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Disadvantages of SGD

» Weaker theoretical guarantee mainly comes from the variance

of SGD.

» Cannot avoid saddle points.

» Cannot protect the privacy of the training data, at least not a
good trade-off between privacy and utility.




Laplacian Smoothing Gradient Descent

For any differentiable function £(w), consider
witl = wk — 4(1 — o)1V L(WK).

Laplacian Smoothing Gradient Descent (LS-GD)
High order schemes

wH = w* — ~(1 + (-1)"0 L")V L(W).

Osher, Wang, Yin, Luo, Pham, and Lin, arXiv:1806.06317, 2018




Variance Reduction




Softmax Regression

For a given instance X, the probability belonging to k-th class is
modeled by

exp (w, - x)

S exp(wl - x)

P(y = k|x.w) =

where w = (W . wo. -+ . Wk).

To learn the weights w, we consider the cross-entropy loss function
(maybe with regularization terms)

L(w) =)  —log(P(y = yilxi, w)).

‘

where the sum is taken over the training data {(x;.y;)}.




SGD v.s. LS-SGD - Softmax Regression

Consider the MNIST hand written digits recognition by using the
Softmax regression. The models are trained by running 100 epochs
of SGD and LS-SGD respectively on the 60000 training instances

with batch size 100 and learning rate 0.05.
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Figure: The histogram of generalization accuracies of the softmax
regression model trained with LS-SGD over 100 independent experiments

by using different o.




Training LeNet with Small Batch Size
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LeCun et al., Proc. |IEEE,

Figure: Generalization accuracy of

1998 LeNet5 trained with different batch
sizes by SGD and LS-SGD.




Avoid Saddle Point




Avoid Saddle Point

Consider the quadratic function

f(x) = x' Ax,

where the matrix A = diag{k. k.- .k.—k}nxn with k > 0, f has

a saddle point at 0, then we have

dim{xg|Xxs1 =Xk — )VF(Xk), Xooc =0} =n—-1

k+1
k + 2

L)_IVf(xk). X = D) =

dim{xo|Xx+1 = Xx—7 (I

Kreusser, Osher, and Wang, 2018




Avoid Saddle Point
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Figure: Plot of distant field to the saddle point (0.0) after running 100
iterations of GD (a) and LSGD (b) with learning rate 0.1 on the function
f(x,y) = x* — y%. The coordinate of every pixel denotes the starting point. For
both (a) and (b) we show the same sized region starting from where GD and
LSGD will be closest the the saddle point.

LSGD never converge to saddle point.
LSGD escape the "stuck region” faster.




Differential Privacy




Differential Privacy

Differential Privacy:
A randomized algorithm A is (¢, d)-differentially private if for all neighboring
datasets D, D’ and for all events S in the output space of .4, we have

Pr(A(D) € S) < e*Pr(A(D’) € S) + 4.

when d = 0 and A is e-differentially private .
What DP Guarantees?

o+ [ P ?

e
Data + %t * hWJ 4&*{0} =1q pl[A(D") =1] ]_

Participation of a person d;:‘EE not For all D, D' that differ in one person's
change the outcome much! We cannot value, if A is (e, 8)-DP, then:

infer whether the boy or the girl is
participated in the dataset or not based I Pr(A(D) e S) -4 _
on the outcome. Therefore the privacy S.Pr( ATS;?E $)>5 08 Pr(A(D")) € S '

of the participant is guaranteed.

Algorithm

3

C. Dwork and A. Roth, The Algorithmic Foundation of Differential Privacy, 2014.




Differential Privacy Mechanism

To obtain the DP solution of the empirical risk, £(w, {x;, vi}/~;). we can do:

» OQOutput Perturbation:

x

= argminL(w, {X;, yi}i=1) + bpriv-

IW;::rriw.r

» Objective Perturbation:

1
L:priv (W {xf.y:'}::':l] = JC(W {Xi.jﬁ}?:ﬂ -+ H < bsriv.w e

» Gradient Perturbation:
vﬁpriv(wr- {xh }’i}?:l) = vf’(wr- {xf-yf}::':I) T h;riv .

Laplace Mechanism: the noise is sampled from Laplace distribution, which

typically guarantees «-DP.
Gaussian Mechanism: the noise is sampled from the Gaussian distribution,

which typically guarantees (¢, d)-DP.

Our Goal: develop algorithms to perform empirical risk minimization, which

can improve the utility and privacy guarantee.




Definition
L, /L>-Sensitivity. For any given loss function £(w. {x.y}), the
L,-sensitivity of VL is:

A1(VL)= max ||[VL(w.{x.y})—VL(w. {x".y})|.

Ix—x"|[1=1
and the L»-sensitivity of VL is:

A>(VL)= max ||[VL(w.{x.y})—VL(w, {X.¥y})-.

Ix—x"||1=1

where ||x — x’||; means the data sets {x} and {x’} differ in only
one entry.

Dwork et al, 2004




Laplace and Gaussian Mechanism

Theorem
Laplace Mechanism Given any function f : x — y, the following
Laplace mechanism guarantees (¢, 0)-differential privacy.

M(x,f(x).€) =f(x)+Y.

where Y is the Laplace noise with the same dimension as 'y and

each coordinate is sampled i.i.d. from an(w).

Theorem
Gaussian Mechanism Given any function f : x — vy, the

following Gaussian mechanism guarantees (€. 0 )-differential privacy
(0<e<l)

Mp(x.f(x).€) =f(x)+ Y.

where Y is the Gaussian noise with the same dimension as 'y and
each coordinate is sampled i.i.d. from N(0.0?) with o >

for V.c? > 2In (1%)

cAo(f)




Two DP Strategies

» Strategy |

wtl = wk — A (VL(W, {x.y}) +n). (3)

» Strategy |l




Privacy Guarantee

T heorem

For a given noise n, if it guarantees (¢, d)-differential privacy for
the (S)GD. Then with the same noise n, the scheme in the
Strategy | is also guaranteed to be (€. d)-differentially private.

Remark

For Strategy ||, we can use a fixed noise to guarantee different
level of differential privacy with high probability. This leads to
multi-level differential privacy guarantee.




Training/ Testing Loss of the Softmax Regression Model
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