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Challenges

* Network sparsity
—Hard to make confident predictions

* Feature based link prediction models [Luetal. 2010;

— Features are extremely domain and network
dependent

* |Incorporating user feedback

—Some users like friends from other network while
other don’t
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Supervise Using Past Accepts/Rejects




Our Approach
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Random Walk

Standard Random
Walk Model = (1 — @)Pk ™+ oy

Moving to a neighbor Teleportation

For Multiple Networks
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Convex Combination



Incorporating Supervision

- Maximize number of
min — E y; T0; S ccepts (consistent
x,11 i—1 with user feedback)
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Bi-linear constraint !!




Approximate Version
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Problem Formulation
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- Problem is not jointly convex on both X and TT
- Convex when one variable is fixed
- Alternating minimization algorithm



Projected Gradient Descent

Ht+1 — Ht — HVHL)\(Ht, Xt>
x" T = Proj, (x* — nVxLy(IT", x"))




PLUMS Updates

I = II* — pVn Ly (IT%, x°)
x“t! = Proj, (x* — nVx Ly (I, x*))
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Personalized PLUMS (pPLUMS)
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pPLUMS Updates

VL (D, II)

= \I - \(1—a)(P(D)! +P(D))II
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Baselines

* Logistic Regression
— Edge training data point
— Independent and combined network features
— Degree, common neighbor, personalized page rank

* Lasso [Lu et. Al 2010]

— One, two, three path features for various network
permutations

— L1 norm

* Group Lasso [Lu et. Al 2010]

— Composite norm with hierarchical sparsity

* Onenet
— Personalized page rank for single network



Effectiveness Analysis

PLUMS (0.1468)
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pPLUMS consistently performs better

oneNet performs poorly — lack of auxiliary information
pPLUMS is 26% better than best performing baseline
Group-Lasso is the consistently best performing baseline



Sparsity Analysis
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- Increase sparsity by reducing the edges in auxiliary networks

- pPLUMS and plums makes best use of auxiliary information

- In high sparsity only Group Lasso performs well due to its
composite norm structure



Robustness Analysis
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- All approaches perform reasonably at low noise conditions

- Group-Lasso again is a robust baselines that performs consistently
well

- Our approach pPLUMS performs well in all noise conditions



Conclusions

* Problem of link prediction is fundamental to social
and collaboration networks

* QOur goal was to incorporate
— auxiliary information

— supervision

— no explicit features
* We developed both general and personalized models
* QOur approach is generalization of Katz measure
* PLUMS is robust under sparse and noisy conditions

* Auxiliary information is mutually un-informative use
PLUMS

* Auxiliary network has no extra information use
Group-Lasso
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