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Physics-based
models have
structure

But they are

large-scale and
expensive to solve,
and often embodied In
black-box solvers

Consider physics-based models represented as
systems of ODEs or spatial discretization of PDEs
describing the system of interest

b which in turn arise from governing physical

principles (conservation laws, etc.)
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f(x,p,u)
g(x,p,u)

A(p)x + B(p)u| x
C(p)x y

x € RY: state vector

u ¢ RVi: input vector

p € RM: parameter vector
y € RNo: output vector



X ~ VX,

Projection = A+ Bl T = Vi — AV, —Bu
preserves y = Cp)x yr = COVxy
FOM

structure 1WTr .,
Reduced models: Ar(p) = W;A(p)v xr = Ar(p)xr + Br(p)u
Low-cost but accurate B,;(p) = W~ B(p) S

. ) Yr r(P)Xr
approximations of Cr(p) = C(p)V ROM
high-fidelity models
via projection onto a low-

x € RV state vector xr € R™: reduced state vector

dimensional subspace N x .
p € RV: parameter vector V € R *": reduced basis

u e RYi: input vector
y € RVo: output vector

Interpretable & analyzable




What is the connection between reduced order modeling and machine learning?

Machine learning Reduced order modeling
AMachine | earning i1 s a fi eilMbdefl coondpeut eieadsuccitd noc
that uses statistical techniques to give computer technique for reducing the computational
systems the ability to "learn" with data, without complexity of mathematical models in

being explicitly programmedu.noer[iWiaki pseadnud]ati ons

The difference in fields is perhaps largely one of history and perspective: model
reduction methods have grown from the scientific computing community, with a focus
on reducing high-dimensional models that arise from physics-based modeling,
whereas machine learning has grown from the computer science community, with a
focus on creating low-dimensional models from black-box data streams. Yet recent
years have seen an increased blending of the two perspectives and a recognition of
the associated opportunities. [Swischuk et al., Computers & Fluids, 2018]



Outline

1. Reduced models can be learned from data

2. Basis expansions can be constructed so as
to respect physical constraints

3. Structure can be exposed
through variable transformations
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1. Reduced models can be learned
from data

Given state snapshot data (simulation or experimental),
learn the dynamical system that (may have) generated it



Linear Model Quadratic Model

FoM: Ex = Ax+ Bu FOM: Ex = Ax+Bu+ H(xX ® x)
linear linear quadratic

ROM: Ex = AX + Bu ROM: EX = AX+ Bu+ H(X® X)

ROM preserves linear structure: ROM preserves guadratic structure:

A=VTAV, B=V'B,E=V'EV H=V HV®aV)

Projection-based model reduction gives us the mathematical lens
through which to learn physics-based low-dimensional models from data



Given state
data, learn
the system

Operator Inference

Peherstorfer & W.

Data-driven operator
Inference for nonintrusive
projection-based model
reduction, Computer Methods
In Applied Mechanics and
Engineering, 2016

Ex = AXx + Bu+ H(X ® X)
e S—
linear quadratic

Given state data (1) and velocity data ():
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Find the operators "AHANAE
by solving the least squares problem:
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Learning a
low-dimensional
system

In a global basis,
here via the

proper orthogonal
decomposition (POD)

Operator Inference [Peherstorfer & Willcox, 2016]

1. Generate full state trajectories
(from high-fidelity simulation)
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Operator Inference [Peherstorfer & Willcox, 2016]

Learning a 1. Generate full state trajectories

low-dimensional (from high-fidelity simulation)
system 2. Compute POD basis from these trajectories

N

In a global basis,

here via the
proper orthogonal
decomposition (POD)




Learning a
low-dimensional
system

In a global basis,
here via the

proper orthogonal
decomposition (POD)

Operator Inference [Peherstorfer & Willcox, 2016]
1. Generate full state trajectories
(from high-fidelity simulation)
2. Compute POD basis from these trajectories

3. Project trajectories onto POD basis, to obtain
trajectories in low-dimensional POD coordinate

space
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Learning a
low-dimensional
system

In a global basis,
here via the

proper orthogonal
decomposition (POD)

Operator Inference [Peherstorfer & Willcox, 2016]
1. Generate full state trajectories
(from high-fidelity simulation)
2. Compute POD basis from these trajectories

3. Project trajectories onto POD basis, to obtain
trajectories in low-dimensional POD coordinate
space

4. Solve least squares minimization problem to
Infer the low-dimensional model

A (fsA)e AA fHA
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Learning a
low-dimensional
system

In a global basis,
here via the

proper orthogonal
decomposition (POD)

Operator Inference [Peherstorfer & Willcox, 2016]
1. Generate full state trajectories
(from high-fidelity simulation)
2. Compute POD basis from these trajectories
3. Project trajectories onto POD basis, to obtain

trajectories in low-dimensional POD coordinate
space

4. Solve least squares minimization problem to
Infer the low-dimensional model

Under certain conditions, recovers the intrusive POD
reduced model

Y ¢ o n v e ndf @aokebex learning +
rigor of projection-based reduction +
structure imposed by physics



2. Basis expansions can be constructed
SO as to respect physical constraints

Using particular solutions to enforce constraints by construction



Representing a We can enforce other
high-dimensional state In (non-homogeneous) conditions
a low-dimensional basis using particular solutions

0 O : particular solution

00 noo N o chosen to enforce
a desired condition
Proper orthogonal decomposition (POD): l
A Basis vectors fj are linear combinations O 00 noo 060 n wo
of snapshots {
N s J
A If snapshots satisfy homogeneous _ _ . . -
ditions (e BCs, divergence, etc.) basis functions modified solution satisfies
Gl =5 ’ 9 ’ ' to be homogeneous desired condition
Y basi s vector s SB-EREEE  wrt the desired condition by construction

Y reconstructed sol u




Computing
particular
solutions

Also known in model
reduction literature as
nNnstati c cor
Romanowski & Dowell, 1994;

Hall, Thomas & Dowell, 2000;
Willcox, 2000

Simple example: representing the temperature
profile "Y&hd in a 1D heated rod

a

BCs: "Y1id

a

n o a O
F QO YO

Auxiliary problem 1: solution "Y «

BCs: Y1)

TT “YOhO

Auxiliary problem 2: solution "Y

BCs: “YT1iD

0 “YOho




Particular
solutions

used to enforce non-
homogeneous
boundary conditions

Swischuk, Mainini,
Peherstorfer & W.,
Computers & Fluids, 2018

A Modify snapshots to satisfy homogenous BCs:
Yao) Yam) Qo Y@ T TY
N

J

N

particular solutions scaled
by the BC for that snapshot

A POD basis vectors whQ ph8 h computed
from modified snapshots satisfy homogeneous
conditions

A Temperature solution expanded in POD basis
with modal coefficients "YWQ pi8 h

A Reconstructed solution:

o) QO Y(® T Y 4 6 a Yo
N N J N J
enforces a specified satisfies

set of BCs homogeneous BCs



3. Lifting

Structure can be exposed through variable transformations



Very simple
example

Lifting a 4™"-order ODE
to quadratic-bilinear
form.

Can elther lift to a
system of ODEs or
to a system of DAES

Consider the fourth order system =21+

Introduce auxiliary variables: w; = % ws = W7

Chain rule: = 2z|wi + u] = 2x[wy + u
Wo = 2W W1 = 433’101["{02 -+ u]
Need additional variable to make auxiliary dynamics quadratic:

w3 = TWq w3 = TWwi + rWw;
= wWiWy + wiu + 2wiwy + 2w u

QB-ODE
T = wy +u QB-DAE
w1 = 2xws + 22U :b:fw%—l—u

wo = dwows + 4dwsu 2

O=w —x

20

fd)g = walwg + 3’(01'11,




Lifting example:
Euler equations
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conservative variables

primitive variables

A Define auxiliary variable: 7 ]

("= 5) A om

Transformation to A Take derivative:

specific volume form

(use |

In place of ")

yields a quadratic
system of ODEs
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Ex=Ax+Bu+ HX ® x)
— P

. '
linear quadratic

lifted variables

lifted system

21



Governing equations:

¢:;€¢ss—¢s—D¢€ﬂf—%} 86(0?1), t >0
Lifting example: ) = 5-0as — 04— B(O — Ouer) + B
Tubular reactor

Lifting transformations: w; = ¢’ 7, wy =072, w;=0""

[ . Species concentration

—-temperature Auxiliary dynamics for éwhile the orig
= . lifted variables are quartic: equations become quadratic
. Damkohler number | N | PO
0 ‘€Péclet number = ly 000 =yl et T
quartic lil:gar quadratic
vy Conaza . '
I loh—i : known e = 20770 = —2wwsl = 2 0..—0.— B0 — Os) +BD v,
quartic \PB ~ ‘\d’-/t
~ quadratic

constants . iy . .
g = —0720 = — wyb inear

cubic

22




To get to QB form, need additional auxiliary variables:

Lifting example: T e e
Tubular reactor The lifted system then becomes a quadratic-bilinear DAE.:

. 1
= —Yes — Y — D
P f’ew W Wy

_—

T
linear

: i : 1 :
Quadratic-bilinear form 0 = 5055 — 05 — B(0 — brer) + BDwy

_—

S

aChIevabIe Wlth linecar
differential-algebraic iy =y we [;61/)38 - %] + vBD wywe
equations (DAES) ]

1
’li)z — —2 Ws [P_ewss — '(,bs:| — 2BD W4 W5

1
W3 = —wsa [Ewss - ¢s] — BD wawy

0=w4—w1w

0= Ws — Wa2wWs
23

Ozwg—wlwz



Yes — Ps — Dype™™ 4

Lifting summary:
Tubular reactor

_69'55 —0s — ’8(9 - gl'ef) + BD?ZJE,‘.A?"_%
l original equations

A Introduce six auxiliary variables; —
state increase from ¢ &to ye b = potes = s — Dwn

A Lift to a QB-DAE linear

é — 1953 — 05 — /8(9 — Qr-ef) + BDwy
Pe
linear
p 2 © 3 w w "N y - ’ " y 7 . 1 .
A Ao Al €(0S 0) E 00 Wy =7 We [Péz/ase,- — z/] + YBD wywe

1

’l/'-’ss - '¢’5:| — 2BD w4Ws

wo = —2 ws ®
[ Pe

w3z = —wo & I:%zﬁ ss — z[r _q] — BD Wo W4
0=wy — w1
0 = ws — waws
0 = wg — wiwsz lifted equations




Tubular reactor:
QB-POD ROM

A Finite difference
discretization with
€ points per
unknown

A Recorded
snapshots for
POD every
30 TP

Original system

x = f(x) + Bu

Y =Ayp +byu(t)-DYpoe o
0 = Ay +byu(t) + BD 73

Lifted system

20 Ao A’l E(08 0) "E 00

P = Aypth +byu(t) — D wy

0 = Ag0 + bgu(t) + BD wy
Wg = -2 w5 © [AQG + bgu(t)] — 2BD L ZROR VS

Wg = —Wy ® [Agg—i-bgﬂ(t)] — BD Wo () Wy
0:W4—W1@’¢'
O=W5—W2®W3

0=wg—w; O Wy

QB-POD ROM: Ex=Ax+Bu+H&®%) + Y NpXu

’."1230,?"2:9

~ FOM
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Summary A Physics-based models have structure; learned models
should exploit/respect that structure

A Projection: a structure-preserving lens

Infer a low-dimensional model directly from data of the original system,
but through the lens of projection

Introduce transformations and auxiliary variables to express the physics
In a structured form, then learn a reduced model

O Elizabeth Qian talk, Tuesday 1035h (401A) & Thursday 1505h (401C)

Use particular solutions to enforce boundary conditions and other
physical constraints © Renee Swischuk poster, Tuesday PM




decisions

building the mathematical foundations and computational methods to
enable design of the next generation of engineered systems
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