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PHY TOPLANKTON

source: coralscience.org

Photosynthesis.

Light from the surface,
nutrient from the bottom.

Oxygen producer.
Life cycle ~ | week.

Size ~ 10 um:



MOTIVATION
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Field measurements of chlorophyll in the ocean near
Hawaii.

Huisman et al, Nature 2006.

* Osclllating patterns.

* Field measurements
Indicate even chaotic
behavior:
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Phytoplankton density over a period of time,
numerically derived for three species.



MATHEMATICAL MODEL
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PAT TERN FORMATION
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LINEAR STABILITY & NUMERICS

No Bloom
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LINEAR STABILITY & NUMERICS
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DEEP CHLOROPHYLL MAXIMUM

* Onset of patterns via a transcritical bifurcation.

« When bifurcation parameter is O(g), a Hopf bifurcation
occurs, Indicating oscillations.

* (Numerically) That Hopf induces chaos through a cascade of
period doubling bifurcations.




BENTHIC LAYER

* Onset of pattern via a transcritical bifurcation.

» Stationary Benthic Layer remains stable even for bifurcation
parameter O(g).

* Destabilization may occur closer to the codimension 2 point.

No Bloom

* Undecidable

— sinking velocity
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CENTER MANIFOLD R
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In case of a center eigenvalue, all the essential behavior Is
captured in the center manifold, whose dimension is equal

to the number of center eigenvalues.



PARAMETER DEPENDENCE
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‘Theorem’

Suppose that for p = 0 the system has only stable and center
eigenvalues. T hen, there Is a family of center manifolds
parametrized by p which captures all essential behavior for u

small enough.
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Center manifold reduction i1s infinite dimensional.

OK!



OUR APPROACH

* Fourier analysis and amplitude equations.

w(@,t) = ) An(t)¢n(2),

n>1

n(x.t) =Y Bu(thu (o).

n>1
* What do we expect? A small pattern growing in the ‘shape’ of
the bifurcating eigenfunction.

+ Rescale amplitudes accordingly.

Al = &a An = €2an Bn — Ebn.



AMPLITUDE EQUATION
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CLASSICALCMR o > 1

/ 2
a; = /\10,1 + Clal,

0 = A\, a,, +nonl. terms o
0= —p1b1 + Caay, —I—O(E )
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» Algebraic equations define the center manifold.

« Dynamic equation captures behavior on the center manifold.



EXTENDED CMR 0 =1
a) = \ay + Cra?,

0= \,,a,, +nonl. terms o
b1 = —p1b1 + Caay, —I—O(E )

b = —p,b,

« Even for o0 = 1 we know what captures the essential behavior.

» Formal approach allows for reduction beyond the standard
center manifold regime.



EXTENDED CMR 0 =1

/ 2
ay; = Aay + C’lal,

+0(e7)

by = —p1by + Caay,

The center manifold 1s extended to two dimensions,
which Is easily studied for bifurcations.



SUMMARY

* Derive formally leading order approximations of both types
of patterns in the phytoplankton model, and analyze their

stability.
* The theory is applicable to a broad class of PDE system:s.

u = Lu — f(x,u,v;e)uv,

vy = eKu —eMv — eg(x,u,v; ).

L, K, M differential operators



OPEN QUESTION:VALIDITY

* Our approach is formal, the persistence of the extended center

manifold is not yet rigorously proved.

« Numerics indicate that the approximation is very good.

Redu;tion Full PDE e=0.1



