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The new state of art: It is by now possible to recognize a
solid object in a digital image, no matter what the angle
and the distance, up to limits that only depend on

resolution.

In this pair: A very large transition tilt (extreme angle); ~ 36. The
transition tilt will be defined later.



120 correct matches (not all shown), 4 outliers. Each

match is indicated by a white segment

Recognition in spite of a very large view point change. The matches
were obtained by the Affine SIFT method (A-SIFT), a variant of
the SIFT method. Both methods will be explained.



Figure 1: Recognition with extreme scale difference. 26 matches, 6
outliers. Exp. : Rabin, Gousseau, Delon, SIF'T method
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Figure 2: Direr 1525 ”Le Portillon”. Illustration of perspective de-

formation of solid objects
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Affine simplification

Figure 3: Uccello’s miracle (1465): ” Oh che dolce cosa € questa
prospettival 7 Projective transforms are differentiable and therefore
locally equivalent to affine transforms. The room is a trapezoid, but

it is paved with parallelograms. This means that affine invariance is

enough for shape recognition.



Conclusion: the local camera model

All digital images obtained from a locally smooth object whose local

frontal view is ug satisty, locally,
u =: Sl GlAuO

for some planar affine map A (siz parameters)!.
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For recognition, shapes must be described by
local image features that are invariant to 8 pa-
rameters!

This leads to 4 Image comparison requirements and to

our PLAN

1. independence from sampling (interpolation required);
2. invariance from illuminance changes (at least 2 parameters);

3. independence from: scale (that means independence of blur!),
rotation, translation: 4 parameters, SIF'T method

4. independence from tilts: (slanted view angle): 2 parameters,
A-SIFT method



16-1

If each one of the 8 parameters has 10 values
(which is an underestimate) a single comparison of
two images would require the simulation of 10° dif-
ferent possible views for a single image, followed by
10% comparisons.



Problem 1: Independence from sampling: From
a digital image back to a continuous image by
Shannon interpolation

e S;: the sampling operator at rate 1. The sampled digital image

u = Siu is defined on Z? by u(ni,ng) = u(ny, no);

o If u € 12 NIY(Z?), the Shannon interpolate of u is the only
L?(R?) function u = ITu having u as samples and with spectrum

support contained in (—m,7)%. Then S;Ju = u.

e Conversely, if u is L? and band-limited in (—m, )%, then
IS{u = u.
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2 Solution of the second problem : Invariance to
illumination conditions

e Contrast change: ¢(s) increasing, smooth, u — g(u)

e Level lines of u and g(u) are identical, (used in Mathematical
Morphology, Matheron, Serra, and recently by the MSER and
LLD methods shape recognition methods)

e The direction of the gradient Hg;j“ also invariant (SIFT

method).
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3 Solution of the third problem : independence

from scale (BLUR !), rotation, and translation:
The SIFT method
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Figure 4: Shapes change with distance: The level lines not
stable by down-sampling
This is the main problem with level lines methods (MSER)



Why the heat equation 7
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e Main assumption: the blur is gaussian

u=S1Gsug, (Gsx*xug)(x)=: G(y)ug(x — y)dy.
R2

e If s > 0.6, Shannon’s interpolation conditions are experimentally

satisfied: Gluo =. GS*UQ is ” band-limited” ) ISl Gluo = Gluo.

o Key property : if u; = S;G,ug and us = S;Gug, t? = s + o2
then

u; = GJUQ; U1 = SSGJIUQ.
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Why the heat equation and not other smart nonlinear
PDE’s ?

e Scale space (Witkin, Koenderink): 2% = Ay
e Anisotropic diffusion (Perona-Malik): 2 5 = div (HIV%IQ)

e Mean curvature motion (Osher, Sethian), commutes with

contrast changes! 2% = |Vul|div (|v |)

e Affine scale space (Sapiro, Tannenbaum, Alvarez, Guichard,

Lions, M.): commutes with contrast changes and affine maps :

= |Vul|div (IV |)%

But the reality is: images at different scales obey the heat equation.
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SIFT scale invariant features transform

L.

the initial digital image is S1G1Aug, A is any SIMILARITY,
Uy is the underlying infinite resolution planar image;

. at all scales ¢ > 0, the SIFT method computes u(o,-) =

G,G1Aug and ’key points” (o0,x), namely scale and space
extrema of Au(o,-);

. the blurred u(o,-) image is sampled around each key point at a

pace proportional to /1 + 02;

. directions of the sampling axes are fixed by a dominant direction

of Vu(o,-) in a o-neighborhood of the key point;

. this yields rotation, translation and scale invariant samples:

the 4 parameters of A have been eliminated!;

. the final SIF'T descriptor keeps only orientations of the gradient

to gain invariance w.r. light conditions.
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Figure 5: Each key-point is associated a square image patch whose size is
proportional to the scale and whose side direction is given by the assigned
direction. Example of a 2 x 2 descriptor array of orientation histograms
(right) computed from an 8 x 8 set of samples (left). The orientation
histograms are quantized into 8 directions and the length of each arrow

corresponds to the magnitude of the histogram entry.
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Figure 6: SIFT key points (scale and orientation). Each one is co-
variant or invariant with respect to: translation, rotation, scale, and

contrast changes (6 parameters out of 8)

23



Figure 7: left : the Pisa tower, SIF'T method
Outliers elimination method: Rabin, Gousseau, Delon
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High Transition Tilts

L
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t=4, <l>=0/' \t’=4, d'=m /2

L i = | |
T = =16 @'—

x ¥ L/4

u=G H\R;(¢)T;Ra(¢)ug, v=GHNR,(®")TpRa(¢")ug

v=G1H,R;(¢1)T,Ra(¢1)u
e Absolute tilts ¢: from u to uy.

e Transition tilts 7(¢,t', ¢ — ¢’): the absolute tilt from u to v

under the assumption that u is frontal.

e In contrast with absolute tilts, most transition tilts are LARGE.
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Seismic activity Soars
torecord backlogs

High Transition Tilts

= 88.41°

T=36=10



High Transition Tilts: 79 matches (A-SIFT)
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High Transition Tilts: 50 matches (A-SIFT)
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State-of-the-art

e SIFT (Scale-Invariant Feature Transform) [Lowe 99, 04]:
— Rotation and translation are normalized.
— Zoom is stmulated in the scale space.

— Modest robustness to tilt: 7y < 2.5.

e MSER (Maximally Stable Extremal Region) [Matas et al. 02]

— Zoom and tilt are inverted by normalization (but only an

approximation: normalization does not commute with blur).

— Rotation invariance is used (rotation is normalizable).

— Weakness: few features, limited affine invariance 7,.x < 5.
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Transition tilts attainable with each method
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Affine-SIFT (A-SIFT) Overview

e Simulate the tilts (two parameters).

e Simulated images are compared by a rotation-, translation-
and zoom-invariant algorithm, e.g., SIFT. (SIFT normalizes

translation and rotation and simulates zoom.)

Similarity-invariant
image matching
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Sampling the observation sphere

Perspective view View from the zenith

Figure 8: It is enough to simulate five tilts v/2,2,2v/2,4,4v/2 and
a growing but moderate number of longitudes per tilt. The overall

simulated image area is five times the original.



What is the maximal absolute tilt

t =3 (0 =70.5°), 107 A-SIFT matches (3 false).

33



What is the maximal absolute tilt

t = 5.2 (0 = 78.9°), 25 A-SIFT matches (7 false).
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What is the maximal absolute tilt

t = 3.8 (0 =74.7°), 71 A-SIFT matches (4 false).
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What is the maximal absolute tilt

t = 5.6 (# =79.7°), 33 A-SIFT matches (4 false).



Experiments: Image Matching

Absolute tilts t = t' =
2.1. transition tilt: = =

3.0.

Top: A-SIFT finds 1667
correspondences, all cor-

rect.

Middle: SIFT finds 3 cor-

respondences.

Bottom: MSER finds 46
correspondences, out of

which 35 are correct.
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Experiments: Image Matching

Absolute tilts t = 2.1
(left), t' = 6.0 (right).

transition tilt: 7 = 2.9.

Top: A-SIFT finds 338
correspondences, out of

which 2 are false.

Middle: SIFT finds 5 cor-

respondences.

Bottom: MSER finds 3
false correspondences in
total that have been re-

jected.
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Experiments: Image Matching

Transition tilt: 7 ~ 3.2.

Top: A-SIFT finds 724
correspondences, out of

which 3 are false.

Middle: SIFT finds 6 cor-

respondences.

Bottom: MSER finds 127
correspondences, out of

which 50 are correct.
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Experiments:

Image Matching

Top: A-SIFT finds 255
matches out of which 1 is

false.

Middle: SIFT finds 16
matches out of which 6

are false.

Bottom: MSER finds
70 tentative correspon-
dences out of which there

are 51 inliers.
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Symmetry Detection in Perspective

e Symmetry detection = image compar-

ison with the flipped version.

e Symmetric object not in frontal view
= a viewpoint change between the

flipped images.

— SIFT fails: big viewpoint change.

— MSER fails: two wings confused.
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