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Causal Terminology in Neuroimaging

Hippocampal activity in this study was correlated with amygdala
activity, supporting the view that the amygdala enhances explicit
memory by modulating activity in the hippocampus.

(Anonymous author, Trends in Cognitive Sciences, 2001)

We tested [...] whether pre-stimulus alpha oscillations measured with
electroencephalography (EEG) influence the encoding of items into
working memory.

(Anonymous authors, Journal of Neuroscience, 2014)

→ Which causal statements are warranted and which ones are not
supported by empirical evidence?
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Causal Modelling in Neuroimaging

Task (T ) Behaviour (B)

Brain state (X)

Encoding models: p(X|C )

Task-based: p(X|T ) ≡ p(effect|cause) ⇒ causal direction

Behaviour-based: p(X|B) ≡ p(cause|effect) ⇒ anti-causal direction

Decoding models: p(C |X)

Task-based: p(T |X) ≡ p(cause|effect) ⇒ anti-causal direction

Behaviour-based: p(B|X) ≡ p(effect|cause) ⇒ causal direction
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Notation

Experimental condition C

, such as
I type of stimulus displayed to a subject: C = T ∈ {−1,+1}
I delay of a behavioural response: C = B ∈ R+

I ...

Brain state features X ∈ RM

, such as
I BOLD response at M voxels measured by fMRI
I bandpower at M EEG channels
I mean spike-rate of M neurons
I ...

Experimental data {(c , x)1, . . . , (c , x)N}, drawn i.i.d. from p(C ,X)

Assumption: Oracle for properties of p(C ,X) available

I Statistical independence:
C ⊥⊥Xi ⇔ p(C ,Xi ) = p(C )p(Xi )

I Conditional statistical independence:
C ⊥⊥Xi |X\Xi ⇔ p(C ,Xi |X\Xi ) = p(C |X\Xi )p(Xi |X\Xi )
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Causal Bayesian Networks (Pearl, 2000; Spirtes et al., 2000)

Xi is a cause of Xj (Xi → Xj), iff there exist values of Xi and Xj such that
p(xj |do{xi}) 6= p(xj).

The chain
X1 → X2 → X3

X1 6⊥⊥X3

X1⊥⊥X3|X2

The fork
X1 ← X2 → X3

X1 6⊥⊥X3

X1⊥⊥X3|X2

The collider
X1 → X2 ← X3

X1⊥⊥X3

X1 6⊥⊥X3|X2

Causal Markov condition: Independence relations implied by a
directed acyclic graph (DAG) are encoded in every p(X) generated by
this DAG.

Faithfulness: p(X) contains no additional independence relations
beyond those implied by its generating DAG.
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Causal Terminology Revisited

Hippocampal activity in this study was correlated with amygdala
activity, supporting the view that the amygdala enhances explicit
memory by modulating activity in the hippocampus.

(Anonymous author, Trends in Cognitive Sciences, 2001)

HC 6⊥⊥AM⇒ AM→ HC→ EM

We tested [...] whether pre-stimulus alpha oscillations measured with
electroencephalography (EEG) influence the encoding of items into
working memory.

(Anonymous authors, Journal of Neuroscience, 2014)

α 6⊥⊥WM⇒ α→WM
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Causal Inference in Encoding/Decoding Models

Encoding models: p(X|C )

Does a brain-state feature Xi change across experimental conditions?

Reject

H0 : C ⊥⊥Xi

⇒ Xi is a relevant feature

Decoding models: p(C |X)

Does a brain-state feature help in decoding the experimental
condition?

Reject

H0 : C ⊥⊥Xi |X\Xi

⇒ Xi is a relevant feature

Feature relevance ⇒ C 6⊥⊥Xi / C 6⊥⊥Xi |X\Xi ⇒ causal structure
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Causal Interpretation Rules for Individual Models

Feature Xi relevant?
Encoding Decoding Causal interpretation
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×

T ⊥⊥Xi ⇒ Xi is no effect of T

√

T 6⊥⊥Xi ⇒ Xi is an effect of T

×

T ⊥⊥Xi |X\Xi ⇒ inconclusive

√

T 6⊥⊥Xi |X\Xi ⇒ inconclusive

B
eh
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io

u
r ×

B ⊥⊥Xi ⇒ Xi is no cause of B

√

B 6⊥⊥Xi ⇒ inconclusive

×

B ⊥⊥Xi |X\Xi ⇒ inconclusive

√

B 6⊥⊥Xi |X\Xi ⇒ inconclusive

T → Xi vs. T → Xj → XiXi H Xj

B

We tested [...] whether pre-stimulus alpha oscillations measured with elec-
troencephalography (EEG) influence the encoding of items into working
memory. (Anonymous authors, Journal of Neuroscience, 2014)

α 6⊥⊥WM⇒ α→WM
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Wrapping Up

Caveats:

The probability of type II errors can not be quantified in the same
manner as the probability of type I errors.

The assumption of faithfulness is presently untestable.

Permutation-based relevance tests in decoding models are biased
towards dependence (Strobl et al., BMC Bioinformatics, 2008)

Unbiased conditional independence tests are hard (Zhang et al., UAI,

2011)

Take home message:

If you don’t like causal inference, don’t use causal terminology.

If you use causal terminology, make sure that

I your conclusions are supported by empirical data
I you are explicit about inherent assumptions

M. Grosse-Wentrup (MPI-IS) Causal Interpretation Rules June 14, 2015 14 / 15



Wrapping Up

Caveats:

The probability of type II errors can not be quantified in the same
manner as the probability of type I errors.

The assumption of faithfulness is presently untestable.

Permutation-based relevance tests in decoding models are biased
towards dependence (Strobl et al., BMC Bioinformatics, 2008)

Unbiased conditional independence tests are hard (Zhang et al., UAI,

2011)

Take home message:

If you don’t like causal inference, don’t use causal terminology.

If you use causal terminology, make sure that

I your conclusions are supported by empirical data
I you are explicit about inherent assumptions

M. Grosse-Wentrup (MPI-IS) Causal Interpretation Rules June 14, 2015 14 / 15



Wrapping Up

Caveats:

The probability of type II errors can not be quantified in the same
manner as the probability of type I errors.

The assumption of faithfulness is presently untestable.

Permutation-based relevance tests in decoding models are biased
towards dependence (Strobl et al., BMC Bioinformatics, 2008)

Unbiased conditional independence tests are hard (Zhang et al., UAI,

2011)

Take home message:

If you don’t like causal inference, don’t use causal terminology.

If you use causal terminology, make sure that

I your conclusions are supported by empirical data
I you are explicit about inherent assumptions

M. Grosse-Wentrup (MPI-IS) Causal Interpretation Rules June 14, 2015 14 / 15



Wrapping Up

Caveats:

The probability of type II errors can not be quantified in the same
manner as the probability of type I errors.

The assumption of faithfulness is presently untestable.

Permutation-based relevance tests in decoding models are biased
towards dependence (Strobl et al., BMC Bioinformatics, 2008)

Unbiased conditional independence tests are hard (Zhang et al., UAI,

2011)

Take home message:

If you don’t like causal inference, don’t use causal terminology.

If you use causal terminology, make sure that

I your conclusions are supported by empirical data
I you are explicit about inherent assumptions

M. Grosse-Wentrup (MPI-IS) Causal Interpretation Rules June 14, 2015 14 / 15



Wrapping Up

Caveats:

The probability of type II errors can not be quantified in the same
manner as the probability of type I errors.

The assumption of faithfulness is presently untestable.

Permutation-based relevance tests in decoding models are biased
towards dependence (Strobl et al., BMC Bioinformatics, 2008)

Unbiased conditional independence tests are hard (Zhang et al., UAI,

2011)

Take home message:

If you don’t like causal inference, don’t use causal terminology.

If you use causal terminology, make sure that

I your conclusions are supported by empirical data
I you are explicit about inherent assumptions

M. Grosse-Wentrup (MPI-IS) Causal Interpretation Rules June 14, 2015 14 / 15



Wrapping Up

Caveats:

The probability of type II errors can not be quantified in the same
manner as the probability of type I errors.

The assumption of faithfulness is presently untestable.

Permutation-based relevance tests in decoding models are biased
towards dependence (Strobl et al., BMC Bioinformatics, 2008)

Unbiased conditional independence tests are hard (Zhang et al., UAI,

2011)

Take home message:

If you don’t like causal inference, don’t use causal terminology.

If you use causal terminology, make sure that

I your conclusions are supported by empirical data
I you are explicit about inherent assumptions

M. Grosse-Wentrup (MPI-IS) Causal Interpretation Rules June 14, 2015 14 / 15



Wrapping Up

Caveats:

The probability of type II errors can not be quantified in the same
manner as the probability of type I errors.

The assumption of faithfulness is presently untestable.

Permutation-based relevance tests in decoding models are biased
towards dependence (Strobl et al., BMC Bioinformatics, 2008)

Unbiased conditional independence tests are hard (Zhang et al., UAI,

2011)

Take home message:

If you don’t like causal inference, don’t use causal terminology.

If you use causal terminology, make sure that

I your conclusions are supported by empirical data
I you are explicit about inherent assumptions

M. Grosse-Wentrup (MPI-IS) Causal Interpretation Rules June 14, 2015 14 / 15



Wrapping Up

Caveats:

The probability of type II errors can not be quantified in the same
manner as the probability of type I errors.

The assumption of faithfulness is presently untestable.

Permutation-based relevance tests in decoding models are biased
towards dependence (Strobl et al., BMC Bioinformatics, 2008)

Unbiased conditional independence tests are hard (Zhang et al., UAI,

2011)

Take home message:

If you don’t like causal inference, don’t use causal terminology.

If you use causal terminology, make sure that

I your conclusions are supported by empirical data
I you are explicit about inherent assumptions

M. Grosse-Wentrup (MPI-IS) Causal Interpretation Rules June 14, 2015 14 / 15



Wrapping Up

Caveats:

The probability of type II errors can not be quantified in the same
manner as the probability of type I errors.

The assumption of faithfulness is presently untestable.

Permutation-based relevance tests in decoding models are biased
towards dependence (Strobl et al., BMC Bioinformatics, 2008)

Unbiased conditional independence tests are hard (Zhang et al., UAI,

2011)

Take home message:

If you don’t like causal inference, don’t use causal terminology.

If you use causal terminology, make sure that

I your conclusions are supported by empirical data
I you are explicit about inherent assumptions

M. Grosse-Wentrup (MPI-IS) Causal Interpretation Rules June 14, 2015 14 / 15



Wrapping Up

Caveats:

The probability of type II errors can not be quantified in the same
manner as the probability of type I errors.

The assumption of faithfulness is presently untestable.

Permutation-based relevance tests in decoding models are biased
towards dependence (Strobl et al., BMC Bioinformatics, 2008)

Unbiased conditional independence tests are hard (Zhang et al., UAI,

2011)

Take home message:

If you don’t like causal inference, don’t use causal terminology.

If you use causal terminology, make sure that
I your conclusions are supported by empirical data

I you are explicit about inherent assumptions

M. Grosse-Wentrup (MPI-IS) Causal Interpretation Rules June 14, 2015 14 / 15



Wrapping Up

Caveats:

The probability of type II errors can not be quantified in the same
manner as the probability of type I errors.

The assumption of faithfulness is presently untestable.

Permutation-based relevance tests in decoding models are biased
towards dependence (Strobl et al., BMC Bioinformatics, 2008)

Unbiased conditional independence tests are hard (Zhang et al., UAI,

2011)

Take home message:

If you don’t like causal inference, don’t use causal terminology.

If you use causal terminology, make sure that
I your conclusions are supported by empirical data
I you are explicit about inherent assumptions

M. Grosse-Wentrup (MPI-IS) Causal Interpretation Rules June 14, 2015 14 / 15



Acknowledgements

People:

Sebastian Weichwald (UCL)

Timm Meyer (MPI-IS)
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Data Analysis & Experimental Results

Experimental data: 17 subjects with 444 - 498 trials each

Encoding model: H0 : S ⊥⊥Xi [HSIC (Gretton et al., NIPS, 2008)]

Decoding model: H0 : S ⊥⊥Xi |X\Xi [Random forest (Breiman,

Machine Learning, 2001)]

p-values

Encoding 0 0 0 0 0 0
Decoding 0 0 0.50 0.34 0.79 0.13

→ The instruction to plan a reaching movement causes modulation of
α-power at every IC: S → {|αICi

|}, i = 1, . . . , 6

→ Modulation of α-power at ICs 3–6 is only an indirect effect relative to
ICs 1 & 2: S → {|αIC1 |, |αIC2 |} → {|αIC3 |, |αIC4 |, |αIC5 |, |αIC6 |}
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