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The great 1906 earthquake (MW = 7.8 - 7.9) devastated San 
Francisco and caused damage throughout N. California 

Stockton Street from Union SquareSan Francisco city hall

Shaking intensity on the Modified 

Mercalli scale (Boatwright, 2005)
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Valencia Street Hotel before EQ… … and after. Bottom 3 stories in a sink hole



When will the next big earthquake hit?
� USGS predicts a 62 % chance of a 

magnitude > 6.7 earthquake in the Bay 
Area during the next 25 yearsArea during the next 25 years.

� The past 5 large earthquakes on the 
Hayward fault have occurred on average 
every 140 yearsevery 140 years.

� Last big one in October 1868 (MW ≈ 6.8). 
� 1868+140=2008

Flour mill in 
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Hayward, 1868



Seismic wave simulations are computationally challenging

Material

Topography
Seismic 
event

Sedimentary
basinEW

Material 
discontinuities

Faster P & S-
waves @ 
depth

� P & S-wave speed vary by factor 8
Vsmin=500 m/s, Domain: 550 x 200 x 40 km, 
Single mesh WPP code, 1024 proc. cluster

WE

P & S wave speed vary by factor 8
� Wave length ~ Wave speed
� Time step ~ h/V
� Smallest wave speed -> grid size

freq h [m] NGP δt [s] T-steps CPU [h]

0.2 250 256e6 2.2e-2 13,600 2

g , p

Smallest wave speed > grid size
� Largest wave speed -> time step
� Min. res. 10 h = λmin= Vsmin/freq

0.4 125 2e9 1.1e-2 27,300 26

0.5 100 4e9 8.7e-3 34,500 67

1 0 50 32e9 4 4e 3 68 200 1 061
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1.0 50 32e9 4.4e-3 68,200 1,061



We solve the (an-)elastic wave equation in 2nd order 
displacement formulation  p
� Staggered grid FD methods are popular for seismic wave 

propagation
• 1st order velocity-stress formulation

ut = vx
vt = uxy

• 9 dependent variables, 2 time levels = 18 per grid point
• Has not been (can’t be?) generalized to non-planar 

topography
� Scalar wave eqn:Scalar wave eqn:

• Staggered grid discr. of 1st order system = 
node based discr. of 2nd order system

• Solving the second order system “in disguise”
� Second order displacement formulation

utt = uxx
� Second order displacement formulation

• All variables in the same location
• 3 dependent variables, 3 time levels = 9 per grid point
• Previous discretizations unstable with free surface bc
• New discretization stable for all VP/VS ratios
• Generalizes to non-planar topography using curvilinear 

grids
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Summation by parts FD operators lead to a provably stable 
method for heterogeneous materials
� Theory for 2nd order hyp. systems:

• Lemma: Solutions v(t) uniformly bounded in time iff 
eigenvalues of A are real and negative andeigenvalues of A are real and negative and 
eigenvectors form a complete set. Ok if A=A*<0.

� New summation by parts scheme:
• Take cross terms one-sided on boundary and modify 

discretization of boundary condition
• Stable with free surface bc and variable 

(discontinuous) wave speeds, any VP/VS ratio
• 2nd order accurate for smooth materials2 order accurate for smooth materials
• Fully discrete scheme stable if time-step satisfies 

Courant condition (non-trivial to estimate 
eigenvalues)

� More info in publications:
• H.O. Kreiss, N.A Petersson and J. Ystrom, SIAM J. Numer. Anal., 40 (2002)
• S. Nilsson, N.A Petersson, B. Sjogreen and H.O. Kreiss, SIAM J. Numer. 

Anal., 45 (2007)
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• D. Appelo and N.A Petersson, Comm. Comput. Phys. (2008) (to appear).



The summation by parts technique can be extended to non-
planar free-surfaces using a curvilinear mesh

� Topography becomes important as the wave 
length gets shorter (higher frequency)

Planar wave impinging 
on 3-D Gaussian hill

Curvature dependent wave speed

Point Loading

Bump on top surface

B k tt i C
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Back scattering Complex interaction Mode to mode conversion



Local mesh refinement can speed up the calculations by over 
a factor 100
� Ideal for materials with planar layers

• Grid size prop. to shear velocity
• Time step δt = min(h/V) 800 m

100 m
200

Depth Grid size

1,000/500

VP/VS

⌧
�Time step δt  min(h/V)

� Peak performance:
800 m

1,600 m
200 m

400 m

4 000/2 000

2,000/1,000

,

Grid pts t-steps # Proc. Total CPU [s]

⌧

30,000 m

4,000/2,0001 mesh 47.8 e6 2449 64 106,000

Refined 1.8 e6 306 2 650

Ratio 27 8 32 162

800 m8,000/4,000

Ratio 27 8 162
Horizontal displacement on surface

h=100 only : h=100/200/400/800 50,000 mh 100 only : h 100/200/400/800
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Visco-Elastic modeling adds realistic attenuation
� Constant quality factors QP and QS 

modeled by rational expression on 
Fourier side with “L” termsFourier side with L  terms

� λq, μq and Tq through empirical 
relations with QP and QS 

� From 48 to 24 memory variables S(q) by y y
solving for div(S(q))

� Comparison with analytic solution for 
a layered material (L=8):
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LOH.1:Elastic LOH.3:Visco-elastic



Recent moderate earthquakes can be used to validate the 
material model and the simulation code
� Smaller earthquakes have a simple 

focal mechanism
� Point moment tensor source

� Material model (USGS)
� Compressional and shear wave 

speeds� Point moment tensor source
� Beach ball illustrates the strike, dip 

and rake angles

speeds
� Density and attenuation (QP, QS)

10Anders Petersson

Lawrence Livermore National Laboratory



The October 2007, Alum Rock Mw = 5.4 earthquake was used 
in our validation effort

Obs + Sim filtered to < 0.5 Hz

Epicenter
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There is significant 3-D structure in the solution
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|Curl(velocity)|, bottom view



Larger earthquakes need a more sophisticated rupture 
model

Rupture model

• Distribution of slip along fault surface
Slip

• Rupture speed -> Slip initiation times

• Slip(time) function; Rise time

• Discretized by many point sources along fault 
timeRise time ~ slip1/2

Discretized by many point sources along fault 
surface
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Historical data: The 1906 earthquake was much stronger than 
the 1989 Loma Prieta earthquake (Mw = 6.9)

1989 Loma Prieta1906 San Francisco

Can we simulate a repeat of the 
1906 event?
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1906 event?



The rupture model for the 1906 event was reverse 
engineered from historical data

Lawson report (1908):
� Geodetic Measurements (slip)
� Tele-seismic recordings (duration)
� Mercalli intensities (peak velocities)

Song model 2c:
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Song model 2c:



Our results compare well with historical data and other 
codes

Simulating the 1906 earthquake was a 
great validation opportunity

San 

East Component North Component

Francisco

Pt. Arena

Livermore
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The volumetric data reveals interesting structure

Volumetric data 
compressed w/brick-of-
wavelet technique

1.2 Tb of data rendered 
with VISIT on 64 proc.with VISIT on 64 proc.

Left: P-waves 
dilatation/compression

Right: S-waves 
|vorticity|

Side view: intense shaking at 
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g
rupture front and surface



Other Mw=7.8 earthquakes on the San Andreas fault could 
cause more damage to the SF bay area

Simulation by R. Graves

1906 Scenario N

� More info in publications:
• B. T. Aagaard, et. al, Bull. Seism. Soc. Amer. 98, pp. 1012-1046 (2008)
• A Rodgers N A Petersson S Nilsson B Sjogreen K McCandless Bull
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A. Rodgers, N. A. Petersson, S. Nilsson, B. Sjogreen, K. McCandless, Bull. 
Seism. Soc. Amer. 98, pp. 969-988 (2008)



Future work: couple earthquake ground motions to dynamic 
simulations of structures

� Higher frequencies important (1-2 Hz)
� Doubling the frequency:

• Memory x8
• CPU-time x16

� More accurate modeling
• Topography
• Attenuation / advanced soil models

� Mesh refinement will help
� Larger/faster clusters necessary
� Largest WPP simulation to date:

• Grid: 9232 x 9232 x 309 = 26.3 Billion 
i t Ti 995 41 350 tpoints, Time: 995 s = 41,350 steps

• 32,768 proc on BG/L @ LLNL: 15 h, 32 
min wall clock
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How much is my house going to shake?
� Do your own wave simulations with WPP
� Distributed as open source software: 

https://computation.llnl.gov/casc/serpentine
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