents

- Introduction
- The Domain Decomposition framework
- Domain Decomposition-based contour integration
- Implementation in HPC architectures
- Experiments
- 6 Discussion