The heat equation for ever

(The SIFT method and its extensions)

Jean-Michel Morel

ENS Cachan, France
Guoshen Yu,
Ecole Polytechnique, France
D. G. Lowe, Object recognition from local scale-invariant features, IJCV 2, 1999

The new state of art: It is by now possible to recognize a solid object in a digital image, no matter what the angle and the distance, up to limits that only depend on resolution.

In this pair: A very large transition tilt (extreme angle); $\simeq 36$. The transition tilt will be defined later.

120 correct matches (not all shown), 4 outliers. Each match is indicated by a white segment

Recognition in spite of a very large view point change. The matches were obtained by the Affine SIFT method (A-SIFT), a variant of the SIFT method. Both methods will be explained.

Figure 1: Recognition with extreme scale difference. 26 matches, 6 outliers. Exp. : Rabin, Gousseau, Delon, SIFT method

Camera Model

Figure 2: Dürer 1525 "Le Portillon". Illustration of perspective deformation of solid objects

Camera Model

u_{0} : frontal infinite resolution view

$$
\begin{array}{ccccc}
\mathrm{u}= & \mathrm{S}_{1} & \mathrm{G}_{1} & \boldsymbol{A} & \mathrm{U}_{0} \\
\text { digital } \\
\text { image } & \begin{array}{c}
\text { sampling } \\
\text { (grid) }
\end{array} & \begin{array}{c}
\text { Gaussian } \\
\text { kernel (blur) }
\end{array} & \begin{array}{c}
\text { planar } \\
\text { projective }
\end{array} & \begin{array}{c}
\text { original } \\
\text { infinite }
\end{array} \\
& & & \text { map } & \text { resolution } \\
& & & & \text { surface }
\end{array}
$$

Affine simplification

Figure 3: Uccello's miracle (1465): "Oh che dolce cosa è questa prospettiva! " Projective transforms are differentiable and therefore locally equivalent to affine transforms. The room is a trapezoid, but it is paved with parallelograms. This means that affine invariance is enough for shape recognition.

Conclusion: the local camera model

All digital images obtained from a locally smooth object whose local frontal view is \mathbf{u}_{0} satisfy, locally,

$$
u=: \mathbf{S}_{1} \mathbf{G}_{1} \mathbf{A} \mathbf{u}_{0}
$$

for some planar affine map A (six parameters)!.

Geometric interpretation of the six affine parameters

$$
\begin{gathered}
\binom{x}{y} \rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{x}{y}+\binom{e}{f} \\
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi)=\lambda\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right]\left[\begin{array}{ll}
t & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
\end{gathered}
$$

- ϕ : longitude angle between optical axis and a fixed vertical plane.
- $\theta=\arccos (1 / t)$: latitude angle between optical axis and the normal to the image plane.
Tilt $t>1 \leftrightarrow \theta \in\left[0^{\circ}, 90^{\circ}\right]$.
- ψ : rotation angle of camera around optical axis.
- λ : zoom parameter.
- $\mathcal{T}=(e, f)^{T}$: translation, not presented here.

Geometric interpretation of the six affine parameters

$$
\begin{gathered}
\binom{x}{y} \rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{x}{y}+\binom{e}{f} \\
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi)=\lambda\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right]\left[\begin{array}{ll}
t & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
\end{gathered}
$$

- ϕ : longitude angle between optical axis and a fixed vertical plane.
- $\theta=\arccos (1 / t)$: latitude angle between optical axis and the normal to the image plane.
Tilt $t>1 \leftrightarrow \theta \in\left[0^{\circ}, 90^{\circ}\right]$.
- ψ : rotation angle of camera around optical axis.
- λ : zoom parameter.
- $\mathcal{T}=(e, f)^{T}$: translation, not presented here.

Geometric interpretation of the six affine parameters

$$
\begin{gathered}
\binom{x}{y} \rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{x}{y}+\binom{e}{f} \\
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi)=\lambda\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right]\left[\begin{array}{ll}
t & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
\end{gathered}
$$

- ϕ : longitude angle between optical axis and a fixed vertical plane.
- $\theta=\arccos (1 / t):$ latitude angle between optical axis and the normal to the image plane. Tilt $t>1 \leftrightarrow \theta \in\left[0^{\circ}, 90^{\circ}\right]$.
- ψ : rotation angle of camera around optical axis.
- λ : zoom parameter.
- $\mathcal{T}=(e, f)^{T}$: translation, not presented here.

Geometric interpretation of the six affine parameters

$$
\begin{gathered}
\binom{x}{y} \rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{x}{y}+\binom{e}{f} \\
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi)=\lambda\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right]\left[\begin{array}{ll}
t & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
\end{gathered}
$$

- ϕ : longitude angle between optical axis and a fixed vertical plane.
- $\theta=\arccos (1 / t)$: latitude angle between op-
 tical axis and the normal to the image plane. Tilt $t>1 \leftrightarrow \theta \in\left[0^{\circ}, 90^{\circ}\right]$.
- ψ : rotation angle of camera around optical axis.
- λ : zoom parameter.
- $\mathcal{T}=(e, f)^{T}$: translation, not presented here.

Geometric interpretation of the six affine parameters

$$
\begin{gathered}
\binom{x}{y} \rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{x}{y}+\binom{e}{f} \\
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi)=\lambda\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right]\left[\begin{array}{ll}
t & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
\end{gathered}
$$

- ϕ : longitude angle between optical axis and a fixed vertical plane.
- $\theta=\arccos (1 / t)$: latitude angle between optical
 axis and the normal to the image plane.
Tilt $t>1 \leftrightarrow \theta \in\left[0^{\circ}, 90^{\circ}\right]$.
- ψ : rotation angle of camera around optical axis.
- λ : zoom parameter.
- $\mathcal{T}=(e, f)^{T}$: translation, not presented here.

Geometric interpretation of the six affine parameters

$$
\begin{gathered}
\binom{x}{y} \rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{x}{y}+\binom{e}{f} \\
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi)=\lambda\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right]\left[\begin{array}{ll}
t & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
\end{gathered}
$$

- ϕ : longitude angle between optical axis and a fixed vertical plane.
- $\theta=\arccos (1 / t)$: latitude angle between optical
 axis and the normal to the image plane.
Tilt $t>1 \leftrightarrow \theta \in\left[0^{\circ}, 90^{\circ}\right]$.
- ψ : rotation angle of camera around optical axis.
- λ : zoom parameter.
- $\mathcal{T}=(e, f)^{T}$: translation, not presented here.

Geometric interpretation of the six affine parameters

$$
\begin{gathered}
\binom{x}{y} \rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{x}{y}+\binom{e}{f} \\
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi)=\lambda\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right]\left[\begin{array}{ll}
t & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
\end{gathered}
$$

- ϕ : longitude angle between optical axis and a fixed vertical plane.
- $\theta=\arccos (1 / t):$ latitude angle between optical axis and the normal to the image plane.
Tilt $t>1 \leftrightarrow \theta \in\left[0^{\circ}, 90^{\circ}\right]$.
- ψ : rotation angle of camera around optical axis.
- λ : zoom parameter.
- $\mathcal{T}=(e, f)^{T}$: translation, not presented here.

Geometric interpretation of the six affine parameters

$$
\begin{gathered}
\binom{x}{y} \rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{x}{y}+\binom{e}{f} \\
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi)=\lambda\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right]\left[\begin{array}{ll}
t & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
\end{gathered}
$$

- ϕ : longitude angle between optical axis and a fixed vertical plane.
- $\theta=\arccos (1 / t)$: latitude angle between optical
 axis and the normal to the image plane.
Tilt $t>1 \leftrightarrow \theta \in\left[0^{\circ}, 90^{\circ}\right]$.
- ψ : rotation angle of camera around optical axis.
- λ : zoom parameter.
- $\mathcal{T}=(e, f)^{T}$: translation, not presented here.

For recognition, shapes must be described by local image features that are invariant to 8 parameters!
This leads to 4 Image comparison requirements and to

our PLAN

1. independence from sampling (interpolation required);
2. invariance from illuminance changes (at least 2 parameters);
3. independence from: scale (that means independence of blur!), rotation, translation: 4 parameters, SIFT method
4. independence from tilts: (slanted view angle): 2 parameters, A-SIFT method

If each one of the 8 parameters has 10 values (which is an underestimate) a single comparison of two images would require the simulation of 10^{8} different possible views for a single image, followed by 10^{8} comparisons.

Problem 1: Independence from sampling: From

 a digital image back to a continuous image by Shannon interpolation- \mathbf{S}_{1} : the sampling operator at rate 1 . The sampled digital image $u=\mathbf{S}_{1} \mathbf{u}$ is defined on \mathbb{Z}^{2} by $u\left(n_{1}, n_{2}\right)=\mathbf{u}\left(n_{1}, n_{2}\right) ;$
- If $u \in l^{2} \cap l^{1}\left(\mathbb{Z}^{2}\right)$, the Shannon interpolate of u is the only $L^{2}\left(\mathbb{R}^{2}\right)$ function $\mathbf{u}=I u$ having u as samples and with spectrum support contained in $(-\pi, \pi)^{2}$. Then $\mathbf{S}_{1} I u=u$.
- Conversely, if \mathbf{u} is L^{2} and band-limited in $(-\pi, \pi)^{2}$, then $I \mathbf{S}_{1} \mathbf{u}=\mathbf{u}$.

2 Solution of the second problem : Invariance to illumination conditions

- Contrast change: $g(s)$ increasing, smooth, $\mathbf{u} \rightarrow g(\mathbf{u})$
- Level lines of \mathbf{u} and $g(\mathbf{u})$ are identical, (used in Mathematical Morphology, Matheron, Serra, and recently by the MSER and LLD methods shape recognition methods)
- The direction of the gradient $\frac{\nabla \mathbf{u}}{\|\nabla u\|}$ also invariant (SIFT method).

3 Solution of the third problem : independence from scale (BLUR !), rotation, and translation: The SIFT method

Figure 4: Shapes change with distance: The level lines not stable by down-sampling
This is the main problem with level lines methods (MSER)

Why the heat equation ?

- $G_{\sigma}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x_{1}^{2}+x_{2}^{2}}{2 \sigma^{2}}}$,

$$
\frac{\partial G_{\sigma}}{\partial \sigma}=\sigma \Delta G_{\sigma}, \quad G_{\delta} G_{\beta}=G_{\sqrt{\delta^{2}+\beta^{2}}}
$$

- Main assumption: the blur is gaussian

$$
u=\mathbf{S}_{1} G_{s} \mathbf{u}_{0}, \quad\left(\mathbf{G}_{s} * \mathbf{u}_{0}\right)(\mathbf{x})=: \int_{\mathbb{R}^{2}} \mathbf{G}(\mathbf{y}) \mathbf{u}_{0}(\mathbf{x}-\mathbf{y}) d \mathbf{y}
$$

- If $s \geq 0.6$, Shannon's interpolation conditions are experimentally satisfied: $\mathbf{G}_{1} \mathbf{u}_{0}=: G_{s} * \mathbf{u}_{0}$ is "band-limited" $; I \mathbf{S}_{1} \mathbf{G}_{1} \mathbf{u}_{0}=\mathbf{G}_{1} \mathbf{u}_{0}$.
- Key property : if $u_{1}=\mathbf{S}_{s} \mathbf{G}_{s} \mathbf{u}_{0}$ and $u_{2}=\mathbf{S}_{t} \mathbf{G}_{t} \mathbf{u}_{0}, t^{2}=s^{2}+\sigma^{2}$ then

$$
\mathbf{u}_{1}=\mathbf{G}_{\sigma} \mathbf{u}_{2} ; \quad u_{1}=\mathbf{S}_{s} \mathbf{G}_{\sigma} I \mathbf{u}_{2}
$$

Why the heat equation and not other smart nonlinear PDE's ?

- Scale space (Witkin, Koenderink): $\frac{\partial u}{\partial t}=\Delta u$
- Anisotropic diffusion (Perona-Malik): $\frac{\partial u}{\partial t}=\operatorname{div}\left(\frac{\nabla u}{1+|\nabla u|^{2}}\right)$
- Mean curvature motion (Osher, Sethian), commutes with contrast changes! $\frac{\partial u}{\partial t}=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$
- Affine scale space (Sapiro, Tannenbaum, Alvarez, Guichard, Lions, M.): commutes with contrast changes and affine maps :

$$
\frac{\partial u}{\partial t}=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)^{\frac{1}{3}}
$$

But the reality is: images at different scales obey the heat equation.

SIFT scale invariant features transform

1. the initial digital image is $\mathbf{S}_{1} \mathbf{G}_{1} \mathbf{A} \mathbf{u}_{0}, \mathbf{A}$ is any SIMILARITY, \mathbf{u}_{0} is the underlying infinite resolution planar image;
2. at all scales $\sigma>0$, the SIFT method computes $\mathbf{u}(\sigma, \cdot)=$ $\mathbf{G}_{\sigma} \mathbf{G}_{1} \mathbf{A} \mathbf{u}_{0}$ and 'key points" (σ, \mathbf{x}), namely scale and space extrema of $\Delta \mathbf{u}(\sigma, \cdot)$;
3. the blurred $\mathbf{u}(\sigma, \cdot)$ image is sampled around each key point at a pace proportional to $\sqrt{1+\sigma^{2}}$;
4. directions of the sampling axes are fixed by a dominant direction of $\nabla \mathbf{u}(\sigma, \cdot)$ in a σ-neighborhood of the key point;
5. this yields rotation, translation and scale invariant samples: the 4 parameters of \mathbf{A} have been eliminated!;
6. the final SIFT descriptor keeps only orientations of the gradient to gain invariance w.r. light conditions.

Figure 5: Each key-point is associated a square image patch whose size is proportional to the scale and whose side direction is given by the assigned direction. Example of a 2×2 descriptor array of orientation histograms (right) computed from an 8×8 set of samples (left). The orientation histograms are quantized into 8 directions and the length of each arrow corresponds to the magnitude of the histogram entry.

Figure 6: SIFT key points (scale and orientation). Each one is covariant or invariant with respect to: translation, rotation, scale, and contrast changes (6 parameters out of 8)

Figure 7: left : the Pisa tower, SIFT method Outliers elimination method: Rabin, Gousseau, Delon

High Transition Tilts

$$
\begin{gathered}
\mathbf{u}=\mathbf{G}_{1} \mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi) \mathbf{u}_{0}, \quad \mathbf{v}=\mathbf{G}_{1} \mathbf{H}_{\lambda^{\prime}} \mathbf{R}_{1}\left(\psi^{\prime}\right) \mathbf{T}_{t^{\prime}} \mathbf{R}_{2}\left(\phi^{\prime}\right) \mathbf{u}_{0} \\
\mathbf{v}=\mathbf{G}_{1} \mathbf{H}_{\mu} \mathbf{R}_{1}\left(\psi_{1}\right) \mathbf{T}_{\tau} \mathbf{R}_{2}\left(\phi_{1}\right) \mathbf{u}
\end{gathered}
$$

- Absolute tilts t : from \mathbf{u} to \mathbf{u}_{0}.
- Transition tilts $\tau\left(t, t^{\prime}, \phi-\phi^{\prime}\right)$: the absolute tilt from \mathbf{u} to \mathbf{v} under the assumption that \mathbf{u} is frontal.
- In contrast with absolute tilts, most transition tilts are LARGE.

High Transition Tilts

High Transition Tilts: 79 matches (A-SIFT)

High Transition Tilts: 50 matches (A-SIFT)

State-of-the-art

- SIFT (Scale-Invariant Feature Transform) [Lowe 99, 04]:
- Rotation and translation are normalized.
- Zoom is simulated in the scale space.
- Modest robustness to tilt: $\tau_{\max }<2.5$.
- MSER (Maximally Stable Extremal Region) [Matas et al. 02]
- Zoom and tilt are inverted by normalization (but only an approximation: normalization does not commute with blur).
- Rotation invariance is used (rotation is normalizable).
- Weakness: few features, limited affine invariance $\tau_{\max }<5$.

Transition tilts attainable with each method

$\tau<2.5$ (SIFT)

$$
\tau<5(\mathrm{MSER})
$$

$$
\tau<40(\text { A-SIFT })
$$

Affine-SIFT (A-SIFT) Overview

- Simulate the tilts (two parameters).
- Simulated images are compared by a rotation-, translationand zoom-invariant algorithm, e.g., SIFT. (SIFT normalizes translation and rotation and simulates zoom.)

Sampling the observation sphere

Figure 8: It is enough to simulate five tilts $\sqrt{2}, 2,2 \sqrt{2}, 4,4 \sqrt{2}$ and a growing but moderate number of longitudes per tilt. The overall simulated image area is five times the original.

What is the maximal absolute tilt

$$
\mathrm{t}=3\left(\theta=70.5^{\circ}\right), 107 \text { A-SIFT matches (3 false) }
$$

What is the maximal absolute tilt

$$
\mathrm{t}=5.2\left(\theta=78.9^{\circ}\right), 25 \text { A-SIFT matches (} 7 \text { false) }
$$

What is the maximal absolute tilt

$\mathrm{t}=3.8\left(\theta=74.7^{\circ}\right), 71$ A-SIFT matches (4 false).

What is the maximal absolute tilt

$\mathrm{t}=5.6\left(\theta=79.7^{\circ}\right), 33$ A-SIFT matches (4 false).

Experiments: Image Matching

Absolute tilts $t=t^{\prime}=$ 2.1. transition tilt: $\tau=$ 3.0.

Top: A-SIFT finds 1667 correspondences, all correct.

Middle: SIFT finds 3 correspondences.

Bottom: MSER finds 46 correspondences, out of which 35 are correct.

Experiments: Image Matching

Top: A-SIFT finds 338 correspondences, out of which 2 are false.

Middle: SIFT finds 5 correspondences.

Bottom: MSER finds 3 false correspondences in total that have been rejected.

Experiments: Image Matching

Transition tilt: $\tau \approx 3.2$.

Top: A-SIFT finds 724 correspondences, out of which 3 are false.

Middle: SIFT finds 6 correspondences.

Bottom: MSER finds 127 correspondences, out of which 50 are correct.

Experiments: Image Matching

Top: A-SIFT finds 255 matches out of which 1 is false.

Middle: SIFT finds 16 matches out of which 6 are false.

Bottom: MSER finds 70 tentative correspondences out of which there are 51 inliers.

Symmetry Detection in Perspective

- Symmetry detection = image comparison with the flipped version.
- Symmetric object not in frontal view \Rightarrow a viewpoint change between the
 flipped images.

- SIFT fails: big viewpoint change.
- MSER fails: two wings confused.
- D. G. Lowe, Object recognition from local scale-invariant features IJCV, 2, 1150-1157, 1999
- D. G. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision, 60(2):91-110, 2004
- D. Pritchard and W. Heidrich. Cloth Motion Capture. Computer Graphics Forum, 22(3):263 271, 2003.
- J. Matas, O. Chum, M.Urban, T. Pajdla, Robust Wide Baseline Stereo from Maximally Stable Extremal Regions, BMVC, 2002
- F. Cao, J.L. Lisani, J.M. Morel, P. Musé, and F. Sur, A theory of shape identification, LNM Springer 2008, forthcoming
- Julien Rabin, Julie Delon, Yann Gousseau, Mise en correspondance de descripteurs géométriques locaux par méthode a contrario, preprint, ENST, GRETSI 2007
- Guoshen Yu, J.M. M.: Report on Fully Affine Invariant Image Comparison, CMLA website

