Projection-based Model Reduction

Formulations for Physics-based Machine Learning

Professor Karen E. Willcox

Oden Institute for Computational Engineering and Sciences

Minisymposium on Scientific Machine Learning SIAM CSE19
February 25, 2019

FOR SCIENCE, ENGINEERING \& MEDICINE

Contributors

- Dr. Boris Kramer (MIT)
- Dr. Laura Mainini (UTRC)
- Prof. Benjamin Peherstorfer (Courant)
- Elizabeth Qian (MIT)
- Renee Swischuk (MIT)

Physics-based models have structure

But they are large-scale and expensive to solve, and often embodied in black-box solvers

Consider physics-based models represented as systems of ODEs or spatial discretization of PDEs describing the system of interest

- which in turn arise from governing physical principles (conservation laws, etc.)

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A}(\mathbf{p}) \mathbf{x}+\mathbf{B}(\mathbf{p}) \mathbf{u} \\
& \mathbf{y}=\mathbf{C}(\mathbf{p}) \mathbf{x}
\end{aligned} \dot{\mathbf{x}=f(\mathbf{x}, \mathbf{p}, \mathbf{u})} \begin{aligned}
& \mathbf{y}=g(\mathbf{x}, \mathbf{p}, \mathbf{u})
\end{aligned}
$$

$\mathbf{x} \in \mathbf{R}^{N}$: state vector
$\mathbf{u} \in \mathbf{R}^{N_{i}}$: input vector
$\mathbf{p} \in \mathbf{R}^{N_{p}}$: parameter vector
$\mathbf{y} \in \mathbf{R}^{N_{o}}$: output vector

Projection preserves structure

$\begin{aligned} & \dot{\mathbf{x}}=\mathbf{A}(\mathbf{p}) \mathbf{x}+\mathbf{B}(\mathbf{p}) \mathbf{u} \\ & \mathbf{y}=\mathbf{C}(\mathbf{p}) \mathbf{x} \end{aligned}$	$\begin{aligned} \mathbf{r} & =\mathbf{V} \dot{\mathbf{x}}_{r}-\mathbf{A V} \mathbf{x}_{r}-\mathbf{B u} \\ \mathbf{y}_{r} & =\mathbf{C V} \mathbf{x}_{r} \end{aligned}$
FOM$\mathbf{W}^{T} \mathbf{r}=$	
$\begin{aligned} \mathbf{A}_{r}(\mathbf{p}) & =\mathbf{W}^{T} \mathbf{A}(\mathbf{p}) \mathbf{V} \\ \mathbf{B}_{r}(\mathbf{p}) & =\mathbf{W}^{T} \mathbf{B}(\mathbf{p}) \\ \mathbf{C}_{r}(\mathbf{p}) & =\mathbf{C}(\mathbf{p}) \mathbf{V} \end{aligned}$	$\begin{aligned} \dot{\mathbf{x}}_{r} & =\mathbf{A}_{r}(\mathbf{p}) \mathbf{x}_{r}+\mathbf{B}_{r}(\mathbf{p}) \mathbf{u} \\ \mathbf{y}_{r} & =\mathbf{C}_{r}(\mathbf{p}) \mathbf{x}_{r} \end{aligned}$

ROM
$\mathbf{x} \in \mathbf{R}^{N}$: state vector
$\mathbf{p} \in \mathbf{R}^{N_{p}}$: parameter vector
$\mathbf{x}_{r} \in \mathbf{R}^{n}$: reduced state vector $\mathbf{V} \in \mathbf{R}^{N \times n}$: reduced basis

Interpretable \& analyzable
Reduced models:
Low-cost but accurate approximations of high-fidelity models via projection onto a lowdimensional subspace

$$
\begin{aligned}
& \dot{\mathbf{x}}_{r}=\mathbf{A}_{r}(\mathbf{p}) \mathbf{x}_{r}+\mathbf{B}_{r}(\mathbf{p}) \mathbf{u} \\
& \mathbf{y}_{r}=\mathbf{C}_{r}(\mathbf{p}) \mathbf{x}_{r}
\end{aligned}
$$

$\mathbf{u} \in \mathbf{R}^{N_{i}}$: input vector
$\mathbf{y} \in \mathbf{R}^{N_{o}}$: output vector

What is the connection between reduced order modeling and machine learning?

Machine learning

"Machine learning is a field of computer science that uses statistical techniques to give computer systems the ability to "learn" with data, without being explicitly programmed." [Wikipedia]

Reduced order modeling

"Model order reduction (MOR) is a technique for reducing the computational complexity of mathematical models in numerical simulations." [Wikipedia]

The difference in fields is perhaps largely one of history and perspective: model reduction methods have grown from the scientific computing community, with a focus on reducing high-dimensional models that arise from physics-based modeling, whereas machine learning has grown from the computer science community, with a focus on creating low-dimensional models from black-box data streams. Yet recent years have seen an increased blending of the two perspectives and a recognition of the associated opportunities. [Swischuk et al., Computers \& Fluids, 2018]

Outline

1. Reduced models can be learned from data
2. Basis expansions can be constructed so as to respect physical constraints
3. Structure can be exposed through variable transformations

This work was supported in part by the U.S. Air Force Center of Excellence on MultiFidelity Modeling of Rocket Combustor Dynamics, the AFOSR MURI on Managing Multiple Information Sources of Multi-physics Systems, the U.S. Department of Energy Applied Mathematics program as part of the DiaMonD Multifaceted Mathematics Integrated Capability Center, the AFOSR Dynamic Data Driven Application System Program, and the MIT-SUTD International Design Center.

1. Reduced models can be learned from data

Given state snapshot data (simulation or experimental), learn the dynamical system that (may have) generated it

Linear Model

Quadratic Model

FOM: $\mathbf{E} \dot{\mathbf{x}}=\underbrace{\mathbf{A x}+\mathbf{B u}}_{\text {linear }}+\underbrace{\mathbf{H}(\mathbf{x} \otimes \mathbf{x})}_{\text {quadratic }}$

ROM: $\quad \widehat{\mathbf{E}} \dot{\hat{\mathbf{x}}}=\widehat{\mathbf{A}} \widehat{\mathbf{x}}+\widehat{\mathbf{B}} \mathbf{u}+\widehat{\mathbf{H}}(\widehat{\mathbf{x}} \otimes \widehat{\mathbf{x}})$
ROM: $\quad \widehat{\mathbf{E}} \dot{\hat{\mathbf{x}}}=\widehat{\mathbf{A}} \widehat{\mathbf{x}}+\widehat{\mathrm{B}} \mathbf{u}$

ROM preserves linear structure:
$\widehat{\mathbf{A}}=\mathbf{V}^{\top} \mathbf{A V}, \widehat{\mathbf{B}}=\mathbf{V}^{\top} \mathbf{B}, \widehat{\mathbf{E}}=\mathbf{V}^{\top} \mathbf{E V}$
FOM: $\quad \mathbf{E} \dot{\mathrm{x}}=\underbrace{\mathbf{A x}+\mathbf{B u}}_{\text {linear }}$

ROM preserves quadratic structure:

$$
\widehat{\mathbf{H}}=\mathbf{V}^{\top} \mathbf{H}(\mathbf{V} \otimes \mathbf{V})
$$

Given state data, learn the system

Operator Inference

Peherstorfer \& W. Data-driven operator inference for nonintrusive projection-based model reduction, Computer Methods in Applied Mechanics and Engineering, 2016

$\mathbf{E} \dot{\mathbf{x}}=\underbrace{\mathbf{A} \mathbf{x}+\mathbf{B u}}_{\text {linear }}+\underbrace{\mathbf{H}(\mathbf{x} \otimes \mathbf{x})}_{\text {quadratic }}$

Given state data (\mathbf{X}) and velocity data $(\dot{\mathbf{X}})$:

$$
\mathbf{X}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{x}\left(t_{1}\right) & \ldots & \mathbf{x}\left(t_{K}\right) \\
\mid & & \mid
\end{array}\right] \quad \dot{\mathbf{X}}=\left[\begin{array}{ccc}
\mid & & \mid \\
\dot{\mathbf{x}}\left(t_{1}\right) & \ldots & \dot{\mathbf{x}}\left(t_{K}\right) \\
\mid & & \mid
\end{array}\right]
$$

Find the operators $\mathbf{A}, \mathbf{B}, \mathbf{E}, \mathbf{H}$ by solving the least squares problem:

$$
\min _{\mathbf{A}, \mathbf{B}, \mathbf{E}, \mathbf{H}}\left\|\mathbf{X}^{\top} \mathbf{A}^{\top}+(\mathbf{X} \otimes \mathbf{X})^{\top} \mathbf{H}^{\top}+\mathbf{U}^{\top} \mathbf{B}^{\top}-\dot{\mathbf{X}}^{\top} \mathbf{E}\right\|
$$

Learning a low-dimensional

 systemIn a global basis, here via the proper orthogonal decomposition (POD)

Operator Inference [Peherstorfer \& Willcox, 2016]

1. Generate full state trajectories (from high-fidelity simulation)

$$
\mathbf{x}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{x}\left(t_{1}\right) & \ldots & \mathbf{x}\left(t_{K}\right) \\
\mid & & \mid
\end{array}\right] \quad \dot{\mathbf{x}}=\left[\begin{array}{ccc}
\mid & & \mid \\
\dot{\mathbf{x}}\left(t_{1}\right) & \ldots & \dot{\mathbf{x}}\left(t_{K}\right) \\
\mid & & \mid
\end{array}\right]
$$

Learning a low-dimensional system

In a global basis, here via the proper orthogonal decomposition (POD)

Operator Inference [Peherstorfer \& Willcox, 2016]

1. Generate full state trajectories (from high-fidelity simulation)
2. Compute POD basis from these trajectories

$$
\mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{W}^{\top}
$$

Learning a

 low-dimensional systemIn a global basis, here via the proper orthogonal decomposition (POD)

Operator Inference [Peherstorfer \& Willcox, 2016]

1. Generate full state trajectories (from high-fidelity simulation)
2. Compute POD basis from these trajectories
3. Project trajectories onto POD basis, to obtain trajectories in low-dimensional POD coordinate space

$$
\widehat{\mathbf{X}}=\mathbf{V}^{\top} \mathbf{X}
$$

Learning a

 low-dimensional systemIn a global basis, here via the proper orthogonal decomposition (POD)

Operator Inference [Peherstorfer \& Willcox, 2016]

1. Generate full state trajectories (from high-fidelity simulation)
2. Compute POD basis from these trajectories
3. Project trajectories onto POD basis, to obtain trajectories in low-dimensional POD coordinate space
4. Solve least squares minimization problem to infer the low-dimensional model

$$
\min _{\widehat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{E}}, \widehat{\mathbf{H}}}\left\|\widehat{\mathbf{X}}^{\top} \widehat{\mathbf{A}}^{\top}+(\widehat{\mathbf{X}} \otimes \widehat{\mathbf{X}})^{\top} \widehat{\mathbf{H}}^{\top}+\mathbf{U}^{\top} \widehat{\mathbf{B}}^{\top}-\dot{\mathbf{X}}^{\top} \hat{\mathbf{E}}\right\|
$$

Learning a

 low-dimensional systemIn a global basis, here via the proper orthogonal decomposition (POD)

Operator Inference [Peherstorfer \& Willcox, 2016]

1. Generate full state trajectories (from high-fidelity simulation)
2. Compute POD basis from these trajectories
3. Project trajectories onto POD basis, to obtain trajectories in low-dimensional POD coordinate space
4. Solve least squares minimization problem to infer the low-dimensional model
Under certain conditions, recovers the intrusive POD reduced model
\rightarrow convenience of black-box learning +
rigor of projection-based reduction + structure imposed by physics

2. Basis expansions can be constructed so as to respect physical constraints

Using particular solutions to enforce constraints by construction

Representing a high-dimensional state in a low-dimensional basis

$$
\mathbf{x}(t) \approx \mathbf{V} \hat{\mathbf{x}}(t)=\sum_{i=1}^{r} \mathbf{V}_{i} \hat{x}_{i}(t)
$$

Proper orthogonal decomposition (POD):

- Basis vectors \mathbf{V}_{i} are linear combinations of snapshots
- If snapshots satisfy homogeneous conditions (e.g., BCs, divergence, etc.)
\rightarrow basis vectors satisfy those conditions
\rightarrow reconstructed solution satisfies conditions

We can enforce other (non-homogeneous) conditions using particular solutions

Computing particular solutions

Simple example: representing the temperature profile $T(z, t)$ in a 1D heated rod

BCs: $T(0, t)=\gamma_{0} f(t)$

$$
T(L, t)=\gamma_{L}
$$

Also known in model reduction literature as "static corrections"
Romanowski \& Dowell, 1994; Hall, Thomas \& Dowell, 2000; Willcox, 2000

Auxiliary problem 1 : solution $\bar{T}^{L}(z)$
BCs: $T(0, t)=0 \quad T(L, t)=1$

Auxiliary problem 2 : solution $\bar{T}^{0}(z)$

BCs: $T(0, t)=1$
$T(L, t)=0$

Particular solutions

used to enforce nonhomogeneous boundary conditions

Swischuk, Mainini, Peherstorfer \& W., Computers \& F/uids, 2018

- Modify snapshots to satisfy homogenous BCs:

$$
\tilde{T}\left(z, t_{j}\right)=T\left(z, t_{j}\right)-\underbrace{\gamma_{0} f\left(t_{j}\right) \bar{T}^{0}(z)-\gamma_{L} \bar{T}^{L}(z)}_{\begin{array}{c}
\text { particular solutions scaled } \\
\text { by the BC for that snapshot }
\end{array}}
$$

- POD basis vectors $V_{i}, i=1, \ldots, r$ computed from modified snapshots satisfy homogeneous conditions
- Temperature solution expanded in POD basis with modal coefficients $\widehat{T}_{i}, i=1, \ldots, r$
- Reconstructed solution:

$$
T(x, t)=\underbrace{\gamma_{0} f(t) \bar{T}^{0}(z)-\gamma_{L} \bar{T}^{L}(z)}_{\begin{array}{c}
\text { enforces a specified } \\
\text { set of BCs }
\end{array}}+\underbrace{\sum_{i=1}^{r} \mathrm{~V}_{i}(z) \hat{T}_{i}(t)}_{\begin{array}{c}
\text { satisfies } \\
\text { homogeneous BCs }
\end{array}}
$$

$$
\begin{array}{r}
\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
\rho u \\
E
\end{array}\right)+\frac{\partial}{\partial x}\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
E+p) u
\end{array}\right)=0 \\
E=\frac{p}{\gamma-1} \frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
u \\
p
\end{array}\right)+\left(\begin{array}{c}
\rho \frac{\partial u}{\partial x}+u \frac{\partial \rho}{\partial x} \\
u \frac{\partial v}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x} \\
\gamma p \frac{\partial}{\partial}
\end{array}\right)=\left(\begin{array}{c}
u \\
u \frac{\partial u}{\partial x}+q \frac{\partial p}{\partial x} \\
p \\
q
\end{array}\right)+\binom{\frac{\partial u}{\partial x}+u \frac{\partial p}{\partial x}}{\gamma p \frac{\partial u}{\partial q}+u \frac{\partial q}{\partial x}}=0 \\
q \frac{1}{\partial x}
\end{array}
$$

3. Lifting

Structure can be exposed through variable transformations

Consider the fourth order system

$$
\dot{x}=x^{4}+u
$$

Very simple example

Lifting a $4^{\text {th }}$-order ODE to quadratic-bilinear form.

Introduce auxiliary variables: $\quad w_{1}=x^{2} \quad w_{2}=w_{1}^{2}$
Chain rule:

$$
\begin{gathered}
\dot{w}_{1}=2 x\left[w_{1}^{2}+u\right]=2 x\left[w_{2}+u\right] \\
\dot{w}_{2}=2 w_{1} \dot{w}_{1}=4 x w_{1}\left[w_{2}+u\right]
\end{gathered}
$$

Need additional variable to make auxiliary dynamics quadratic:

$$
\begin{aligned}
w_{3}=x w_{1} \quad \dot{w}_{3} & =\dot{x} w_{1}+x \dot{w}_{1} \\
& =w_{1} w_{2}+w_{1} u+2 w_{1} w_{2}+2 w_{1} u
\end{aligned}
$$

QB-ODE
Can either lift to a system of ODEs or to a system of DAEs

QB-DAE

$$
\begin{aligned}
& \dot{x}=w_{1}^{2}+u \\
& 0=w_{1}-x^{2}
\end{aligned}
$$

Lifting example: Euler equations

Transformation to specific volume form (use $1 / \rho$ in place of ρ) yields a quadratic system of ODEs

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
\rho u \\
E
\end{array}\right)+\frac{\partial}{\partial x}\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
(E+p) u
\end{array}\right)=0
$$

$$
E=\frac{p}{\gamma-1}+\frac{1}{2} \rho u^{2}
$$

conservative variables

$$
\frac{\partial}{\partial t}\left(\begin{array}{l}
\rho \\
u \\
p
\end{array}\right)+\left(\begin{array}{c}
\rho \frac{\partial u}{\partial x}+u \frac{\partial \rho}{\partial x} \\
u \frac{\partial u}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x} \\
\gamma p \frac{\partial u}{\partial x}+u \frac{\partial p}{\partial x}
\end{array}\right)=0
$$

primitive variables

- Define auxiliary variable: $q=1 / \rho$
- Take derivative: $\frac{\partial q}{\partial t}=\frac{-1}{\rho^{2}} \frac{\partial \rho}{\partial t}=\frac{-1}{\rho^{2}}\left(-\rho \frac{\partial u}{\partial x}-u \frac{\partial \rho}{\partial x}\right)=q \frac{\partial u}{\partial x}-u \frac{\partial q}{\partial x}$

$$
\frac{\partial}{\partial t}\left(\begin{array}{l}
u \\
p \\
q
\end{array}\right)+\left(\begin{array}{c}
u \frac{\partial u}{\partial x}+q \frac{\partial p}{\partial x} \\
\gamma p \frac{\partial u}{\partial x}+u \frac{\partial p}{\partial x} \\
q \frac{\partial u}{\partial x}+u \frac{\partial q}{\partial x}
\end{array}\right)=0
$$

$$
\underbrace{\mathbf{E} \dot{\mathbf{x}}=\underbrace{\mathbf{A x}+\mathbf{B u}}_{\text {linear }}+\underbrace{\mathbf{H}(\mathbf{x} \otimes \mathbf{x})}_{\text {quadratic }}}_{\text {lifted system }}
$$

Governing equations:

$$
\begin{aligned}
\dot{\psi} & =\frac{1}{P e} \psi_{s s}-\psi_{s}-\mathcal{D} \psi e^{\gamma-\frac{\gamma}{\theta}}, \quad s \in(0,1), t>0 \\
\dot{\theta} & =\frac{1}{P e} \theta_{s s}-\theta_{s}-\beta\left(\theta-\theta_{\mathrm{ref}}\right)+\mathcal{B D} \psi e^{\gamma-\frac{\gamma}{\theta}}
\end{aligned}
$$

Lifting transformations: $w_{1}=e^{\gamma-\frac{\gamma}{\theta}}, \quad w_{2}=\theta^{-2}, \quad w_{3}=\theta^{-1}$
ψ : species concentration

θ : temperature

\mathcal{D} : Damköhler number
Pe: Pèclet number
$\beta, B, \theta_{0}, \gamma$: known constants

Lifting example: Tubular reactor

Auxiliary dynamics for lifted variables are quartic:

$$
\begin{aligned}
& \dot{w}_{1}=w_{1}\left(\gamma \theta^{-2}\right) \dot{\theta}=\gamma \underbrace{w_{1} w_{2} \dot{\theta}}_{\text {quartic }} \\
& \dot{w}_{2}=-2 \theta^{-3} \dot{\theta}=-2 \underbrace{w_{2} w_{3} \dot{\theta}}_{\text {quartic }} \\
& \dot{w}_{3}=-\theta^{-2} \dot{\theta}=-\underbrace{w_{2} \dot{\theta},}_{\text {cubic }}
\end{aligned}
$$

...while the original
equations become quadratic

$$
\begin{aligned}
& \dot{\psi}=\underbrace{\frac{1}{P e} \psi_{s s}-\psi_{s}}_{\text {linear }}-\mathcal{D} \underbrace{\psi w_{1}}_{\text {quadratic }} \\
& \dot{\theta}=\underbrace{\frac{1}{P e} \theta_{s s}-\theta_{s}-\beta\left(\theta-\theta_{\text {ref }}\right)}_{\text {linear }}+\mathcal{B D}
\end{aligned}
$$

To get to QB form, need additional auxiliary variables:

Lifting example: Tubular reactor

Quadratic-bilinear form achievable with differential-algebraic equations (DAEs)

$$
w_{4}=\psi w_{1}, \quad w_{5}=w_{2} w_{3}, \quad w_{6}=w_{1} w_{2}
$$

The lifted system then becomes a quadratic-bilinear DAE:

$$
\begin{aligned}
\dot{\psi} & =\underbrace{\frac{1}{P e} \psi_{s s}-\psi_{s}-\mathcal{D} w_{4}}_{\text {linear }} \\
\dot{\theta} & =\underbrace{\frac{1}{P e} \theta_{s s}-\theta_{s}-\beta\left(\theta-\theta_{\mathrm{ref}}\right)+\mathcal{B D} w_{4}}_{\text {linear }} \\
\dot{w}_{1} & =\gamma w_{6}\left[\frac{1}{P e} \psi_{s s}-\psi_{s}\right]+\gamma \mathcal{B D} w_{4} w_{6} \\
\dot{w}_{2} & =-2 w_{5}\left[\frac{1}{P e} \psi_{s s}-\psi_{s}\right]-2 \mathcal{B D} w_{4} w_{5} \\
\dot{w}_{3} & =-w_{2}\left[\frac{1}{P e} \psi_{s s}-\psi_{s}\right]-\mathcal{B D} w_{2} w_{4} \\
0 & =w_{4}-w_{1} \psi \\
0 & =w_{5}-w_{2} w_{3} \\
0 & =w_{6}-w_{1} w_{2}
\end{aligned}
$$

Lifting summary: Tubular reactor

- Introduce six auxiliary variables; state increase from $2 n$ to $8 n$
- Lift to a QB-DAE

$$
\mathbf{E} \dot{\mathrm{x}}=\mathbf{A x}+\mathbf{B u}+\mathbf{H}(\mathbf{x} \otimes \mathbf{x})+\sum_{k=1}^{m} \mathbf{N}_{k} \mathbf{x} u_{k}
$$

1
lifted QB-DAE

$$
\widehat{\mathbf{E}} \dot{\mathbf{x}}=\widehat{\mathbf{A}} \widehat{\mathbf{x}}+\widehat{\mathbf{B}} \mathbf{u}+\widehat{\mathbf{H}}(\widehat{\mathbf{x}} \otimes \widehat{\mathbf{x}})+\sum_{k=1}^{m} \widehat{\mathbf{N}}_{k} \widehat{\mathbf{x}} u_{k}
$$

QB ROM

$$
\begin{aligned}
\dot{\psi} & =\frac{1}{P e} \psi_{s s}-\psi_{s}-\mathcal{D} \psi e^{\gamma-\frac{\gamma}{\theta}} \\
\dot{\theta} & =\frac{1}{P e} \theta_{s s}-\theta_{s}-\beta\left(\theta-\theta_{\mathrm{ref}}\right)+\mathcal{B D} \psi e^{\gamma-\frac{\gamma}{\theta}} \\
\dot{\psi} & =\underbrace{\frac{1}{P e} \psi_{s s}-\psi_{s}-\mathcal{D} w_{4}}_{\text {original equations }} \\
\dot{\theta} & =\underbrace{\frac{1}{P e} \theta_{s s}-\theta_{s}-\beta\left(\theta-\theta_{\mathrm{ref}}\right)+\mathcal{B D} w_{4}}_{\text {linear }} \\
\dot{w}_{1} & =\gamma w_{6}\left[\frac{1}{P e} \psi_{s s}-\psi_{s}\right]+\gamma \mathcal{B D} w_{4} w_{6} \\
\dot{w}_{2} & =-2 w_{5} \odot\left[\frac{1}{P e} \psi_{s s}-\psi_{s}\right]-2 \mathcal{B D} w_{4} w_{5} \\
\dot{w}_{3} & =-w_{2} \odot\left[\frac{1}{P e} \psi_{s s}-\psi_{s}\right]-\mathcal{B D} w_{2} w_{4} \\
0 & =w_{4}-w_{1} \psi \\
0 & =w_{5}-w_{2} w_{3} \\
0 & =w_{6}-w_{1} w_{2}
\end{aligned}
$$

Tubular reactor: QB-POD ROM

- Finite difference discretization with n points per unknown
- Recorded snapshots for POD every $\Delta t=0.01 \mathrm{~s}$

Original system

$$
\dot{\mathbf{x}}=f(\mathbf{x})+\mathbf{B u}
$$

$$
\begin{aligned}
\dot{\boldsymbol{\psi}} & =\mathbf{A}_{\psi} \boldsymbol{\psi}+\mathbf{b}_{\psi} u(t)-\mathcal{D} \boldsymbol{\psi} \odot e^{\gamma-\frac{\gamma}{\theta}} \\
\dot{\boldsymbol{\theta}} & =\mathbf{A}_{\theta} \boldsymbol{\theta}+\mathbf{b}_{\theta} u(t)+\mathcal{B D} \boldsymbol{\psi} \odot e^{\gamma-\frac{\gamma}{\theta}}
\end{aligned}
$$

Lifted system

$$
\mathbf{E} \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}+\mathbf{H}(\mathbf{x} \otimes \mathbf{x})+\sum_{k=1}^{m} \mathbf{N}_{k} \mathbf{x} u_{k}
$$

$$
\begin{aligned}
\dot{\boldsymbol{\psi}} & =\mathbf{A}_{\psi} \boldsymbol{\psi}+\mathbf{b}_{\psi} u(t)-\mathcal{D} \mathbf{w}_{4} \\
\dot{\boldsymbol{\theta}} & =\mathbf{A}_{\boldsymbol{\theta}} \boldsymbol{\theta}+\mathbf{b}_{\theta} u(t)+\mathcal{B D} \mathbf{w}_{4} \\
\dot{\mathbf{w}}_{1} & =\gamma \mathbf{w}_{6} \odot\left[A_{2} \boldsymbol{\theta}+\mathbf{b}_{\theta} u(t)\right]+\gamma \mathcal{B D} \mathbf{w}_{4} \odot \mathbf{w}_{6} \\
\dot{\mathbf{w}}_{2} & =-2 \mathbf{w}_{5} \odot\left[A_{2} \boldsymbol{\theta}+\mathbf{b}_{\theta} u(t)\right]-2 \mathcal{B D} \mathbf{w}_{4} \odot \mathbf{w}_{5} \\
\dot{\mathbf{w}}_{3} & =-\mathbf{w}_{2} \odot\left[A_{2} \boldsymbol{\theta}+\mathbf{b}_{\theta} u(t)\right]-\mathcal{B D} \mathbf{w}_{2} \odot \mathbf{w}_{4} \\
0 & =\mathbf{w}_{4}-\mathbf{w}_{1} \odot \boldsymbol{\psi} \\
0 & =\mathbf{w}_{5}-\mathbf{w}_{2} \odot \mathbf{w}_{3} \\
0 & =\mathbf{w}_{6}-\mathbf{w}_{1} \odot \mathbf{w}_{2}
\end{aligned}
$$

$\underset{r_{1}=30, r_{2}=9}{\text { QB-POD ROM: }} \widehat{\mathbf{E}} \dot{\mathbf{x}}=\widehat{\mathbf{A}} \widehat{\mathbf{x}}+\widehat{\mathbf{B}} \mathbf{u}+\widehat{\mathbf{H}}(\widehat{\mathbf{x}} \otimes \widehat{\mathbf{x}})+\sum_{k=1}^{m} \widehat{\mathbf{N}}_{k} \widehat{\mathbf{x}} u_{k}$

Summary

- Physics-based models have structure; learned models should exploit/respect that structure
- Projection: a structure-preserving lens

cearn

Infer a low-dimensional model directly from data of the original system, but through the lens of projection

Hit

Introduce transformations and auxiliary variables to express the physics in a structured form, then learn a reduced model
\rightarrow Elizabeth Qian talk, Tuesday 1035h (401A) \& Thursday 1505h (401C)

Particularie

Use particular solutions to enforce boundary conditions and other physical constraints \rightarrow Renee Swischuk poster, Tuesday PM

Detrariven decisions

building the mathematical foundations and computational methods to enable design of the next generation of engineered systems

KIWI.ICES.UTEXAS.EDU

