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Physics-based 
models have 
structure

But they are 
large-scale and 
expensive to solve, 
and often embodied in 
black-box solvers

Consider physics-based models represented as 
systems of ODEs or spatial discretization of PDEs 
describing the system of interest

ҍwhich in turn arise from governing physical 
principles (conservation laws, etc.)



Projection 
preserves 
structure

Reduced models:

Low-cost but accurate 

approximations of

high-fidelity models

via projection onto a low-

dimensional subspace

Interpretable & analyzable

ROM

FOM
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What is the connection between reduced order modeling and machine learning?

Machine learning

ñMachine learning is a field of computer science 

that uses statistical techniques to give computer 

systems the ability to "learn" with data, without 

being explicitly programmed.ò [Wikipedia]

Reduced order modeling

ñModel order reduction (MOR)is a

technique for reducing the computational 

complexity of mathematical models in 

numerical simulations.ò [Wikipedia]

The difference in fields is perhaps largely one of history and perspective: model 

reduction methods have grown from the scientific computing community, with a focus 

on reducing high-dimensional models that arise from physics-based modeling, 

whereas machine learning has grown from the computer science community, with a 

focus on creating low-dimensional models from black-box data streams. Yet recent 

years have seen an increased blending of the two perspectives and a recognition of 

the associated opportunities. [Swischuk et al., Computers & Fluids, 2018]



Outline

1. Reduced models can be learned from data

2. Basis expansions can be constructed so as

to respect physical constraints 

3. Structure can be exposed

through variable transformations

6

This work was supported in part by the U.S. Air Force Center of Excellence on Multi-

Fidelity Modeling of Rocket Combustor Dynamics, the AFOSR MURI on Managing 

Multiple Information Sources of Multi-physics Systems, the U.S. Department of 

Energy Applied Mathematics program as part of the DiaMonD Multifaceted 

Mathematics Integrated Capability Center, the AFOSR Dynamic Data Driven 

Application System Program, and the MIT-SUTD International Design Center.
Data, Models, Decisions

domain-aware

interpretable

analyzable



1. Reduced models can be learned
from data
Given state snapshot data (simulation or experimental), 
learn the dynamical system that (may have) generated it

= + = +

=

=



Linear Model
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FOM: 

ROM: ROM: 

FOM: 

ROM preserves linear structure: ROM preserves quadratic structure:

Quadratic Model

Projection-based model reduction gives us the mathematical lens 

through which to learn physics-based low-dimensional models from data



Given state 
data, learn 
the system

Operator Inference

Peherstorfer & W.
Data-driven operator 
inference for nonintrusive 
projection-based model 
reduction, Computer Methods 
in Applied Mechanics and 
Engineering, 2016
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Given state data (ἦ) and velocity data (ἦ):

Find the operators ἋȟἌȟἏȟἒ
by solving the least squares problem:



Learning a
low-dimensional 
system

In a global basis,
here via the
proper orthogonal 
decomposition (POD)

Operator Inference [Peherstorfer & Willcox, 2016]

1. Generate full state trajectories

(from high-fidelity simulation)
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Learning a
low-dimensional 
system

In a global basis,
here via the
proper orthogonal 
decomposition (POD)

Operator Inference [Peherstorfer & Willcox, 2016]

1. Generate full state trajectories

(from high-fidelity simulation)

2. Compute POD basis from these trajectories
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Learning a
low-dimensional 
system

In a global basis,
here via the
proper orthogonal 
decomposition (POD)

Operator Inference [Peherstorfer & Willcox, 2016]

1. Generate full state trajectories

(from high-fidelity simulation)

2. Compute POD basis from these trajectories

3. Project trajectories onto POD basis, to obtain 

trajectories in low-dimensional POD coordinate 

space

ἦ ἤἦ



Learning a
low-dimensional 
system

In a global basis,
here via the
proper orthogonal 
decomposition (POD)

Operator Inference [Peherstorfer & Willcox, 2016]

1. Generate full state trajectories

(from high-fidelity simulation)

2. Compute POD basis from these trajectories

3. Project trajectories onto POD basis, to obtain 

trajectories in low-dimensional POD coordinate 

space

4. Solve least squares minimization problem to 

infer the low-dimensional model
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Learning a
low-dimensional 
system

In a global basis,
here via the
proper orthogonal 
decomposition (POD)

Operator Inference [Peherstorfer & Willcox, 2016]

1. Generate full state trajectories

(from high-fidelity simulation)

2. Compute POD basis from these trajectories

3. Project trajectories onto POD basis, to obtain 

trajectories in low-dimensional POD coordinate 

space

4. Solve least squares minimization problem to 

infer the low-dimensional model

Under certain conditions, recovers the intrusive POD 

reduced model

Ÿ convenienceof black-box learning +
rigor of projection-based reduction +

structure imposed by physics



2. Basis expansions can be constructed 
so as to respect physical constraints
Using particular solutions to enforce constraints by construction

+= +



Representing a
high-dimensional state in 
a low-dimensional basis
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Proper orthogonal decomposition (POD):

Å Basis vectorsἤare linear combinations

of snapshots

Å If snapshots satisfy homogeneous 

conditions (e.g., BCs, divergence, etc.)

Ÿ basis vectors satisfy those conditions

Ÿ reconstructed solution satisfies conditions

We can enforce other
(non-homogeneous) conditions 
using particular solutions

ὀ ὀὸ ἤὀὸ ὀὸ ἤὼὸ

ὀὸ ἤὀὸ ἤὼὸ ὀὸ: particular solution

chosen to enforce

a desired condition

basis functions modified

to be homogeneous

wrt the desired condition

solution satisfies 

desired condition 

by construction



Computing 
particular 
solutions

Also known in model 
reduction literature as
ñstatic correctionsò

Romanowski & Dowell, 1994; 
Hall, Thomas & Dowell, 2000; 
Willcox, 2000

Simple example: representing the temperature 

profile Ὕᾀȟὸ in a 1D heated rod

ᾀ π ᾀ ὒ

Ὕπȟὸ Ὢὸ Ὕὒȟὸ BCs:

Auxiliary problem 1: solution Ὕ ᾀ

Auxiliary problem 2: solution Ὕ ᾀ

Ὕπȟὸ π Ὕὒȟὸ ρBCs:

Ὕπȟὸ ρ Ὕὒȟὸ πBCs:

ᾀ



Particular 
solutions

used to enforce non-
homogeneous 
boundary conditions

Swischuk, Mainini, 
Peherstorfer & W., 
Computers & Fluids, 2018

ÅModify snapshots to satisfy homogenous BCs:

ÅPOD basis vectors ὠȟὭ ρȟȣȟὶcomputed 

from modified snapshots satisfy homogeneous 

conditions

ÅTemperature solution expanded in POD basis 

with modal coefficients ὝȟὭ ρȟȣȟὶ

ÅReconstructed solution:

Ὕᾀȟὸ Ὕᾀȟὸ Ὢὸ Ὕ ᾀ Ὕ ᾀ

Ὕὼȟὸ ὪὸὝ ᾀ Ὕ ᾀ 6ᾀὝὸ

satisfies 
homogeneous BCs

enforces a specified 
set of BCs

particular solutions scaled 
by the BC for that snapshot



3. Lifting
Structure can be exposed through variable transformations
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Very simple 
example
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Lifting a 4th-order ODE 

to quadratic-bilinear 

form.

Can either lift to a

system of ODEs or

to a system of DAEs

Consider the fourth order system

Introduce auxiliary variables:

Chain rule:

Need additional variable to make auxiliary dynamics quadratic:

QB-ODE

QB-DAE



Lifting example:
Euler equations

Transformation to 

specific volume form 

(use ϳ in place of ”) 

yields a quadratic 

system of ODEs
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conservative variables primitive variables

Å Define auxiliary variable:  ή ϳ

Å Take derivative:  ” ό ή ό
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lifted variables

lifted system



Lifting example: 
Tubular reactor
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: species concentration

—: temperature

:꜠ Damköhler number

ὖὩ: Pèclet number

ȟὄȟ—ȟ: known 

constants

Governing equations:

Lifting transformations:

Auxiliary dynamics for 

lifted variables are quartic:

éwhile the original

equations become quadratic



Lifting example:
Tubular reactor

Quadratic-bilinear form 

achievable with 

differential-algebraic 

equations (DAEs)
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To get to QB form, need additional auxiliary variables:

The lifted system then becomes a quadratic-bilinear DAE:



Lifting summary:

Tubular reactor

24

Å Introduce six auxiliary variables;

state increase from ςὲto ψὲ

ÅLift to a QB-DAE

Ἇὀ Ἃὀ ἌἽ ἒὀṧὀ Ἒὀό

original equations

lifted equations

lifted QB-DAE

QB ROM
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Tubular reactor:
QB-POD ROM

ÅFinite difference 
discretization with 
ὲpoints per 
unknown

ÅRecorded 
snapshots for 
POD every
ɝὸ πȢπρs

Original system Lifted system
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QB-POD ROM:

Ἇὀ Ἃὀ ἌἽ ἒὀṧὀ Ἒὀό

,



Summary

Infer a low-dimensional model directly from data of the original system, 

but through the lens of projection

Lift

Learn

Introduce transformations and auxiliary variables to express the physics 

in a structured form, then learn a reduced model

ᴼElizabeth Qian talk, Tuesday 1035h (401A) & Thursday 1505h (401C)

Particularize

Use particular solutions to enforce boundary conditions and other 

physical constraints ᴼRenee Swischuk poster, Tuesday PM

ÅPhysics-based models have structure; learned models 

should exploit/respect that structure

ÅProjection: a structure-preserving lens



Data -driven decisions

building the mathematical foundations and computational methods to 

enable design of the next generation of engineered systems
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