## The Polynomial Atlas Method

Will Mitchell SIAM - LS<br>August 9, 2018

MACALESTER


## One Dimension: Periodic Model Problem



Find $f(x)$ on $[0,1]$ such that

$$
\begin{array}{r}
f(x)+\int_{0}^{1} \cos (2 \pi(x-y)) f(y) d y=\exp (\sin (2 \pi x)) \\
\text { for each } x \in[0,1]
\end{array}
$$

Exact solution: $\quad f(x)=\exp (\sin (2 \pi x))-\frac{2}{3} I_{1}(1) \sin (2 \pi x)$

## Four-Chart Circle Atlas



$$
\begin{aligned}
& \ell_{1}:[-1,1] \rightarrow[0,0.4] \\
& \ell_{2}:[-1,1] \rightarrow[0.25,0.8] \\
& \ell_{3}:[-1,1] \rightarrow[0.5,0.9] \\
& \ell_{4}:[-1,1] \rightarrow[0.75,1] \cup[0,0.15]
\end{aligned}
$$

Communication: $t_{i}^{m}$ : "up / back"

$$
\begin{aligned}
& \ell_{i}\left(t_{i}^{m}(x)\right)=\ell_{m}(x) \\
& t_{i}^{m}(x)=\ell_{i}^{-1}\left(\ell_{m}(x)\right) \\
& t_{2}^{1}(0.75) \approx
\end{aligned}
$$

## Four-Chart Circle Atlas



$$
\begin{aligned}
& \ell_{1}:[-1,1] \rightarrow[0,0.4] \\
& \ell_{2}:[-1,1] \rightarrow[0.25,0.8] \\
& \ell_{3}:[-1,1] \rightarrow[0.5,0.9] \\
& \ell_{4}:[-1,1] \rightarrow[0.75,1] \cup[0,0.15]
\end{aligned}
$$

Communication: $t_{i}^{m}$ : "up / back"

$$
\begin{aligned}
& \ell_{i}\left(t_{i}^{m}(x)\right)=\ell_{m}(x) \\
& t_{i}^{m}(x)=\ell_{i}^{-1}\left(\ell_{m}(x)\right)
\end{aligned}
$$

$$
t_{2}^{1}(0.75) \approx
$$

## Four-Chart Circle Atlas



$$
\begin{aligned}
\ell_{1}:[-1,1] & \rightarrow[0,0.4] \\
\ell_{2}:[-1,1] & \rightarrow[0.25,0.8] \\
\ell_{3}:[-1,1] & \rightarrow[0.5,0.9] \\
\ell_{4}:[-1,1] & \rightarrow[0.75,1] \cup[0,0.15]
\end{aligned}
$$

Communication: $t_{i}^{m}$ : "up / back"

$$
\begin{gathered}
\ell_{i}\left(t_{i}^{m}(x)\right)=\ell_{m}(x) \\
t_{i}^{m}(x)=\ell_{i}^{-1}\left(\ell_{m}(x)\right) \\
t_{2}^{1}(0.75) \approx-0.64
\end{gathered}
$$

## Four-Chart Circle Atlas: Poutine

Smooth, but not analytic

$$
\phi(x)= \begin{cases}\exp \left(1-\frac{1}{(1+x)(1-x)}\right) & x \in(-1,1) \\ 0 & |x|>1\end{cases}
$$

$$
\left(\ell_{m}(x), \phi(x)\right) \longrightarrow
$$

Degrees: 771, 1098, 781, 805


$$
\psi_{m}(x)=\frac{\phi(x)}{\sum_{i} \phi\left(t_{i}^{m}(x)\right)} \rightarrow
$$



## Act Locally

Seek $\left\{f_{i}(u)\right\}$ and then build $f(x)$


## Change of Domain

$$
f(x)+\int_{0}^{1} K(x, y) f(y) d y=b(x)
$$

$$
x=\ell_{m}(u) \quad f\left(\ell_{m}(u)\right)=\sum_{i=1}^{N^{c}} \psi_{i}\left(t_{i}^{m}(u)\right) f_{i}\left(t_{i}^{m}(u)\right)
$$

$\sum_{i} \psi_{i}\left(t_{i}^{m}(u)\right) f_{i}\left(t_{i}^{m}(u)\right)+\int_{0}^{1} K\left(\ell_{m}(u), y\right) \sum_{i} \psi_{i}\left(\ell_{i}^{-1}(y)\right) f_{i}\left(\ell_{i}^{-1}(y)\right) d y=b\left(\ell_{m}(u)\right)$

$$
y=\ell_{i}(v)
$$

$$
\sum_{i} \psi_{i}\left(t_{i}^{m}(u)\right) f_{i}\left(t_{i}^{m}(u)\right)+\sum_{i} \frac{\left|\ell_{i}([-1,1])\right|}{2} \int_{-1}^{1} K\left(\ell_{m}(u), \ell_{i}(v)\right) \psi_{i}(v) f_{i}(v) d v=b\left(\ell_{m}(u)\right)
$$

## A case where polynomials really are bad

Discretizing $f_{m}$ : don't oversample near endpoints Instead, make FFT work with nonperiodic data:

## A case where polynomials really are bad

Discretizing $f_{m}$ : don't oversample near endpoints Instead, make FFT work with nonperiodic data:


## A case where polynomials really are bad

Discretizing $f_{m}$ : don't oversample near endpoints Instead, make FFT work with nonperiodic data:


## A case where polynomials really are bad

The fourth derivative is discontinuous at the endpoints. This is still not a spectral interpolation scheme. Suggestions welcome. Idea: discretize $\psi f$ instead of $f$ ?


## Results for the model problem on a circle


$N$ : number of nodes for all $f_{i}$ combined

Three dimensional problems


Geometry is continuous (no mesh) def mean_curvature(self,j,s,t):

I,II = self.fundamental_forms ( $j, s, t$ ) $\mathrm{H}=\mathrm{I}[0] * \mathrm{II}[1]-2 * \mathrm{I}[2] * \mathrm{II}[2]+\mathrm{I}[1] * \mathrm{II}[0]$ return H / (I[0]*I[1] - I[2]**2)



$$
\psi(x, y)=\sum^{30} r_{i}(x) c_{i}(y) \quad \begin{aligned}
& \text { as in Townsend \& Trefethen, An extension of } \\
& \text { Chebfun to two dimensions, SIAM JSC 2OI3 }
\end{aligned}
$$

## Interior regular grid interpolation

An $f_{i}$ discretized by grid values

$$
f_{i}=\sum_{i=1}^{10} R_{i}(x) C_{i}(y)
$$



Specialized quadratures for $\frac{1}{r}$ singularities



Single layer integrand

## Future work: boundary integral methods

Power \& Miranda, SIAM JAM 1987

$$
\boldsymbol{u}(\boldsymbol{x})=-\int_{S} \boldsymbol{q}(\boldsymbol{y}) \cdot\left(T(\boldsymbol{x}, \boldsymbol{y})+T^{*}\left(\boldsymbol{x}, \boldsymbol{y}^{*}\right)\right) \cdot \hat{\boldsymbol{n}}(\boldsymbol{y}) \mathrm{d} S+\frac{1}{8 \pi}\left(\boldsymbol{G}\left(\boldsymbol{x}, \boldsymbol{x}_{0}\right)+\boldsymbol{G}^{*}\left(\boldsymbol{x}, \boldsymbol{x}^{*}\right)\right) \cdot \boldsymbol{F}
$$

M. \& Spagnolie, JFM 2017

$$
\frac{1}{8 \pi} \int_{D} T_{i j k}\left(y^{\prime}, y\right)\left(f_{i}\left(y^{\prime}\right) n_{k}(y)+f_{i}(y) n_{k}\left(y^{\prime}\right)\right) d S_{y^{\prime}}+\frac{1}{8 \pi} \int_{D} C_{i j}\left(y^{\prime}, y\right) f_{i}\left(y^{\prime}\right) d S_{y^{\prime}}=\left(U_{j}\right)
$$

Thank you!

