Regression with Excel

Digital Analytics Association New York Symposium 2018

Who is this for?

A digital analytics practitioner who works on media planning/goal setting or is interested in learning more about one-step-further use of an excel

What will you learn?

You will learn about the differences between metrics, KPIs, Benchmarks and Goals and how to leverage excel to set up a simple return on investment goal

What programs do you need? Excel

Who are the experts?

Sangah.Bae@neomediaworld.com

Agenda

- Measurement objective
- Metrics, KPIs, Benchmarks, Goals
- Media planning and goal setting
- Summary

Measurement Objective

SANGAH.BAE@NEOMEDIAWORLD.COM DO NOT DISTRIBUTE

Measurement Objective

Set Measurement Strategies to:

- Align success criteria with measurable goals & KPIs.
- Set a framework to determine whether the program met its goals and objectives.
- Prove the effectiveness of the campaign.

What is it supposed to do? How will we know it worked?

Metrics, KPIs, Benchmarks, Goals

Metrics, KPIs, Benchmarks, Goals

Common Business Question:

What should be the return goal? How do we ensure we're not spending too much?

Media Planning and Goal Setting

Premise of The Approach

Linear Regression

 Regression analysis is a statistical process for estimating the relationship among variables; specifically, regression helps to understand how typical value of the dependent variable changes when any one of independent variables change.

Historical Data ⇒ Future Projections

• Using Regression, we can project future outcomes based on historical performance provided that independent variables (drivers) are available to calculate dependent variables (estimates).

Estimates: Return on Ad Spend

• Within Excel, you can perform a simple linear regression.

Drivers: Contributors Are Aggregated

• For simplicity, contributors are aggregated to total ad spend.

"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

Data Overview

- 2017 Weekly Total Spend, Session, Transaction, Revenue was reviewed.
- QA steps: Sort out any outliers and determine whether to included in the analysis or not.
- Calculate ROAS (highlighted in yellow).

	А	В	С	D	E	F
1	Week of Year	Cost	Sessions	Transactions	Revenue	ROAS
2	201701	165.48	15695	601	116498.47	=E2/B2
3	201702	107.61	15752	491	95637.78	888.7444
4	201703	81.84	15613	537	106341.11	1299.378
5	201704	89.52	17991	505	95814.94	1070.319
6	201705	77.04	16519	529	96957.90	1258.54
7	201706	295.22	16962	436	83621.49	283.2514
8	201707	51.46	17549	506	97075.75	1886.431
9	201708	54.08	17014	450	86820.51	1605.409
10	201709	53.94	16272	538	93022.89	1724.562
11	201710	40.31	16681	443	77848.28	1931.24
12	201711	35.73	16620	459	77884.30	2179.801
13	201712	35.97	17573	493	106158.33	2951.302
14	201713	28.12	17845	477	86748.64	3084.945
15	201714	35.52	18023	411	122892.20	3459.803

Relationship Exploration

- Explore relationship with a scatter plot with Spend and Return metrics.
 - Series (Legend Entry y axis) to be ROAS.
 - Category (Horizontal x axis) to be Cost.

Regression

- For simplicity, relationship between Spend and ROAS is assumed to be linear.
- Add a trend line with 'Equation on Chart' and 'Display R-squared Value on Chart' option checked.
- Linear regression line has an R-Square of 0.22 indicating that the linear model leaves lot of variance unexplained.
 - Linear regression cannot factor in seasonality, which is one of the biggest influencer on ROAS.
 - Other limitations can be if return varies a lot by organic & direct traffic that are not associated with investment (or not directly attributed with cost).

Validation

- Using equation, you can create a scenario planning tool of expected return on the spend.
- Comparing expected return with actual return (%) will show how good of a fit the model is.
 - There are other statistical validation methodology (i.e. ANOVA).
- You can create a scatter plot to show the variances.

1 Week of Year Cost Sessions Transactions Revenue ROAS ROAS (Projeted) Revenue 2 201701 165.48 15695 601 116498.47 704.0033 =(-0.619*82) + 1124 3 201702 107.61 15752 491 95637.78 888.7444 1057.38941 4 201703 81.84 15613 537 106341.11 1299.378 1073.34104	ue (Projected) 113785.6744 87842.23071 95659.91898 82919.09497
2 201701 165.48 15695 601 116498.47 704.0033 =(-0.619*B2) + 1124 3 201702 107.61 15752 491 95637.78 888.7444 1057.38941 4 201703 81.84 15613 537 106341.11 1299.378 1073.34104	113785.6744 87842.23071 95659.91898 82919.09497
3 201702 107.61 15752 491 95637.78 888.7444 1057.38941 4 201703 81.84 15613 537 106341.11 1299.378 1073.34104	113785.6744 87842.23071 95659.91898 82919.09497
4 201703 81.84 15613 537 106341.11 1299.378 1073.34104	87842.23071 95659.91898 82919.09497
	95659.91898 82919.09497
5 201704 89.52 17991 505 95814.94 1070.319 1068.58712	82919.09497
6 201705 77.04 16519 529 96957.90 1258.54 1076.31224	
7 201706 295.22 16962 436 83621.49 283.2514 941.25882	277878.4288
8 201707 51.46 17549 506 97075.75 1886.431 1092.14626	56201.84654
9 201708 54.08 17014 450 86820.51 1605.409 1090.52448	58975.56388
10 201709 53.94 16272 538 93022.89 1724.562 1090.61114	58827.56489
11 201710 40.31 16681 443 77848.28 1931.24 1099.04811	44302.62931
12 201711 35.73 16620 459 77884.30 2179.801 1101.88313	39370.28423
13 201712 35.97 17573 493 106158.33 2951.302 1101.73457	39629.39248
14 201713 28.12 17845 477 86748.64 3084.945 1106.59372	31117.41541
15 201714 35.52 18023 411 122892.20 3459.803 1102.01312	39143.50602
16 201715 34.68 16175 466 85348.94 2461.042 1102.53308	38235.84721
17 201716 36.18 16090 525 132744.73 3669.009 1101.60458	39856.0537
18 201717 46.39 18422 467 83309.12 1795.842 1095.28459	50810.25213
19 201718 56.71 16665 573 81221.26 1432.221 1088.89651	61751.32108
20 201719 54.01 14060 496 78081.67 1445.689 1090.56781	58901.56742
21 201720 54.72 17918 469 75718.31 1383.741 1090.12832	59651.82167
22 201721 110.25 15386 446 72170.93 654.6116 1055.75525	116397.0163

Total Return (Actual)	Total Return (Projected)	% Difference
SUM (Revenue)	SUM (Revenue (Projected))	
4531859.18	4529767.45	-0.05%

Diminishing Returns

- Based on ROAS Equation, project how much return is expected per incremental level.
- Remember the data granularity!
 - In this analysis, we used weekly spend and planning annual budget.

•	Diminishing return curve suggests to increase
	revenue by 25%, you need to increase annual spend
	by 70%.

	Ar	nnual Cost	Annual Revenue		
Increase	\$	26,000	\$	21,177,000	Increase
10%	\$	28,600	\$	22,409,530	6%
20%	\$	31,200	\$	23,481,120	11%
30%	\$	33,800	\$	24,391,770	15%
40%	\$	36,400	\$	25,141,480	19%
50%	\$	39,000	\$	25,730,250	22%
60%	\$	41,600	\$	26,158,080	24%
70%	\$	44,200	\$	26,424,970	25%
80%	\$	46,800	\$	26,530,920	25%
90%	\$	49,400	\$	26,475,930	25%
100%	\$	52,000	\$	26,260,000	24%

Summary

SANGAH.BAE@NEOMEDIAWORLD.COM DO NOT DISTRIBUTE

Summary & Key Takeaways

- To take benchmarks one step further, consider setting up goals.
- For a simple regression, excel can be a handy tool.
- With regression, you can explore relationship of input variables (independent values) with output variables (dependent values).
- For budget planning, always remember diminishing return and ensure your recommendation is under the tipping point.

Questions?

Thank you!

Sangah.Bae@neomediaworld.com