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The new state of art: It is by now possible to recognize a
solid object in a digital image, no matter what the angle

and the distance, up to limits that only depend on
resolution.

In this pair: A very large transition tilt (extreme angle); ' 36. The
transition tilt will be defined later.
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120 correct matches (not all shown), 4 outliers. Each
match is indicated by a white segment

Recognition in spite of a very large view point change. The matches
were obtained by the Affine SIFT method (A-SIFT), a variant of
the SIFT method. Both methods will be explained.
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Figure 1: Recognition with extreme scale difference. 26 matches, 6
outliers. Exp. : Rabin, Gousseau, Delon, SIFT method
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Camera Model

Figure 2: Dürer 1525 ”Le Portillon”. Illustration of perspective de-
formation of solid objects
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Camera Model



6

Affine simplification

Figure 3: Uccello’s miracle (1465): ”Oh che dolce cosa è questa
prospettiva! ” Projective transforms are differentiable and therefore
locally equivalent to affine transforms. The room is a trapezoid, but
it is paved with parallelograms. This means that affine invariance is
enough for shape recognition.
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Conclusion: the local camera model

All digital images obtained from a locally smooth object whose local
frontal view is u0 satisfy, locally,

u =: S1G1Au0

for some planar affine map A (six parameters)!.
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• φ: longitude angle between optical axis and a
fixed vertical plane.

• θ = arccos(1/t): latitude angle between optical
axis and the normal to the image plane.
Tilt t > 1 ↔ θ ∈ [0◦, 90◦].

• ψ: rotation angle of camera around optical axis.

• λ: zoom parameter.

• T = (e, f)T : translation, not presented here.
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For recognition, shapes must be described by
local image features that are invariant to 8 pa-
rameters!
This leads to 4 Image comparison requirements and to

our PLAN

1. independence from sampling (interpolation required);

2. invariance from illuminance changes (at least 2 parameters);

3. independence from: scale (that means independence of blur!),
rotation, translation: 4 parameters, SIFT method

4. independence from tilts: (slanted view angle): 2 parameters,
A-SIFT method
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If each one of the 8 parameters has 10 values
(which is an underestimate) a single comparison of
two images would require the simulation of 108 dif-
ferent possible views for a single image, followed by
108 comparisons.
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Problem 1: Independence from sampling: From
a digital image back to a continuous image by
Shannon interpolation

• S1: the sampling operator at rate 1. The sampled digital image
u = S1u is defined on Z2 by u(n1, n2) = u(n1, n2);

• If u ∈ l2 ∩ l1(Z2), the Shannon interpolate of u is the only
L2(R2) function u = Iu having u as samples and with spectrum
support contained in (−π, π)2. Then S1Iu = u.

• Conversely, if u is L2 and band-limited in (−π, π)2, then
IS1u = u.
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2 Solution of the second problem : Invariance to
illumination conditions

• Contrast change: g(s) increasing, smooth, u → g(u)

• Level lines of u and g(u) are identical, (used in Mathematical
Morphology, Matheron, Serra, and recently by the MSER and
LLD methods shape recognition methods)

• The direction of the gradient ∇u
||∇u|| also invariant (SIFT

method).
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3 Solution of the third problem : independence
from scale (BLUR !), rotation, and translation:
The SIFT method

Figure 4: Shapes change with distance: The level lines not
stable by down-sampling
This is the main problem with level lines methods (MSER)
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Why the heat equation ?

• Gσ(x1, x2) = 1
2πσ2 e

− x2
1+x2

2
2σ2 ,

∂Gσ
∂σ

= σ∆Gσ, GδGβ = G√
δ2+β2 .

• Main assumption: the blur is gaussian

u = S1Gsu0, (Gs ∗ u0)(x) =:
∫

R2
G(y)u0(x− y)dy.

• If s ≥ 0.6, Shannon’s interpolation conditions are experimentally
satisfied: G1u0 =: Gs∗u0 is ”band-limited” ; IS1G1u0 = G1u0.

• Key property : if u1 = SsGsu0 and u2 = StGtu0, t2 = s2 + σ2

then
u1 = Gσu2; u1 = SsGσIu2.
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Why the heat equation and not other smart nonlinear
PDE’s ?

• Scale space (Witkin, Koenderink): ∂u
∂t = ∆u

• Anisotropic diffusion (Perona-Malik): ∂u
∂t = div

(
∇u

1+|∇u|2

)
• Mean curvature motion (Osher, Sethian), commutes with

contrast changes! ∂u
∂t = |∇u|div

(
∇u
|∇u|

)
• Affine scale space (Sapiro, Tannenbaum, Alvarez, Guichard,

Lions, M.): commutes with contrast changes and affine maps :
∂u
∂t = |∇u|div

(
∇u
|∇u|

) 1
3

But the reality is: images at different scales obey the heat equation.
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SIFT scale invariant features transform

1. the initial digital image is S1G1Au0, A is any SIMILARITY,
u0 is the underlying infinite resolution planar image;

2. at all scales σ > 0, the SIFT method computes u(σ, ·) =
GσG1Au0 and ’key points” (σ,x), namely scale and space
extrema of ∆u(σ, ·);

3. the blurred u(σ, ·) image is sampled around each key point at a
pace proportional to

√
1 + σ2;

4. directions of the sampling axes are fixed by a dominant direction
of ∇u(σ, ·) in a σ-neighborhood of the key point;

5. this yields rotation, translation and scale invariant samples:
the 4 parameters of A have been eliminated!;

6. the final SIFT descriptor keeps only orientations of the gradient
to gain invariance w.r. light conditions.
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Figure 5: Each key-point is associated a square image patch whose size is

proportional to the scale and whose side direction is given by the assigned

direction. Example of a 2 × 2 descriptor array of orientation histograms

(right) computed from an 8 × 8 set of samples (left). The orientation

histograms are quantized into 8 directions and the length of each arrow

corresponds to the magnitude of the histogram entry.
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Figure 6: SIFT key points (scale and orientation). Each one is co-
variant or invariant with respect to: translation, rotation, scale, and
contrast changes (6 parameters out of 8)
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Figure 7: left : the Pisa tower, SIFT method
Outliers elimination method: Rabin, Gousseau, Delon
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High Transition Tilts

u = G1HλR1(ψ)TtR2(φ)u0, v = G1Hλ′R1(ψ′)Tt′R2(φ′)u0

v = G1HµR1(ψ1)TτR2(φ1)u

• Absolute tilts t: from u to u0.

• Transition tilts τ(t, t′, φ − φ′): the absolute tilt from u to v
under the assumption that u is frontal.

• In contrast with absolute tilts, most transition tilts are LARGE.
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High Transition Tilts

τ = 36 ⇒ θ = 88.41◦
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High Transition Tilts: 79 matches (A-SIFT)
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High Transition Tilts: 50 matches (A-SIFT)
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State-of-the-art

• SIFT (Scale-Invariant Feature Transform) [Lowe 99, 04]:

– Rotation and translation are normalized.

– Zoom is simulated in the scale space.

– Modest robustness to tilt: τmax < 2.5.

• MSER (Maximally Stable Extremal Region) [Matas et al. 02]

– Zoom and tilt are inverted by normalization (but only an
approximation: normalization does not commute with blur).

– Rotation invariance is used (rotation is normalizable).

– Weakness: few features, limited affine invariance τmax < 5.
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Transition tilts attainable with each method

τ < 2.5 (SIFT) τ < 5 (MSER) τ < 40 (A-SIFT)

θ = 80◦
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Affine-SIFT (A-SIFT) Overview

• Simulate the tilts (two parameters).

• Simulated images are compared by a rotation-, translation-
and zoom-invariant algorithm, e.g., SIFT. (SIFT normalizes
translation and rotation and simulates zoom.)
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Sampling the observation sphere

Perspective view View from the zenith

Figure 8: It is enough to simulate five tilts
√

2, 2, 2
√

2, 4, 4
√

2 and
a growing but moderate number of longitudes per tilt. The overall
simulated image area is five times the original.
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What is the maximal absolute tilt

t = 3 (θ = 70.5◦), 107 A-SIFT matches (3 false).
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What is the maximal absolute tilt

t = 5.2 (θ = 78.9◦), 25 A-SIFT matches (7 false).
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What is the maximal absolute tilt

t = 3.8 (θ = 74.7◦), 71 A-SIFT matches (4 false).
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What is the maximal absolute tilt

t = 5.6 (θ = 79.7◦), 33 A-SIFT matches (4 false).
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Experiments: Image Matching

Absolute tilts t = t′ =

2.1. transition tilt: τ =

3.0.

Top: A-SIFT finds 1667

correspondences, all cor-

rect.

Middle: SIFT finds 3 cor-

respondences.

Bottom: MSER finds 46

correspondences, out of

which 35 are correct.
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Experiments: Image Matching

Absolute tilts t = 2.1

(left), t′ = 6.0 (right).

transition tilt: τ = 2.9.

Top: A-SIFT finds 338

correspondences, out of

which 2 are false.

Middle: SIFT finds 5 cor-

respondences.

Bottom: MSER finds 3

false correspondences in

total that have been re-

jected.
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Experiments: Image Matching

Transition tilt: τ ≈ 3.2.

Top: A-SIFT finds 724

correspondences, out of

which 3 are false.

Middle: SIFT finds 6 cor-

respondences.

Bottom: MSER finds 127

correspondences, out of

which 50 are correct.
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Experiments: Image Matching

Top: A-SIFT finds 255

matches out of which 1 is

false.

Middle: SIFT finds 16

matches out of which 6

are false.

Bottom: MSER finds

70 tentative correspon-

dences out of which there

are 51 inliers.
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Symmetry Detection in Perspective

• Symmetry detection = image compar-
ison with the flipped version.

• Symmetric object not in frontal view
⇒ a viewpoint change between the
flipped images.

– SIFT fails: big viewpoint change.

– MSER fails: two wings confused.
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