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In general: minimize F(x; D) = f(x; D) + g(x)

➢ f is convex and smooth with L-Lipschitz continuous gradient

➢ g is convex but not smooth; g is simple

➢ D is highly correlated data
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Proximal Gradient

➢ Minimize ,  but is not differentiable!

➢ Instead repeatedly minimize a quadratic approximation of

Repeatedly apply until convergence

➢ Let
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Algorithms

2 main approaches

➢ Full gradient methods

○ Use all D and all x for each update

○ Impractically slow when D is large

➢ Coordinate gradient methods

○ Use parts of x and D for each update

○ Can be faster, but not appropriate when D

has highly correlated columns



By exploiting the data structure we can make the 

problem smaller while using all the data.
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1. Set y to minimize quadratic approximation of F around x

2. Choose step-sizes and acceleration parameters t.

3. Set z to minimize quadratic approximation of F around z

4. Set z = t*y + (1 - t)*z

Accelerated Proximal Gradient*

*Nesterov, Y. Smooth minimization of non-smooth functions. Mathematical programming, 2005.

coarse, if useful
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Creating Coarse Models

1. Create a coarse model 8824 images

275 images

8824 images

275 images

Continue
2. Solve the coarse model

3. Use the coarse model to 

iterate on the fine problem

Use theory to construct appropriate 

step-sizes and other parameters to 

achieve optimal convergence rate. 

8824 images
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Restriction and Prolongation

➢ linearly combines elements to half the dimension

➢ Use for prolongation

➢ Use multiple levels to achieve smaller coarse models



1. Assure that coarse and fine level problems are coherent

Coherent Coarse Model



1. Assure that coarse and fine level problems are coherent

Coherent Coarse Model

Coarse obj fun Restriction operator

Smooth F
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1. Assure that coarse and fine level problems are coherent

Coherent Coarse Model

Is achieved by adding a linear  v-term

where v is defined as
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Coarse Correction

2. Construct a descent search direction from the coarse solution 

Lemma. For any x it holds that

3. Use Armijo backtracking line search to find step-size s such that 
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1. If conditions for coarse correction hold

choose a smoothing parameter

set y by a coarse correction step on x

Otherwise

set y by a proximal gradient step on x

2. Set z by a proximal gradient step on z

3. Update x = t*y + (1 - t)*z

MAGMA



Convergence Rate

Theorem. After T iterations of MAGMA it holds that



MAGMA*

➢ Optimal convergence rate

➢ Much faster for the face recognition problem

*Hovhannisyan V, Parpas P, Zafeiriou S. MAGMA: Multi-level accelerated gradient mirror descent algorithm for large-scale convex composite minimization. 

Under revision at SIAM journal on imaging sciences.
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Conclusion

➢ MAGMA: accelerated multi-level proximal algorithm

➢ Excellent numerical results for face recognition

➢ Next: 

○ Reduce to one proximal step per iteration

○ Test on other problems, e.g. robust PCA and face alignment

○ Combine with stochastic updates


