The heat equation for ever

(The SIFT method and its extensions)

Jean-Michel Morel ENS Cachan, France Guoshen Yu, Ecole Polytechnique, France

D. G. Lowe, Object recognition from local scale-invariant features, IJCV 2, 1999

The new state of art: It is by now possible to recognize a solid object in a digital image, no matter what the angle and the distance, up to limits that only depend on resolution.

In this pair: A very large transition tilt (extreme angle); $\simeq 36$. The transition tilt will be defined later.

120 correct matches (not all shown), 4 outliers. Each match is indicated by a white segment

Recognition in spite of a very large view point change. The matches were obtained by the Affine SIFT method (A-SIFT), a variant of the SIFT method. Both methods will be explained.

Figure 1: Recognition with extreme scale difference. 26 matches, 6 outliers. Exp. : Rabin, Gousseau, Delon, SIFT method

Camera Model

Figure 2: Dürer 1525 "Le Portillon". Illustration of perspective deformation of solid objects

Camera Model

Affine simplification

Figure 3: Uccello's miracle (1465): "Oh che dolce cosa è questa prospettiva!" Projective transforms are differentiable and therefore locally equivalent to affine transforms. The room is a trapezoid, but it is paved with parallelograms. This means that affine invariance is enough for shape recognition.

Conclusion: the local camera model

All digital images obtained from a locally smooth object whose local frontal view is \mathbf{u}_0 satisfy, locally,

 $u =: \mathbf{S}_1 \mathbf{G}_1 \mathbf{A} \mathbf{u}_0$

for some planar affine map \mathbf{A} (six parameters)!.

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

- ϕ : *longitude* angle between optical axis and a fixed vertical plane.
- θ = arccos(1/t): *latitude* angle between optical axis and the normal to the image plane.
 Tilt t > 1 ↔ θ ∈ [0°, 90°].
- ψ : rotation angle of camera around optical axis.
- λ : *zoom* parameter.
- $\mathcal{T} = (e, f)^T$: translation, not presented here.

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

- ϕ : *longitude* angle between optical axis and a fixed vertical plane.
- θ = arccos(1/t): *latitude* angle between optical axis and the normal to the image plane.
 Tilt t > 1 ↔ θ ∈ [0°, 90°].
- ψ : rotation angle of camera around optical axis.
- λ : *zoom* parameter.
- $\mathcal{T} = (e, f)^T$: translation, not presented here.

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

- ϕ : *longitude* angle between optical axis and a fixed vertical plane.
- $\theta = \arccos(1/t)$: *latitude* angle between optical axis and the normal to the image plane.

Tilt $t > 1 \leftrightarrow \theta \in [0^{\circ}, 90^{\circ}].$

- ψ : rotation angle of camera around optical axis.
- λ : *zoom* parameter.
- $\mathcal{T} = (e, f)^T$: translation, not presented here.

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

- ϕ : *longitude* angle between optical axis and a fixed vertical plane.
- $\theta = \arccos(1/t)$: *latitude* angle between optical axis and the normal to the image plane.

Tilt $t > 1 \leftrightarrow \theta \in [0^\circ, 90^\circ]$.

- ψ : rotation angle of camera around optical axis.
- λ : *zoom* parameter.
- $\mathcal{T} = (e, f)^T$: translation, not presented here.

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

- ϕ : *longitude* angle between optical axis and a fixed vertical plane.
- θ = arccos(1/t): *latitude* angle between optical axis and the normal to the image plane.
 Tilt t > 1 ↔ θ ∈ [0°, 90°].
- ψ : rotation angle of camera around optical axis.
- λ : *zoom* parameter.
- $\mathcal{T} = (e, f)^T$: translation, not presented here.

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

- ϕ : *longitude* angle between optical axis and a fixed vertical plane.
- θ = arccos(1/t): *latitude* angle between optical axis and the normal to the image plane.
 Tilt t > 1 ↔ θ ∈ [0°, 90°].
- ψ : rotation angle of camera around optical axis.
- λ : *zoom* parameter.
- $\mathcal{T} = (e, f)^T$: translation, not presented here.

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

- ϕ : *longitude* angle between optical axis and a fixed vertical plane.
- θ = arccos(1/t): *latitude* angle between optical axis and the normal to the image plane.
 Tilt t > 1 ↔ θ ∈ [0°, 90°].
- ψ : rotation angle of camera around optical axis.
- λ : *zoom* parameter.
- $\mathcal{T} = (e, f)^T$: translation, not presented here.

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{H}_{\lambda} \mathbf{R}_{1}(\psi) \mathbf{T}_{t} \mathbf{R}_{2}(\phi) = \lambda \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

- ϕ : *longitude* angle between optical axis and a fixed vertical plane.
- θ = arccos(1/t): *latitude* angle between optical axis and the normal to the image plane.
 Tilt t > 1 ↔ θ ∈ [0°, 90°].
- ψ : rotation angle of camera around optical axis.
- λ : *zoom* parameter.
- $\mathcal{T} = (e, f)^T$: translation, not presented here.

For recognition, shapes must be described by local image features that are invariant to 8 parameters! This leads to 4 Image comparison requirements and to

our PLAN

- 1. independence from sampling (interpolation required);
- 2. invariance from illuminance changes (at least 2 parameters);
- 3. independence from: scale (that means independence of blur!), rotation, translation: 4 parameters, SIFT method
- 4. independence from tilts: (slanted view angle): 2 parameters, A-SIFT method

If each one of the 8 parameters has 10 values (which is an underestimate) a single comparison of two images would require the simulation of 10^8 different possible views for a single image, followed by 10^8 comparisons.

Problem 1: Independence from sampling: From a digital image back to a continuous image by Shannon interpolation

- \mathbf{S}_1 : the sampling operator at rate 1. The sampled digital image $u = \mathbf{S}_1 \mathbf{u}$ is defined on \mathbb{Z}^2 by $u(n_1, n_2) = \mathbf{u}(n_1, n_2)$;
- If $u \in l^2 \cap l^1(\mathbb{Z}^2)$, the Shannon interpolate of u is the only $L^2(\mathbb{R}^2)$ function $\mathbf{u} = Iu$ having u as samples and with spectrum support contained in $(-\pi, \pi)^2$. Then $\mathbf{S}_1 Iu = u$.
- Conversely, if **u** is L^2 and band-limited in $(-\pi, \pi)^2$, then $I\mathbf{S}_1\mathbf{u} = \mathbf{u}$.

2 Solution of the second problem : Invariance to illumination conditions

- Contrast change: g(s) increasing, smooth, $\mathbf{u} \to g(\mathbf{u})$
- Level lines of \mathbf{u} and $g(\mathbf{u})$ are identical, (used in Mathematical Morphology, Matheron, Serra, and recently by the MSER and LLD methods shape recognition methods)
- The direction of the gradient $\frac{\nabla \mathbf{u}}{||\nabla u||}$ also invariant (SIFT method).

3 Solution of the third problem : independence from scale (BLUR !), rotation, and translation: The SIFT method

Figure 4: Shapes change with distance: The level lines not stable by down-sampling This is the main problem with level lines methods (MSER) Why the heat equation ?

•
$$G_{\sigma}(x_1, x_2) = \frac{1}{2\pi\sigma^2} e^{-\frac{x_1^2 + x_2^2}{2\sigma^2}},$$

$$\frac{\partial G_{\sigma}}{\partial \sigma} = \sigma \Delta G_{\sigma}, \quad G_{\delta} G_{\beta} = G_{\sqrt{\delta^2 + \beta^2}}.$$

• Main assumption: the blur is gaussian

$$u = \mathbf{S}_1 G_s \mathbf{u}_0, \quad (\mathbf{G}_s * \mathbf{u}_0)(\mathbf{x}) =: \int_{\mathbb{R}^2} \mathbf{G}(\mathbf{y}) \mathbf{u}_0(\mathbf{x} - \mathbf{y}) d\mathbf{y}.$$

- If $s \ge 0.6$, Shannon's interpolation conditions are experimentally satisfied: $\mathbf{G}_1 \mathbf{u}_0 =: G_s * \mathbf{u}_0$ is "band-limited"; $I\mathbf{S}_1 \mathbf{G}_1 \mathbf{u}_0 = \mathbf{G}_1 \mathbf{u}_0$.
- Key property : if $u_1 = \mathbf{S}_s \mathbf{G}_s \mathbf{u}_0$ and $u_2 = \mathbf{S}_t \mathbf{G}_t \mathbf{u}_0$, $t^2 = s^2 + \sigma^2$ then

$$\mathbf{u}_1 = \mathbf{G}_{\sigma} \mathbf{u}_2; \ u_1 = \mathbf{S}_s \mathbf{G}_{\sigma} I \mathbf{u}_2.$$

Why the heat equation and not other smart nonlinear PDE's ?

- Scale space (Witkin, Koenderink): $\frac{\partial u}{\partial t} = \Delta u$
- Anisotropic diffusion (Perona-Malik): $\frac{\partial u}{\partial t} = div \left(\frac{\nabla u}{1 + |\nabla u|^2} \right)$
- Mean curvature motion (Osher, Sethian), commutes with contrast changes! $\frac{\partial u}{\partial t} = |\nabla u| div \left(\frac{\nabla u}{|\nabla u|}\right)$
- Affine scale space (Sapiro, Tannenbaum, Alvarez, Guichard, Lions, M.): commutes with contrast changes and affine maps : $\frac{\partial u}{\partial t} = |\nabla u| div \left(\frac{\nabla u}{|\nabla u|}\right)^{\frac{1}{3}}$

But the reality is: images at different scales obey the heat equation.

SIFT scale invariant features transform

- 1. the initial digital image is $\mathbf{S}_1 \mathbf{G}_1 \mathbf{A} \mathbf{u}_0$, \mathbf{A} is any SIMILARITY, \mathbf{u}_0 is the underlying infinite resolution planar image;
- 2. at all scales $\sigma > 0$, the SIFT method computes $\mathbf{u}(\sigma, \cdot) = \mathbf{G}_{\sigma}\mathbf{G}_{1}\mathbf{A}\mathbf{u}_{0}$ and 'key points" (σ, \mathbf{x}) , namely scale and space extrema of $\Delta \mathbf{u}(\sigma, \cdot)$;
- 3. the blurred $\mathbf{u}(\sigma, \cdot)$ image is sampled around each key point at a pace proportional to $\sqrt{1 + \sigma^2}$;
- 4. directions of the sampling axes are fixed by a dominant direction of $\nabla \mathbf{u}(\sigma, \cdot)$ in a σ -neighborhood of the key point;
- 5. this yields rotation, translation and scale invariant samples: the 4 parameters of **A** have been eliminated!;
- 6. the final SIFT descriptor keeps only orientations of the gradient to gain invariance w.r. light conditions.

Figure 5: Each key-point is associated a square image patch whose size is proportional to the scale and whose side direction is given by the assigned direction. Example of a 2×2 descriptor array of orientation histograms (right) computed from an 8×8 set of samples (left). The orientation histograms are quantized into 8 directions and the length of each arrow corresponds to the magnitude of the histogram entry.

Figure 6: SIFT key points (scale and orientation). Each one is covariant or invariant with respect to: translation, rotation, scale, and contrast changes (6 parameters out of 8)

Figure 7: left : the Pisa tower, SIFT method Outliers elimination method: Rabin, Gousseau, Delon

High Transition Tilts

 $\mathbf{u} = \mathbf{G}_1 \mathbf{H}_{\lambda} \mathbf{R}_1(\psi) \mathbf{T}_t \mathbf{R}_2(\phi) \mathbf{u}_0, \quad \mathbf{v} = \mathbf{G}_1 \mathbf{H}_{\lambda'} \mathbf{R}_1(\psi') \mathbf{T}_{t'} \mathbf{R}_2(\phi') \mathbf{u}_0$ $\mathbf{v} = \mathbf{G}_1 \mathbf{H}_{\mu} \mathbf{R}_1(\psi_1) \mathbf{T}_{\tau} \mathbf{R}_2(\phi_1) \mathbf{u}$

- Absolute tilts t: from \mathbf{u} to \mathbf{u}_0 .
- Transition tilts $\tau(t, t', \phi \phi')$: the absolute tilt from **u** to **v** under the assumption that **u** is frontal.
- In contrast with absolute tilts, most transition tilts are **LARGE**.

High Transition Tilts

 $\tau = 36 \Rightarrow \theta = \mathbf{88.41}^\circ$

High Transition Tilts: 79 matches (A-SIFT)

High Transition Tilts: 50 matches (A-SIFT)

State-of-the-art

- SIFT (Scale-Invariant Feature Transform) [Lowe 99, 04]:
 - Rotation and translation are *normalized*.
 - Zoom is *simulated* in the scale space.
 - Modest robustness to tilt: $\tau_{\rm max} < 2.5$.
- MSER (Maximally Stable Extremal Region) [Matas et al. 02]
 - Zoom and tilt are inverted by *normalization* (but only an approximation: normalization does not commute with blur).
 - Rotation invariance is used (rotation is normalizable).
 - Weakness: few features, limited affine invariance $\tau_{\rm max} < 5$.

Transition tilts attainable with each method

Affine-SIFT (A-SIFT) Overview

- Simulate the tilts (two parameters).
- Simulated images are compared by a rotation-, translationand zoom-invariant algorithm, e.g., SIFT. (SIFT normalizes translation and rotation and simulates zoom.)

Sampling the observation sphere

Figure 8: It is enough to simulate five tilts $\sqrt{2}$, 2, $2\sqrt{2}$, 4, $4\sqrt{2}$ and a growing but moderate number of longitudes per tilt. The overall simulated image area is five times the original.

t = 3 (θ = 70.5°), 107 A-SIFT matches (3 false).

t = 5.2 (θ = 78.9°), 25 A-SIFT matches (7 false).

t = 3.8 (θ = 74.7°), 71 A-SIFT matches (4 false).

t = 5.6 (θ = 79.7°), 33 A-SIFT matches (4 false).

Absolute tilts t = t' =2.1. transition tilt: $\tau =$ 3.0.

Top: A-SIFT finds 1667 correspondences, all correct.

Middle: SIFT finds 3 correspondences.

Bottom: MSER finds 46 correspondences, out of which 35 are correct.

Absolute tilts t = 2.1(left), t' = 6.0 (right). transition tilt: $\tau = 2.9$.

Top: A-SIFT finds 338 correspondences, out of which 2 are false.

Middle: SIFT finds 5 correspondences.

Bottom: MSER finds 3 false correspondences in total that have been rejected.

Transition tilt: $\tau \approx 3.2$.

Top: A-SIFT finds 724 correspondences, out of which 3 are false.

Middle: SIFT finds 6 correspondences.

Bottom: MSER finds 127 correspondences, out of which 50 are correct.

Top: A-SIFT finds 255 matches out of which 1 is false.

Middle: SIFT finds 16 matches out of which 6 are false.

Bottom: MSER finds 70 tentative correspondences out of which there are 51 inliers.

Symmetry Detection in Perspective

- Symmetry detection = image comparison with the flipped version.
- Symmetric object not in frontal view
 ⇒ a viewpoint change between the flipped images.

- SIFT fails: big viewpoint change.
- MSER fails: two wings confused.

- D. G. Lowe, Object recognition from local scale-invariant features IJCV, 2, 1150–1157, 1999
- D. G. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision, 60(2):91-110, 2004
- D. Pritchard and W. Heidrich. Cloth Motion Capture. Computer Graphics Forum, 22(3):263 271, 2003.
- J. Matas, O. Chum, M.Urban, T. Pajdla, Robust Wide Baseline Stereo from Maximally Stable Extremal Regions, BMVC, 2002
- F. Cao, J.L. Lisani, J.M. Morel, P. Musé, and F. Sur, *A theory* of shape identification, LNM Springer 2008, forthcoming
- Julien Rabin, Julie Delon, Yann Gousseau, Mise en correspondance de descripteurs géométriques locaux par méthode a contrario, preprint, ENST, GRETSI 2007
- Guoshen Yu, J.M. M.: Report on Fully Affine Invariant Image Comparison, CMLA website