PHYTOPLANKTON

The emergence of spatial patterns in a phytoplankton-nutrient model.

Lotte Sewalt, Leiden University, The Netherlands Arjen Doelman, Antonios Zagaris

PHYTOPLANKTON

source: coralscience.org

- · Photosynthesis.
- Light from the surface, nutrient from the bottom.
- Oxygen producer.
- Life cycle ~ I week.
- Size ~ 10 μm.

MOTIVATION

Field measurements of chlorophyll in the ocean near Hawaii.

- Oscillating patterns.
- Field measurements indicate even chaotic behavior.

Phytoplankton density over a period of time, numerically derived for three species.

Huisman et al, Nature 2006.

MATHEMATICAL MODEL

Plankton

Nutrient

$$\omega_t = \varepsilon \omega_{xx} - 2\sqrt{\varepsilon}v\omega_x + (p(\omega, \eta, x) - \ell)\omega,$$
$$\eta_t = \varepsilon \left[\eta_{xx} + \ell^{-1}p(\omega, \eta, x)\omega\right];$$

 $x \in \mathbb{R}$

$$p(\omega, \eta, x) = \frac{1 - \eta}{(\eta_H + 1 - \eta)(1 + j_H/j(\omega, x))},$$

$$j(\omega, x) = e^{-\kappa x - r \int_0^x \omega(s, t) ds}.$$

$$i\mathbb{R}$$

$$\mathcal{O}(1)$$

$$\lambda_2 \qquad \mu_3 \qquad \mu_2 \qquad \mu_1 \quad \lambda_{\text{DCM}} \quad \lambda_{\text{BL}} \quad \mathbb{R}$$

PATTERN FORMATION

LINEAR STABILITY & NUMERICS

DEEP CHLOROPHYLL MAXIMUM

- Onset of patterns via a transcritical bifurcation.
- When bifurcation parameter is $\mathcal{O}(\varepsilon)$, a Hopf bifurcation occurs, indicating oscillations.
- (Numerically) That Hopf induces chaos through a cascade of period doubling bifurcations.

BENTHIC LAYER

- Onset of pattern via a transcritical bifurcation.
- Stationary Benthic Layer remains stable even for bifurcation parameter $\mathcal{O}(\varepsilon)$.
- Destabilization may occur closer to the codimension 2 point.

CENTER MANIFOLD REDUCTION

In case of a center eigenvalue, all the essential behavior is captured in the center manifold, whose dimension is equal to the number of center eigenvalues.

PARAMETER DEPENDENCE

$$\dot{x} = A(\mu)x + f(x, y, \mu), \qquad x \in \mathbb{R}^n$$

$$\dot{y} = B(\mu)x + g(x, y, \mu), \qquad y \in \mathbb{R}^m$$

$$\dot{\mu} = 0. \qquad \mu \in \mathbb{R}^k$$

'Theorem'

Suppose that for $\mu=0$ the system has only stable and center eigenvalues. Then, there is a family of center manifolds parametrized by μ which captures all essential behavior for μ small enough.

•
$$\sigma > 1 \Rightarrow \varepsilon^{\sigma} \ll \varepsilon \Rightarrow \lambda_1 \ll \mu_k$$
.

•
$$\sigma = 1 \Rightarrow \varepsilon^{\sigma} = \varepsilon \Rightarrow \mathcal{O}(\lambda_1) = \mathcal{O}(\mu_k).$$

Center manifold reduction is infinite dimensional.

OUR APPROACH

Fourier analysis and amplitude equations.

$$\omega(x,t) = \sum_{n\geq 1} A_n(t)\phi_n(x),$$
$$\eta(x,t) = \sum_{n\geq 1} B_n(t)\psi_n(x).$$

- What do we expect? A small pattern growing in the 'shape' of the bifurcating eigenfunction.
- · Rescale amplitudes accordingly.

$$A_1 = \varepsilon a_1$$
 $A_n = \varepsilon^2 a_n$ $B_n = \varepsilon b_n$.

AMPLITUDE EQUATIONS

$$a'_{1} = \lambda_{1}a_{1} + C_{1}a_{1}^{2},$$

$$\varepsilon a'_{n} = \lambda_{n}a_{n} + \text{nonl. terms}$$

$$\varepsilon^{\sigma-1}b'_{1} = -\mu_{1}b_{1} + C_{2}a_{1},$$

$$\varepsilon^{\sigma-1}b'_{n} = -\mu_{n}b_{n}$$

$$O(1)$$

$$O(\varepsilon)$$

$$\lambda_{2}$$

$$\mu_{3}$$

$$\mu_{2}$$

$$\mu_{1}$$

$$\lambda_{1}$$

$$\mathbb{R}$$

CLASSICAL CMR $\sigma > 1$

$$a'_1 = \lambda_1 a_1 + C_1 a_1^2,$$

 $0 = \lambda_n a_n + \text{nonl. terms}$
 $0 = -\mu_1 b_1 + C_2 a_1,$
 $0 = -\mu_n b_n$

- Algebraic equations define the center manifold.
- · Dynamic equation captures behavior on the center manifold.

EXTENDED CMR $\sigma=1$

$$a'_{1} = \lambda_{1}a_{1} + C_{1}a_{1}^{2},$$

$$0 = \lambda_{n}a_{n} + \text{nonl. terms}$$

$$b'_{1} = -\mu_{1}b_{1} + C_{2}a_{1},$$

$$b'_{n} = -\mu_{n}b_{n}$$

$$+\mathcal{O}(\varepsilon^{\sigma})$$

- Even for $\sigma=1$ we know what captures the essential behavior.
- Formal approach allows for reduction beyond the standard center manifold regime.

EXTENDED CMR $\sigma=1$

$$a_1' = \lambda_1 a_1 + C_1 a_1^2,$$

$$b_1' = -\mu_1 b_1 + C_2 a_1,$$

$$+\mathcal{O}(\varepsilon^{\sigma})$$

The center manifold is extended to two dimensions, which is easily studied for bifurcations.

SUMMARY

- Derive formally leading order approximations of both types of patterns in the phytoplankton model, and analyze their stability.
- The theory is applicable to a broad class of PDE systems.

$$u_t = \mathcal{L}u - f(x, u, v; \varepsilon)uv,$$

 $v_t = \varepsilon \mathcal{K}u - \varepsilon \mathcal{M}v - \varepsilon g(x, u, v; \varepsilon).$
 $\mathcal{L}, \mathcal{K}, \mathcal{M}$ differential operators

OPEN QUESTION: VALIDITY

- Our approach is formal, the persistence of the extended center manifold is not yet rigorously proved.
- Numerics indicate that the approximation is very good.

