Beyond the Black Box in Derivative-Free and Simulation-Based Optimization

Stefan Wild

Argonne National Laboratory
Mathematics and Computer Science Division
Joint work with Prasanna Balaprakash (Argonne), Aswin Kannan (IBM), Kamil Khan (Argonne \rightarrow McMaster), Slava Kungurtsev (Czech TU Prague), Jeff Larson (Argonne), Matt Menickelly (Lehigh), Jorge Moré (Argonne)

July 13, 2016

Optimizing (Almost) Everything!

0. Simulation-based and derivative-free optimization?
I. Optimization of black boxes
\diamond Empirical performance tuning of HPC codes
\diamond Model-based algorithms
II. Exploiting structure in functions of black boxes
\diamond Least squares - calibrating DFT sims
\diamond Nonsmoothness - bioremediation
\diamond Some partials - multilevel energy functionals
\diamond Constraints

Optimizing (Almost) Everything!

0 . Simulation-based and derivative-free optimization?
I. Optimization of black boxes
\diamond Empirical performance tuning of HPC codes
\diamond Model-based algorithms
II. Exploiting structure in functions of black boxes
\diamond Least squares - calibrating DFT sims
\diamond Nonsmoothness - bioremediation
\diamond Some partials - multilevel energy functionals
\diamond Constraints

Doing
 something
 with
 little

Doing
better
with
little
more

Simulation-Based Optimization

$$
\min _{x \in \mathbb{R}^{n}}\left\{f(x)=F[x, S(x)]: c_{I}[x, S(x)] \leq 0, c_{E}[x, S(x)]=0\right\}
$$

\approx "parameter estimation" \approx "model calibration" \approx "design optimization" $\approx \ldots$
$\diamond S: \mathbb{R}^{n} \rightarrow \mathbb{C}^{p}$ simulation output, often "noisy" (even when deterministic)
\diamond Derivatives $\nabla_{x} S$ often unavailable or
prohibitively expensive to obtain/approximate directly
$\diamond S$ can contribute to objective and/or constraints
\diamond Single evaluation of S could take seconds/minutes/hours/...
\Rightarrow Evaluation is a bottleneck for optimization

Blame Computing!

for pervasiveness of simulations in sci\&eng

\diamond Parallel/multi-core environments common
\diamond Simulations ("forward problem") faster, more realistic/complex

Argonne's AVIDAC
(1953 vacuum tubes)

Argonne's BlueGene/Q (2012 0.8M cores)

Sunway TaihuLight (2016 11M cores)

Blame Computing!

for pervasiveness of simulations in sci\&eng

\diamond Parallel/multi-core environments common
\diamond Simulations ("forward problem") faster, more realistic/complex

Argonne's AVIDAC (1953 vacuum tubes)

Argonne's BlueGene/Q (2012 0.8M cores)

Sunway TaihuLight
(2016 11M cores)

for the challenges in SBO

\diamond Optimization, UQ often an afterthought
\diamond Obstacles for Algorithmic Differentiation (coupled legacy/proprietary codes, memory)
\rightarrow [Coleman \& Xu; SIAM 2016], [Griewank \& Walther; SIAM 2008] \rightarrow MS76 today!
\diamond Computational noise can complicate everything

$$
\rightarrow \text { [Moré \& W.; SISC 2011] }
$$

\diamond Finite differences noisy, possibly expensive
\rightarrow [Moré \& W.; TOMS 2012]
\diamond Computational budget limits \# f evals

Derivative-Free Optimization

"Some derivatives $\left(\nabla_{x} S(x)\right)$ unavailable for optimization purposes"

Derivative-Free Optimization

"Some derivatives $\left(\nabla_{x} S(x)\right)$ unavailable for optimization purposes"

The Challenge:
 Optimization is tightly coupled with derivatives

Typical optimality (no noise, smooth functions)

$$
\nabla_{x} f\left(x_{*}\right)+\lambda^{\top} \nabla_{x} c_{E}\left(x_{*}\right)=0, c_{E}\left(x_{*}\right)=0
$$

William Karush [Optimization Stories, 2012]

(sub)gradients $\nabla_{x} f, \nabla_{x} c$ enable:
\diamond Faster feasibility
\diamond Faster convergence

- Guaranteed descent
- Approximation of nonlinearities
\diamond Better termination
- Measure of criticality $\left\|\nabla_{x} f\right\|,\left\|\mathcal{P}_{\Omega}\left(\nabla_{x} f\right)\right\|$
\diamond Sensitivity analysis
- Correlations, standard errors, UQ, ...

The Price of Algorithm Choice: Solvers in PETSc/TAO

Toolkit for Advanced Optimization
[Munson et al.; mcs.anl.gov/tao]

Increasing level of user input:

$n m$ Assumes $\nabla_{x} f$ unavailable, black box
pounders Assumes $\nabla_{x} f$ unavailable, exploits problem structure

Imvm Uses available $\nabla_{x} f$

The Price of Algorithm Choice: Solvers in PETSc/TAO

Toolkit for Advanced Optimization [Munson et al.; mcs.anl.gov/tao]

Increasing level of user input:

nm Assumes $\nabla_{x} f$ unavailable, black box
pounders Assumes $\nabla_{x} f$ unavailable, exploits problem structure

THIS TALK
Imvm Uses available $\nabla_{x} f$

DFO methods should be designed to beat finite-difference-based methods

Observe: Constrained by budget on \#evals, method limits solution accuracy/problem size

Black-Box Optimization

Black-Box Optimization

Black-Box Optimization

Inputs

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

Only access to $f=S$ is through sampling

\diamond (Scalar) Output of an experiment
\diamond Proprietary libraries/closed codes
\diamond Often discrete/compact domains
Throughout this talk:
"Black box" is both good and evil

A Black Box: Automating Empirical Performance Tuning

Given semantically equivalent codes x_{1}, x_{2}, \ldots, minimize run time subject to energy consumption

$\min \left\{f(x):\left(x_{\mathcal{C}}, x_{\mathcal{I}}, x_{\mathcal{B}}\right) \in \Omega_{\mathcal{C}} \times \Omega_{\mathcal{I}} \times \Omega_{\mathcal{B}}\right\}$

x multidimensional parameterization (compiler type, compiler flags, unroll/tiling factors, internal tolerances, ...)
Ω search domain (feasible transformation, no errors)
f quantifiable performance objective (requires a run)
\rightarrow [Audet \& Orban; SIOPT 2006], [Balaprakash, W., Hovland; ICCS 2011], [Porcelli \& Toint; 2016] Numerical Linear Algebra \rightarrow [N. Higham; SIMAX 1993], . . .

Black-Box Algorithms: Stochastic Methods

Random search

Repeat:

1. Randomly generate direction $d_{k} \in \mathbb{R}^{n}$
2. Evaluate "gradient-free oracle" $g\left(x_{k} ; h_{k}\right)=\frac{f\left(x_{k}+h_{k} d_{k}\right)-f\left(x_{k}\right)}{h_{k}} d_{k}$

$$
\text { (} \approx \text { directional derivative) }
$$

3. Compute $x_{k+1}=x_{k}-\delta_{k} g\left(x_{k} ; h_{k}\right)$, evaluate $f\left(x_{k+1}\right)$

Convergence (for different types of f) tends to be probabilistic [Kiefer \& Wolfowitz; AnnMS 1952], [Polyak; 1987], [Ghadimi \& Lan; SIOPT 2013], [Nesterov \& Spokoiny; FoCM 2015], . . .

Black-Box Algorithms: Stochastic Methods

Random search

Repeat:

1. Randomly generate direction $d_{k} \in \mathbb{R}^{n}$
2. Evaluate "gradient-free oracle" $g\left(x_{k} ; h_{k}\right)=\frac{f\left(x_{k}+h_{k} d_{k}\right)-f\left(x_{k}\right)}{h_{k}} d_{k}$ (\approx directional derivative)
3. Compute $x_{k+1}=x_{k}-\delta_{k} g\left(x_{k} ; h_{k}\right)$, evaluate $f\left(x_{k+1}\right)$

Convergence (for different types of f) tends to be probabilistic
[Kiefer \& Wolfowitz; AnnMS 1952], [Polyak; 1987], [Ghadimi \& Lan; SIOPT 2013], [Nesterov \& Spokoiny; FoCM 2015], ...

Stochastic heuristics (nature-inspired methods, etc.)

\diamond Popular in practice, especially in engineering
\diamond Typically global in nature
\diamond Require many f evaluations

Black-Box Algorithms: Direct Search Methods

Pattern Search + Variants

Easy to parallelize f evaluations

Nelder-Mead + Variants

Popularized by Numerical Recipes
\diamond Rely on indicator functions: $\left[f\left(x_{k}+s\right)<? f\left(x_{k}\right)\right]$
\diamond Work with black-box $f(x)$, do not exploit structure $F[x, S(x)]$
\diamond Convergence results for variety of settings

Survey \rightarrow [Kolda, Lewis, Torczon; SIREV 2003]
Newer NM \rightarrow [Lagarias, Poonen, Wright; SIOPT 2012] Tools \rightarrow DFL [Liuzzi et al.], NOMAD [Audet et al.], . . .

Making the Most of Little Information About Smooth f

\diamond Overhead of the optimization routine is minimal (negligible?) relative to cost of evaluating simulation

Making the Most of Little Information About Smooth f

\diamond Overhead of the optimization routine is minimal (negligible?) relative to cost of evaluating simulation

Bank of data, $\left\{x_{i}, f\left(x_{i}\right)\right\}_{i=1}^{k}$:

$=$ Points (\& function values) evaluated so far
$=$ Everything known about f
Goal:
\diamond Make use of growing Bank as optimization progresses
\diamond Limit unnecessary evaluations
(geometry/approximation)

Making the Most of Little Information About Smooth f

\diamond Overhead of the optimization routine is minimal (negligible?) relative to cost of evaluating simulation

Bank of data, $\left\{x_{i}, f\left(x_{i}\right)\right\}_{i=1}^{k}$:

$=$ Points (\& function values) evaluated so far
$=$ Everything known about f
Goal:
\diamond Make use of growing Bank as optimization progresses
\diamond Limit unnecessary evaluations
(geometry/approximation)

Model-Based Trust-Region Algorithms

Substitute $\min \left\{q_{k}(x): x \in \mathcal{B}_{k}\right\}$ for $\min f(x)$

$$
q_{k}(x)=f\left(x_{k}\right)+g_{k}^{\top}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{\top} H_{k}\left(x-x_{k}\right)
$$

f expensive, no ∇f
q_{k} cheap, analytic derivatives

Trust region:

$\mathcal{B}_{k}=\left\{x \in \Omega:\left\|x-x_{k}\right\| \leq \Delta_{k}\right\}$
\diamond Trust $q_{k} \approx f$ in \mathcal{B}_{k}
\diamond Update based on $\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{+}\right)}{q_{k}\left(x_{k}\right)-q_{k}\left(x_{+}\right)}$

Typical models

\diamond Only need (occasional) local approximation
\diamond Taylor-based: $g_{k}=\nabla f\left(x_{k}\right)$, $H_{k} \approx \nabla^{2} f\left(x_{k}\right)$
\rightarrow [Conn, Gould, Toint; SIAM 2000]

Model-Based Trust-Region Algorithms

Substitute $\min \left\{q_{k}(x): x \in \mathcal{B}_{k}\right\}$ for $\min f(x)$

$$
q_{k}(x)=f\left(x_{k}\right)+g_{k}^{\top}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{\top} H_{k}\left(x-x_{k}\right)
$$

f expensive, no ∇f
q_{k} cheap, analytic derivatives

Trust region:
$\mathcal{B}_{k}=\left\{x \in \Omega:\left|x-x_{k}\right| \mid \leq \Delta_{k}\right\}$
\diamond Trust $q_{k} \approx f$ in \mathcal{B}_{k}
\diamond Update based on $\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{+}\right)}{q_{k}\left(x_{k}\right)-q_{k}\left(x_{+}\right)}$

Typical models

\diamond Only need (occasional) local approximation
\diamond Taylor-based: $g_{k}=\nabla f\left(x_{k}\right)$, $H_{k} \approx \nabla^{2} f\left(x_{k}\right)$
\rightarrow [Conn, Gould, Toint; SIAM 2000]

Model-Based Trust-Region Algorithms

Substitute $\min \left\{q_{k}(x): x \in \mathcal{B}_{k}\right\}$ for $\min f(x)$

$$
q_{k}(x)=f\left(x_{k}\right)+g_{k}^{\top}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{\top} H_{k}\left(x-x_{k}\right)
$$

f expensive, no ∇f
q_{k} cheap, analytic derivatives

Trust region:

$\mathcal{B}_{k}=\left\{x \in \Omega:\left\|x-x_{k}\right\| \leq \Delta_{k}\right\}$
\diamond Trust $q_{k} \approx f$ in \mathcal{B}_{k}
\diamond Update based on $\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{+}\right)}{q_{k}\left(x_{k}\right)-q_{k}\left(x_{+}\right)}$

Typical models

\diamond Only need (occasional) local approximation
\diamond Taylor-based: $g_{k}=\nabla f\left(x_{k}\right)$, $H_{k} \approx \nabla^{2} f\left(x_{k}\right)$
\rightarrow [Conn, Gould, Toint; SIAM 2000]

Model-Based Trust-Region Algorithms

Substitute $\min \left\{q_{k}(x): x \in \mathcal{B}_{k}\right\}$ for $\min f(x)$

$$
q_{k}(x)=f\left(x_{k}\right)+g_{k}^{\top}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{\top} H_{k}\left(x-x_{k}\right)
$$

f expensive, no ∇f
q_{k} cheap, analytic derivatives

Trust region:
 $\mathcal{B}_{k}=\left\{x \in \Omega:\left\|x-x_{k}\right\| \leq \Delta_{k}\right\}$

\diamond Trust $q_{k} \approx f$ in \mathcal{B}_{k}
\diamond Update based on $\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{+}\right)}{q_{k}\left(x_{k}\right)-q_{k}\left(x_{+}\right)}$

Typical models

\diamond Only need (occasional) local approximation
\diamond Taylor-based: $g_{k}=\nabla f\left(x_{k}\right)$, $H_{k} \approx \nabla^{2} f\left(x_{k}\right)$
\rightarrow [Conn, Gould, Toint; SIAM 2000]

Black-Box Algorithms: Building Models Without Derivatives

Given data $\left(\mathcal{X}_{k}, f\left(\mathcal{X}_{k}\right)\right)$ and basis Φ, "solve"

$$
\Phi\left(\mathcal{X}_{k}\right) z=\left[\begin{array}{lll}
\Phi_{c} & \Phi_{g} & \Phi_{H}
\end{array}\right]\left[\begin{array}{c}
z_{c} \\
z_{g} \\
z_{H}
\end{array}\right]=\underline{\mathrm{f}}=f\left(\mathcal{X}_{k}\right)
$$

Full quadratics, $\left|\mathcal{X}_{k}\right|=\frac{(n+1)(n+2)}{2}$

\diamond Interpolation: $q_{k}\left(y_{i}\right)=f\left(y_{i}\right), \quad \forall y_{i} \in \mathcal{X}_{k}$
\diamond Geometric conditions on points in \mathcal{X}_{k}

Undetermined interp., $\left|\mathcal{X}_{k}\right|<\frac{(n+1)(n+2)}{2}$

\diamond Use (Powell) Hessian updates

$$
\begin{aligned}
\min _{g_{k}, H_{k}} & \left\|H_{k}-H_{k-1}\right\|_{F}^{2} \\
\text { s.t. } & q_{k}=\underline{\mathrm{f}} \text { on } \mathcal{X}_{k}
\end{aligned}
$$

$$
\text { Regression, }\left|\mathcal{X}_{k}\right|>\frac{(n+1)(n+2)}{2}
$$

\diamond Solve $\min _{z}\|\Phi z-\underline{f}\|$

Multivariate (Scattered Data) Interpolation is a Different Kind of Animal

$$
m\left(y_{i}\right)=f\left(y_{i}\right) \quad \forall y_{i} \in \mathcal{X}
$$

$n=1$ Given distinct points, can find a unique degree $|\mathcal{X}|-1$ polynomial m
$n>1$ Not true! (see Mairhuber-Curtis Theorem)

Multivariate (Scattered Data) Interpolation is a Different Kind of Animal

$$
m\left(y_{i}\right)=f\left(y_{i}\right) \quad \forall y_{i} \in \mathcal{X}
$$

$n=1$ Given distinct points, can find a unique degree $|\mathcal{X}|-1$ polynomial m
$n>1$ Not true! (see Mairhuber-Curtis Theorem)

6th point for a quadratic in \mathbb{R}^{2}

Nearby constraints affect geometry
\rightarrow [Wendland; CUP 2010]

Convergence to Stationary Points \& Software

$\lim _{k \rightarrow \infty} \nabla f\left(x_{k}\right)=0$ provided:

$0 . f$ is sufficiently smooth and regular (e.g., bounded level sets)

1. Control \mathcal{B}_{k} based on model quality
2. (Occasional) approximation within \mathcal{B}_{k}

Our quadratics satisfy

- $\left|q_{k}(x)-f(x)\right| \leq \kappa_{1}\left(\gamma_{f}+\left\|H_{k}\right\|\right) \Delta_{k}^{2}, \quad \forall x \in \mathcal{B}_{k}$
- $\left\|g_{k}+H_{k}\left(x-x_{k}\right)-\nabla f(x)\right\| \leq \kappa_{2}\left(\gamma_{f}+\left\|H_{k}\right\|\right) \Delta_{k}, \quad \forall x \in \mathcal{B}_{k}$

3. Sufficient decrease

Survey \rightarrow [Conn, Scheinberg, Vicente; SIAM 2009] Methods \rightarrow [Powell: COBYLA, UOBYQA, NEWUOA, BOBYQA, LINCOA],

Line search methods also work \rightarrow [Kelley et al; IFFCO] RBF models also work \rightarrow [W. \& Shoemaker; SIREV 2013] Probabilistic models \rightarrow [Bandeira, Scheinberg, Vicente; SIOPT 2014]

Michael J.D. Powell, 1936-2015

Structure in Simulation-Based Optimization, $\min f(x)=F[x, S(x)]$

f is often not a black box S
NLS Nonlinear least squares

$$
f(x)=\sum_{i}\left(S_{i}(x)-d_{i}\right)^{2}
$$

CNO Composite (nonsmooth) optimization

$$
f(x)=h(S(x))
$$

SKP Not all variables enter simulation

$$
f(x)=g\left(x_{I}, x_{J}\right)+h\left(S\left(x_{J}\right)\right)
$$

SCO Only some constraints depend on simulation

$$
\min \left\{f(x): c_{1}(x)=0, c_{S}(x)=0\right\}
$$

+ Slack variables

$$
\Omega_{S}=\left\{\left(x_{I}, x_{J}\right): S\left(x_{J}\right)+x_{I}=0, x_{I} \geq 0\right\}
$$

Model-based methods offer one way to exploit such structure

General Setting - Modeling Smooth $S_{1}(x), S_{2}(x), \ldots, S_{p}(x)$

Assume:

\bigcirc each S_{i} is continuously differentiable, available
\diamond each ∇S_{i} is Lipschitz continuous, unavailable

General Setting - Modeling Smooth $S_{1}(x), S_{2}(x), \ldots, S_{p}(x)$

Assume:

\diamond each S_{i} is continuously differentiable, available
\diamond each ∇S_{i} is Lipschitz continuous, unavailable
$m^{S_{i}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ approximates S_{i} on $\mathcal{B}(x, \Delta)$ $i=1, \ldots, p$

Fully Linear Models

$m^{S_{i}}$ fully linear on $\mathcal{B}(x, \Delta)$ if there exist constants $\kappa_{i, \text { ef }}$ and $\kappa_{i, \text { eg }}$ independent of x and Δ so that

$$
\begin{aligned}
\left|S_{i}(x+s)-m^{S_{i}}(x+s)\right| \leq \kappa_{i, \text { ef }} \Delta^{2} & \forall s \in \mathcal{B}(0, \Delta) \\
\left\|\nabla S_{i}(x+s)-\nabla m^{S_{i}}(x+s)\right\| \leq \kappa_{i, \mathrm{eg}} \Delta & \forall s \in \mathcal{B}(0, \Delta)
\end{aligned}
$$

NLS- Nonlinear Least Squares $f(x)=\frac{1}{2} \sum_{i} R_{i}(x)^{2}$

Obtain a vector of output $R_{1}(x), \ldots, R_{p}(x)$

\diamond Model each R_{i}

$$
R_{i}(x) \approx m_{k}^{R_{i}}(x)=R_{i}\left(x_{k}\right)+\left(x-x_{k}\right)^{\top} g_{k}^{(i)}+\frac{1}{2}\left(x-x_{k}\right)^{\top} H_{k}^{(i)}\left(x-x_{k}\right)
$$

\diamond Approximate:

$$
\begin{aligned}
\nabla f(x)= & \sum_{i} \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x}) R_{i}(x) \quad \longrightarrow \sum_{i} \nabla m_{k}^{R_{i}}(x) R_{i}(x) \\
\nabla^{2} f(x)= & \sum_{i} \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x}) \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x})^{\top}+\sum_{i} R_{i}(x) \nabla^{\mathbf{2}} \mathbf{R}_{\mathbf{i}}(\mathbf{x}) \\
& \longrightarrow \sum_{i} \nabla m_{k}^{R_{i}}(x) \nabla m_{k}^{R_{i}}(x)^{\top}+\sum_{i} R_{i}(x) \nabla^{2} m_{k}^{R_{i}}(x)
\end{aligned}
$$

\diamond Model f via Gauss-Newton or similar

> regularized Hessians \rightarrow DFLS [Zhang, Conn, Scheinberg] full Newton \rightarrow POUNDERS [W., Moré]

NLS- Consequences for $f(x)=\frac{1}{2} \sum_{i} R_{i}(x)^{2}$

Pay a (negligible for expensive S) price in terms of p models
\diamond Save linear algebra using interpolation set \mathcal{X}_{k} common to all models

- Single system solve, multiple right hand sides

$$
\Phi\left(\mathcal{X}_{k}\right)\left[\begin{array}{lll}
z^{(1)} & \cdots & z^{(p)}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{R}_{1} & \cdots & \underline{\mathrm{R}}_{p}
\end{array}\right]
$$

- $m^{R_{1}}$ quality \Rightarrow quality of all $m^{R_{i}}$
+ (nearly) exact gradients for R_{i} (nearly) linear
- No longer interpolate function at data points

$$
\begin{aligned}
m\left(x_{k}+\delta\right)= & f\left(x_{k}\right) \\
& +\delta^{\top} \sum_{i} g_{k}^{(i)} R_{i}\left(x_{k}\right) \\
& +\frac{1}{2} \delta^{\top} \sum_{i}\left(g_{k}^{(i)}\left(g_{k}^{(i)}\right)^{\top}+R_{i}\left(x_{k}\right) H_{k}^{(i)}\right) \delta \\
& + \text { missing h.o. terms }
\end{aligned}
$$

NLS- POUNDERS in Practice: DFT Calibration/MLE

$\min _{x} \sum_{i=1}^{p} w_{i}\left(S_{i}(x)-d_{i}\right)^{2}$
$S_{i}(x)$ Simulated (DFT) nucleus property
d_{i} Experimental data i
w_{i} Weight for data type i
p Parallel simulations (12 wallclock mins)

\rightarrow [Kortelainen et al., PhysRevC 2010]

Energy Residual [MeV], Nucleus \#22

CNO- Composite Nonsmooth Optimization Examples

Ex.- Groundwater remediation

Determine rates x for extraction/injection wells
\diamond Regulator's simulator returns flow $S_{i}(x)$ in/out of cell i
\diamond Minimize plume fluxes (e.g., regulatory \$ penalties) $f(x)=\sum_{i}\left|S_{i}(x)\right|$
\rightarrow See MS90 later today

Ex.- Particle accelerator design

Minimize particle losses: $f(x)=\max _{t_{i} \in \mathcal{T}_{1}} S\left(x ; t_{i}\right)-\min _{t_{i} \in \mathcal{T}_{2}(x)} S\left(x ; t_{i}\right)$

CNO- Composite Nonsmooth Optimization $f(x)=h(S(x) ; x)$
nonsmooth (algebraically available) function $h: \mathbb{R}^{p} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ of a smooth (blackbox) mapping $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$

CNO- Composite Nonsmooth Optimization $f(x)=h(S(x) ; x)$

nonsmooth (algebraically available) function $h: \mathbb{R}^{p} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ of a smooth (blackbox) mapping $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$

Basic Idea: Knowledge of vector $S\left(x^{k}\right)$ \& potential nondifferentiability at $S\left(x^{k}\right)$ should enhance (theoretical and practical) progress to a stationary point

EX.- $f^{1}(x)=\|S(x)\|_{1}=\sum_{i=1}^{p}\left|S_{i}(x)\right|$

$$
\partial f^{1}(x)=\sum_{i: S_{i}(x) \neq 0} \operatorname{sgn}\left(S_{i}(x)\right) \nabla S_{i}(x)+\sum_{i: S_{i}(x)=0} \operatorname{co}\left\{-\nabla S_{i}(x), \nabla S_{i}(x)\right\}
$$

$\diamond \mathcal{D}^{c}=\left\{x: \exists i\right.$ with $\left.S_{i}(x)=0, \nabla S_{i}(x) \neq 0\right\}$

+ Compact $\partial f(x)$
- \mathcal{D}^{c} depends on $\nabla S_{i}(x)$

CNO- The Nuisance Set, \mathcal{N}

Relaxation $\mathcal{N} \subseteq \mathcal{D}^{c}$ using only zero-order information
f^{1} :

$$
\mathcal{N}=\left\{x: \exists i \text { with } S_{i}(x)=0\right\}
$$

f^{∞} :

$$
\mathcal{N}=\left\{x: f^{\infty}(x)=0 \text { or }\left|\arg \max _{i}\right| S_{i}(x)| |>1\right\}
$$

CNO- The Nuisance Set, \mathcal{N}

Relaxation $\mathcal{N} \subseteq \mathcal{D}^{c}$ using only zero-order information
f^{1} :

$$
\mathcal{N}=\left\{x: \exists i \text { with } S_{i}(x)=0\right\}
$$

f^{∞} :

$$
\mathcal{N}=\left\{x: f^{\infty}(x)=0 \text { or }\left|\arg \max _{i}\right| S_{i}(x)| |>1\right\}
$$

Observe

When $x^{k} \notin \mathcal{N}$,

$$
\begin{aligned}
\partial f\left(x^{k}\right) & =\nabla_{f}\left(x^{k}\right) \\
& =\nabla_{x} S\left(x^{k}\right)^{\top} \nabla_{S} h\left(S\left(x^{k}\right)\right) \\
& \approx \nabla_{x} M\left(x^{k}\right)^{\top} \nabla_{S} h\left(S\left(x^{k}\right)\right)
\end{aligned}
$$

and smooth approximation is justified

CNO- Subdifferential Approximation

$\diamond x^{k} \in \mathcal{N}$, we build a set of generators $\mathcal{G}\left(x^{k}\right)$ based on $\partial_{S} h\left(S\left(x^{k}\right)\right)$.

- co $\left\{\mathcal{G}\left(x^{k}\right)\right\}$ approximates $\partial f\left(x^{k}\right)$

$$
\begin{aligned}
& \text { Ex.- } f^{1}(x)=\|S(x)\|_{1} \\
& \mathcal{G}\left(x^{k}\right)=\nabla M\left(x^{k}\right)^{\top}\left\{\operatorname{sgn}\left(S\left(x^{k}\right)\right)+\underset{i: S_{i}\left(x^{k}\right)=0}{\cup}\left\{-e_{i}, 0, e_{i}\right\}\right\}
\end{aligned}
$$

CNO- Subdifferential Approximation

$\diamond x^{k} \in \mathcal{N}$, we build a set of generators $\mathcal{G}\left(x^{k}\right)$ based on $\partial_{S} h\left(S\left(x^{k}\right)\right)$.

- co $\left\{\mathcal{G}\left(x^{k}\right)\right\}$ approximates $\partial f\left(x^{k}\right)$

$$
\begin{aligned}
& \text { Ex.- } f^{1}(x)=\|S(x)\|_{1} \\
& \mathcal{G}\left(x^{k}\right)=\nabla M\left(x^{k}\right)^{\top}\left\{\operatorname{sgn}\left(S\left(x^{k}\right)\right)+\underset{i: S_{i}\left(x^{k}\right)=0}{\cup}\left\{-e_{i}, 0, e_{i}\right\}\right\}
\end{aligned}
$$

Nearby data $\mathcal{X} \subset \mathcal{B}\left(x^{k}, \Delta_{k}\right)$ informs models $M=m^{S}$ and generator set
\diamond Manifold sampling method uses manifold(s) of \mathcal{X}

$$
\nabla M\left(x^{k}\right)^{\top} \underset{y^{i} \in \mathcal{X}}{\cup} \operatorname{mani}\left(S\left(y^{i}\right)\right)
$$

\diamond Traditional gradient sampling
\rightarrow [Burke, Lewis, Overton; SIOPT 2005]

$$
\underset{y^{i} \in \mathcal{X}}{\cup} \nabla M\left(y^{i}\right)^{\top} \operatorname{mani}\left(S\left(y^{i}\right)\right)
$$

CNO- Smooth Trust-Region Subproblem

Smooth master model from minimum-norm element

$$
m^{f}\left(x^{k}+s\right)=f\left(x^{k}\right)+\left\langle s, \operatorname{proj}\left(0, \operatorname{co}\left\{\mathcal{G}\left(x^{k}\right)\right\}\right)\right\rangle+\cdots
$$

CNO- Smooth Trust-Region Subproblem

Smooth master model from minimum-norm element

$$
m^{f}\left(x^{k}+s\right)=f\left(x^{k}\right)+\left\langle s, \operatorname{proj}\left(0, \operatorname{co}\left\{\mathcal{G}\left(x^{k}\right)\right\}\right)\right\rangle+\cdots
$$

\Rightarrow smooth subproblems
$\min \left\{m^{f}\left(x^{k}+s\right): s \in \mathcal{B}\left(0, \Delta_{k}\right)\right\}$
\diamond Convex h (e.g., $\|S(x)\|_{1}$) and ∇S_{i} is Lipschitz
\Rightarrow every cluster point of $\left\{x^{k}\right\}_{k}$ is Clarke stationary
\rightarrow [Larson, Menickelly, W.; Preprint 2016]
\diamond OK to sample at $x^{k} \in \mathcal{D}^{C}$
\diamond More general (piecewise differentiable f) results:
\rightarrow [Larson, Khan, W.; in prog. 2016]
(yesterday in MS155!)

Nonsmooth subproblems
vs.

$$
\min \left\{h\left(M\left(x^{k}+s\right)\right): s \in \mathcal{B}\left(0, \Delta_{k}\right)\right\}
$$

\diamond Requires convex h
\rightarrow [Fletcher;
MathProgStudy 1982]
\rightarrow [Grapiglia, Yuan,
Yuan; C\&A Math.
2016]
Complexity results
\rightarrow [Garmanjani,
Júdice, Vicente; SIOPT

Roger Fletcher

CNO- Example Performance on L_{1} Test Problems

Function Value

Stationary Measure

Smooth black-box methods can fail in practice, even when \mathcal{D}^{C} has measure zero

Numerical tests: \rightarrow [Larson, Menickelly, W.; Preprint 2016]

SKP- Some Known Partials Example

Ex.- Bi-level model calibration structure

$$
\min _{x}\left\{f(x)=\sum_{i=1}^{p}\left(S_{i}(x)-d_{i}\right)^{2}\right\}
$$

$S_{i}(x)$ solution to lower-level problem depending only on x_{J}

$$
\begin{aligned}
S_{i}(x) & =g_{i}(x)+\min _{y}\left\{h_{i}\left(x_{J} ; y\right): y \in \mathcal{D}_{i}\right\} \\
& =g_{i}(x)+h_{i}\left(x_{J} ; y_{i, *}\left[x_{J}\right]\right)
\end{aligned}
$$

For $x=\left(x_{I}, x_{J}\right)$
$\diamond \nabla_{x_{I}} S_{i}\left(x_{I}, x_{J}\right)$ available
$\diamond \nabla_{x_{J}} S_{i}(x) \approx \nabla_{x_{J}} g_{i}(x)+\nabla_{x_{J}} m^{\tilde{S}_{i}}\left(x_{J}\right)$
$\diamond S_{i}(x)$ continuous and smooth in x_{I}
$\diamond g_{i}(x)$ cheap to compute!
\diamond No noise/errors introduced in $g_{i}(x)$

SKP- Some Known Partials

$x=\left(x_{I}, x_{J}\right) ;$ have $\frac{\partial f}{\partial x_{I}}$ but not $\frac{\partial f}{\partial x_{J}}$

"Solve"

$$
\Phi z=\underline{\mathrm{f}}
$$

with known $z_{g, I}, z_{H, I}$

$$
\left[\begin{array}{ccc}
\Phi_{c} & \Phi_{g, J} & \Phi_{H, J}
\end{array}\right]\left[\begin{array}{c}
z_{c} \\
z_{g, J} \\
z_{H, J}
\end{array}\right]=\underline{\mathrm{f}}-\Phi_{g, I} z_{g, I}-\Phi_{H, I} z_{H, I}
$$

\diamond Still have interpolation where required
\diamond Effectively lowers dimension to $|J|=n-|I|$ for

- approximation
- model-improving evaluations
- linear algebra
$\diamond \lim _{k \rightarrow \infty} \nabla f\left(x_{k}\right)=0$ as before:
- Guaranteed descent in some directions

SKP- Numerical Results With Some Partials

Three approaches:

- black box
s exploit least squares
m use $\nabla_{x_{I}}$ derivatives
$\diamond n=16,|I|=3$
$\diamond 5-10$ secs/evaluation

Same algorithmic framework, performance advantages from exploiting structure
\rightarrow [Bertolli, Papenbrock, W., PRC 2012]

SCO- General Constraints

$\min \left\{f(x): c_{1}(x)=0, c_{S}(x)=0\right\}$

\diamond Lagrangian (key to optimality conditions):

$$
\begin{aligned}
\nabla L & =\nabla f+\lambda_{1}^{\top} \nabla c_{1}+\lambda_{2}^{\top} \nabla \mathbf{c}_{\mathrm{S}} \\
& \rightarrow \nabla f+\lambda_{1}^{\top} \nabla c_{1}+\lambda_{2}^{\top} \nabla m
\end{aligned}
$$

\diamond Use favorite method: filters, augmented Lagrangian, ...
\diamond Slack variables

- Do not increase effective dimension
- Subproblems can treat separately
- Know derivatives
\rightarrow [Lewis \& Torczon; 2010]
Modified AL methods \rightarrow [Diniz-Ehrhardt, Martínez, Pedroso; C\&A Math. 2011] SBO constraints have unique properties \rightarrow [Le Digabel \& W.; ANL/MCS-P5350-0515 2016]

SCO- What Constraint Derivatives Buy You

Ex.- Augmented Lagrangian methods, $L_{A}(x, \lambda ; \mu)=f(x)-\lambda^{\top} c(x)+\frac{1}{\mu}\|c(x)\|^{2}$

$\min _{x}\{f(x): c(x)=0\}$

Four approaches:

1. Penalize constraints
2. Treat c and f both as (separate) black boxes
3. Work with f and $\nabla_{x} c$
4. Have both $\nabla_{x} f$ and $\nabla_{x} c$

$$
n=15,11 \text { constraints }
$$

OPTIMIZE EVERYTHING

Mathematically unwrap problems to expose (the deepest) black boxes

\diamond Structure is everywhere, even in legacy-code-driven optimization problems
\diamond Exploiting structure is one way to expand range of optimization to solve grand-challenge problems
\diamond Sacrifice little in convenience

- Output \& model residuals $\left\{r_{i}(x)\right\}_{i}$, not $\|r(x)\|$
- Output \& model constraints $\left\{c_{i}(x)\right\}_{i}$, not a penalty $P(c(x))$
- Explicitly handle nonsmoothness (and noise, ...)
\diamond Papers and links at www.mcs.anl.gov/~wild
\diamond Collaborators in this work:
Awesome opportunities for students
$\begin{array}{ll} & \begin{array}{l}\text { Aswin Kannan (UIUC), Slava Kungurtsev (UCSD), } \\ \text { Jeff Larson (UC-Denver), Matt Menickelly (Lehigh) }\end{array} \\ \text { Argonne } & \begin{array}{l}\text { _.and postdocs! } \\ \text { Prasanna Balaprakash (UL Bruxelles), Kamil Khan (MIT) }\end{array}\end{array}$
U.S. DEPARTMENT OF

ENERGY
Office of
Science

OPTIMIZE EVERYTHING

Mathematically unwrap problems to expose (the deepest) black boxes

\diamond Structure is everywhere, even in legacy-code-driven optimization problems
\diamond Exploiting structure is one way to expand range of optimization to solve grand-challenge problems
\diamond Sacrifice little in convenience

- Output \& model residuals $\left\{r_{i}(x)\right\}_{i}$, not $\|r(x)\|$
- Output \& model constraints $\left\{c_{i}(x)\right\}_{i}$, not a penalty $P(c(x))$
- Explicitly handle nonsmoothness (and noise, ...)
\diamond Papers and links at www.mcs.anl.gov/~wild
\diamond Collaborators in this work:
Awesome opportunities for students
$\begin{array}{ll} & \begin{array}{l}\text { Aswin Kannan (UIUC), Slava Kungurtsev (UCSD), } \\ \text { Jeff Larson (UC-Denver), Matt Menickelly (Lehigh) }\end{array} \\ \text { Argonne } & \begin{array}{l}\text { Nand postdocs! } \\ \text { _. and }\end{array} \\ & \text { Prasanna Balaprakash (UL Bruxelles), Kamil Khan (MIT) }\end{array}$
U.S. DEPARTMENT OF

ENERGY
Office of
Science

