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Part I. Stochastic hybrid systems in biology



1D STOCHASTIC HYBRID SYSTEM

Consider the piecewise deterministic system

dx
dt

=
1
τx

Fn(x), x ∈ R, n = 1, . . . ,K

n(t) is a discrete Markov process with transition rates Wnm(x)/τn.

Set τx = 1 and introduce the small parameter ε = τn/τx

Chapman-Kolmogorov (CK) equation for pn(x, t) = E[p(x, t)1n(t)=n] is

∂pn

∂t
= −∂[Fn(x)pn(x, t)]

∂x
+

1
ε

K∑
m=1

Anm(x)pm(x, t)

where

Anm(x) = Wnm(x)−
K∑

k=1

Wkn(x)δm,n.

Assume that there exists a unique stationary density ρn(x) with∑
m

Anm(x)ρm(x) = 0



[A] STOCHASTIC CONDUCTANCE-BASED MODEL

100ms
5pA

Suppose a neuron has n ≤ N open Na+ channels and m ≤ M open K+

channels

Voltage V(t) evolves according to piecewise deterministic dynamics

dv
dt

= F(v,m, n) ≡ n
N

fNa(v) +
m
M

fK(v)− g(v).

with fi(v) = ḡi(vi − v)

Assume each channel satisfies the simple kinetic scheme

C(closed)
αi(v)
−→
←−
βi(v)

O(open), i = Na, K,



[A] MORRIS-LECAR MODEL OF NEURAL EXCITABILITY

In the limit of fast Na+ channels and infinite K+ channels (M→∞) we
obtain the deterministic Morris-Lecar (ML) model

dv
dt

=
αNa(v)

αNa(v) + βNa(v)
fNa(v) + wfK(v)− g(v)

dw
dt

= αK(v)(1− w)− βK(v)w,

Examine excitability using slow/fast analysis
Require large perturbations (rare events) to induce an action potential

Na
K

Ion channel fluctuations can induce spontaneous action potentials.



[B] AUTOREGULATORY GENE NETWORK

σ
γ

Y

α(x) β(x)

X

feedback continuous variable
  = promoter protein concentration

discrete variable 
  = state of promoter

l = 0

l = 1

X

Protein concentration x and promoter state n ∈ {0, 1}:

dx
dt

= Fn(x) = nσ + σ0 − x

Promoter transition rates

(off)
α(x)


β(x)

(on) α(x) = α0x2, β(x) = β0,



[B] AUTOREGULATORY GENE NETWORK

In the fast switching limit ε→ 0, we obtain the deterministic equation

ẋ =
∑
l=0,1

ρl(x)Fl(x) ≡ −x + F(x).

where

ρ0(x) =
β(x)

α(x) + β(x)
= 1− ρ1(x), F(x) = σ0 +

σα0x2

α0x2 + β0
.

Hill function F(x) supports bistability

x−

x
0

x+
σ0

x

F(x)



[C] RECURRENT EXCITATORY NEURAL NETWORK

N(t)

X(t)

N(t)+1

feedback

continuous variable = synaptic current

discrete variable = number of spikes

Consider a large population of excitatory neurons

N(t) is number of spiking neurons, and X(t) is synaptic current

τ
dx
dt

= Fn(x) = −x(t) + wn

Birth-death process N(t)→ N(t)± 1 with transition rates

Ω+ =
F(X)

τa
, Ω− =

N(t)
τa

.



[C] RECURRENT EXCITATORY NEURAL NETWORK

Stationary density is a Poisson distribution,

ρn(x) =
[F(x)]ne−F(x)

n!
,

In the limit ε→ 0, we obtain the mean-field equation

dx
dt

=
∞∑

n=0

Fn(x)ρn(x) = −x + wF(x) ≡ V(x) = −dΨ

dx

0 0.5 1 1.5 2 2.5 3

Ψ(x)

x

κ = 0.6

κ = 0.8

κ = 1.0

x-

x
0

x+

F(x) = 2/(1+e-κ(x-θ))

Ambiguous perception and bistability



[C] EXTEND TO MULTIPLE POPULATIONS

U1(t),N1(t)

U2(t),N2(t)

U3(t),N3(t)

Nk+1

Nk

Consider M homogeneous networks labelled k = 1, . . .M, each
containing N identical neurons

Nk(t) is number of spiking neurons, and Uk(t) is synaptic current

τ
dUk(t)

dt
= −Uk(t) +

M∑
k=1

wklNl(t), Nk(t)→ Nk(t)± 1.

with transition rates

Ω+ =
F(Uk)

τa
, Ω− =

nk

τa
.



[D] METAPOPULATIONS IN RANDOMLY SWITCHING ENVIRONMENTS

Consider a metapopulation of uncoupled neural or gene networks
labeled ` = 1, . . . ,N with state variables x`(t), all being driven by the
same external or environmental dichotomous noise n(t)

1

0

time

x1(t)

enironmental state n(t)

x2(t)

xN(t)

. . .

0 1
k+

k-

x1(t) x2(t)

xN(t)

. . .

Y Y

Y



[D] METAPOPULATIONS IN RANDOMLY SWITCHING ENVIRONMENTS

The state x`(t) could be multi-dimensional, deterministic or stochastic.
For concreteness we take x` ∈ R and

dx`
dt

= Fn(t)(x`)

for ` = 1, . . . ,M, with the stochastic variable n(t) independent of ` and
evolving according to a continuous Markov chain with generator A.

Take the thermodynamic limit N →∞, and let P(x, t) denote the density
of networks in state x at time t given a particular realization
σ(t) = {n(τ), 0 ≤ τ ≤ t} of the Markov chain.

The population density evolves according to the stochastic Liouville
equation

∂

∂t
P(x, t) =

[
− ∂

∂x
Fn(t)(x)

]
P(x, t),

with P(x, 0) = p0(x).



[D] MANY OTHER EXAMPLES OF SWITCHING ENVIRONMENTS

x
1

x
2

x
3

ε

Ω
x
4

[A] Di!usion in domains with stochastically gated boundaries

_ +

voltage gating

chemical gating

slow gate

fast gate

[B] Di!usively coupled cells with stochastically gated gap junctions



Part II. Analysis of first passage time problems



FIRST-PASSAGE TIME (FTP) PROBLEM I
Suppose that mean field equation is bistable

F(x)

x 

x-
x0

x+

Let T(x) be the stochastic time for system to exit at x0 starting at x
Introduce the survival probability P(x, t) that the particle has not yet
exited at time t:

P(x, t) =

∫ x0

0

∑
n

pn(x′, t|x, 0)dx′.

and define the first passage time (FPT) density

f (x, t) = −∂P(x, t)
∂t

.



FIRST-PASSAGE TIME (FTP) PROBLEM II

The mean first passage time (MFPT) τ(x) is

τ(x) = 〈T(x)〉 ≡
∫ ∞

0
f (x, t)tdt =

∫ ∞
0

P(x, t)dt,

In limit ε→ 0, expect MFPT to have the Arrhenius-like form

τ(x−) =
2πΓ(x0, x−)√
|Φ′′(x0)|Φ′′(x−)

e[Φ(x0)−Φ(x−)]/ε.

where Φ(x) is a quasipotential and Γ is a prefactor.

Determine Φ(x) using large deviation theory/path integrals/WKB



PATH-INTEGRAL REPRESENTATION (PCB/NEWBY)

Consider the eigenvalue equation

∑
m

[Anm(x) + qδn,mFm(x)] R(s)
m (x, q) = λs(x, q)R(s)

n (x, q),

and let ξ(s)
m be the adjoint eigenvector.

Perron-Frobenius theorem shows that there exists a real, simple Perron
eigenvalue labeled by s = 0, say, such that λ0 > Re(λs) for all s > 0

Path-integral representation of PDF

P(x, τ) =

x(τ)=x∫
x(0)=x∗

exp
(
−1
ε

∫ τ

0
[pẋ− λ0(x, p)]dt

)
D[p]D[x]



VARIATIONAL PRINCIPLE

Applying steepest descents to path integral yields a variational principle
in which optimal paths minimize the action

S[x, p] =

∫ τ

0
[pẋ− λ0(x, p)] dt.

Hence, we can identify the Perron eigenvalue λ0(x, p) as a Hamiltonian
and the optimal paths are solutions to Hamilton’s equations

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

, H(x, p) = λ0(x, p)

Deterministic mean field equations and optimal paths of escape from a
metastable state both correspond to zero energy solutions.

Setting λ0 = 0 in eigenvalue equation gives

∑
m

[Anm(x) + pδn,mFm(x)] R(0)
m (x, p) = 0



“ZERO ENERGY” PATHS

Ω

∂Ω

separatrix

xs

Ω

∂Ω

xs

a b

(a) Deterministic trajectories converging to a stable fixed point xS.
Boundary of basin of attraction formed by a union of separatrices

(b) Noise-induced paths of escape



MEAN-FIELD EQUATIONS

We have the trivial solution p = 0 and R(0)
m (x, 0) = ρm(x) with

∑
m

Anm(x)ρm(x) = 0

Differentiating the eigenvalue equation with respect to p and then
setting p = 0, λ0 = 0 shows that

∂λ0(x, p)

∂p

∣∣∣∣
p=0

ρn(x) = Fn(x)ρn(x) +
∑

m

Anm(x)
∂R(0)

m (x, p)

∂p

∣∣∣∣∣
p=0

Summing both sides wrt n and using
∑

n Anm = 0,

∂λ0(x)

∂p

∣∣∣∣
p=0

=
∑

n

Fn(x)ρn(x)

Hamilton’s equation ẋ = ∂λ0(x, p)/∂p recovers mean-field equation

ẋ =
∑

n

Fn(x)ρn(x).



MAXIMUM-LIKELIHOOD PATHS OF ESCAPE

Unique non-trivial solution p = µ(x) with positive eigenvector
R(0)

m (x, µ(x)) = ψm(x):

∑
m

[Anm(x) + µ(x)δn,mFm(x)]ψm(x) = 0

Yields quasipotential Φ(x) with Φ′(x) = µ(x) and

S[x, p] ≡
∫ τ

−∞
[pẋ− λ0(x, p)] dt =

∫ x

xs

Φ′(x)dx.

Equivalent to WKB quasipotential obtained using ansatz for
quasistationary solutions

pn(x) = Rn(x) exp
(
−1
ε

Φ(x)

)
,



Part III. Stochastic ion-channels



REDUCED MORRIS-LECAR MODEL

Adiabatic approximation: freeze K dynamics and absorb into leak
current.

Let n, n = 0, . . . ,N be the number of open sodium channels:

dv
dt

= Fn(v) ≡ 1
N

f (v)n− g(v),

with f (v) = gNa(VNa − v) and g(v) = −geff[Veff − v] + Iext.

The opening and closing of the ion channels is described by a
birth-death process according to

n→ n± 1,

with rates

ω+(n) = α(v)(N − n), ω−(n) = βn

Take

α(v) = β exp
(

2(v− v1)

v2

)



CHAPMAN-KOLMOGOROV EQUATION

CK equation is

∂pn

∂t
= −∂[Fn(v)pn(v, t)]

∂v
+

1
ε

∑
n′

Anm(v)pm(v, t),

An,n−1 = ω+(n− 1), Ann = −ω+(n)− ω−(n), An,n+1 = ω−(n + 1).

There exists a unique steady state density ρn(v) for which∑
m

Anm(v)ρm(v) = 0

where

ρn(v) =
N!

(N − n)!n!
a(v)nb(v)N−n, a(v) =

α(v)

α(v) + β
, b(v) = 1− a(v).



MEAN-FIELD LIMIT

In the limit ε→ 0, we obtain the mean-field equation

dv
dt

=
∑

n

Fn(v)ρn(v) = a(v)f (v)− g(v) ≡ −dΨ

dv
,

Assume deterministic system operates in a bistable regime

Ψ(v)

v [mV]

v- v*

v+

-100 -80 -60 -40 -20 0 20 40 60 80 100

Iext = I*

Iext < I*



PERRON EIGENVALUE I
Eigenvalue equation for λ0 and R(0) = ψ:

(N − n + 1)αψn−1 − [λ0 + nβ + (N − n)α]ψn + (n + 1)βψn+1

= −p
( n

N
f − g

)
ψn

Consider the trial solution

ψn(x, p) =
Λ(x, p)n

(N − n)!n!
,

Yields the following equation relating Λ and µ:

nα
Λ

+ Λβ(N − n)− λ0 − nβ − (N − n)α = −p
( n

N
f − g

)
.

Collecting terms independent of n and terms linear in n yields

p = − N
f (x)

(
1

Λ(x, p)
+ 1
)

(α(x)− β(x)Λ(x, p)) ,

and

λ0(x, p) = −N(α(x)− Λ(x, p)β(x))− pg(x).



PERRON EIGENVALUE II

Eliminating Λ from these equation gives

p =
1

f (x)

(
Nβ(x)

λ0(x, p) + Nα(x) + pg(x)
+ 1
)

(λ0(x, p) + pg(x))

Obtain a quadratic equation for λ0:

λ2
0 + σ(x)λ0 − h(x, p) = 0.

with

σ(x) = (2g(x)− f (x)) + N(α(x) + β(x)),

h(x, p) = p[−Nβ(x)g(x) + (Nα(x) + pg(x))(f (x)− g(x))].

The “zero energy” solutions imply that h(x, p) = 0



THE QUASIPOTENTIAL

x

x- x*
x+

p

Non-trivial solution yields

p = µ(x) ≡ N
α(x)f (x)− (α(x) + β)g(x)

g(x)(f (x)− g(x))
.

The corresponding quasipotential Φ is given by

Φ(x) =

∫ x

µ(y)dy.



STOCHASTIC ML (NEWBY,PCB,KEENER)

Caustic (C),

 v nullcline (VN), 

w nullcline (WN), 

metastable separatrix (S), 

bottleneck (BN), 

caustic formation point (CP) 

Most probable paths of escape dip significantly below the resting value
for w, indicating a breakdown of slow/fast decomposition.

Escape trajectories all pass through a narrow region of state space
(bottleneck or stochastic saddle node)

Inspite of no well-defined separatrix for an excitable system, one can
formulate an escape problem by determining the mean first passage
time to reach the bottleneck from the resting state.
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