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				Outline			

1.  I	will	describe	an	elementary	problem	that	I	gave	in	an	Introduc=on	
to	Compu=ng		course	that	uses	Matlab.		

2.  We	will	“play”	with	the	problem	and	observe	some	interes=ng	
phenomena.	

3.  We	will	use	various	matrix	decomposi=ons	and	algorithms	to	
explain	those	phenomena..	



				The	Problem	

	
			Display	a	sequence	of	polygons	where	each	
			polygon	is	obtained	from	its	predecessor	by	
			connec=ng	the	midpoints	of	its	sides.	
	
			Let	the	original	polygon	be	random.	
	



				This	is	an	Introduc=on-to-Vectors	Problem	
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Current	Polygon	

Next	Polygon	



				A	Random	Pentagon	



				Connect	the	Side	Midpoints		



				Obtain	a		New	Pentagon		



				“Polygon	Averaging”		

The	process	can	obviously	be	repeated.	



				Graphics	Note		

plot([x;x(1)],[y;y(1)]) fill(x,y,’m’) 



				Repeated	Polygon	Averaging	on	a	Random	Octagon		



				Repeated	Polygon	Averaging	on	a	Random	Octagon		

All	ver=ces	
head	towards	
the	centroid.	



				Normalized	Repeated	Polygon	Averaging					

Maintain	unit	
2-norm	vertex	
vectors:	
 
x = x/norm(x) 
y = y/norm(y) 



				Example	(n	=	16)					



				Example	(n	=	16)		



				Example	(n	=	32)		

The	points	seem	to	
converge	to	an	
ellipse	with	a	45-
degree	=lt.	



				Interes=ng	Ques=ons			

1.	What	is	the	limi=ng	ellipse	and	why	the	45-degree	=lt?	

2.	Why	do	the	ver=ces	appear	to	“move”	around	the	ellipse?	
	
3.	How	long	does	it	take	to	converge?	
	
4.	Does	it	always	converge?		
	
5.	What	is	the	inverse	of	the	repeated	polygon	averaging	process?		



	
				What	is	the	limi=ng	ellipse	and	why	the	45-degree	=lt?			



				The	Ellipse	Can	Be	Computed	in	Advance		



	
				Why	do	the	ver=ces	appear	to	move	around	the	ellipse?			



				The	Ver=ces	seem	to	Move	Around	the	Ellipse	



				Look	at	Every	Other	Itera=on		



	
				How		long	does	it	take	for	the	ver=ces	to	converge	to	
				the	limi=ng	ellipse?			



				How	Long	Does	It	Take?		
n	=	10																																																																							A`er	27	Itera=ons	
	



				How	Long	Does	It	Take?		
n	=	20																																																																							A`er	163	Itera=ons	
	



				How	Long	Does	It	Take?		
n	=	40																																																																							A`er	688	Itera=ons	
	



				How	Long	Does	It	Take?		

n	=	#	Ver:ces	 					#	Itera:ons	Un:l	“Converged”	
10	 27	
20	 163	
40	 688	

Looks	like	O(n2)	
	



	
				Does	the	process	always	converge?			



				Do	the	Ver=ces	Always	Move	to	the	Ellipse?		



				Do	the	Ver=ces	Always	Move	to	the	Ellipse?		



	
				What	is	the	inverse	of	the	repeated	averaging	process?			



				What	is	the	Inverse	of	the	Polygon	Averaging	Process?		

				Nota=on:	
	

	P(0)	=	the	given	polygon	
	

	P(k)		=	the	kth	polygon		obtained	from	P(k-1)	via	averaging.	
	

	
					…		à		P(-3)		à		P(-2)	à	P(-1)	à	P(0)	à	P(1)	à	P(2)		à	…	
																				?														?														?	
	



				Run	the	Process	Backwards	(n=11)		

Polygon	P(0)	



				Run	the	Process	Backwards	(n=21)		

Polygon	P(0)	



	

				Now	let’s	look	at	the	math!			



Untangling Random Polygons

Let’s Do the Math!



Polygon Averaging

Generating Polygons P1,P2, . . .

P0 a random n-gon.

for k = 1, 2, . . .

Connect the edge midpoints of Pk−1 to get Pk .

end

Pk is an average of Pk−1 and Shift(Pk−1)), e.g.,

{(x1, y1), (x2.y2), (x3, y3), (x4, y4)} + {(x2, y2), (x3, y3), (x4, y4), (x1, y1)}
2
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Connnect the Edge Midpoints

(x1, y1) =
(

x1 + x2

2
,
y1 + y2

2

)
(x2, y2) =

(
x2 + x3

2
,
y2 + y3

2

)
(x3, y3) =

(
x3 + x4

2
,
y3 + y4

2

)
(x4, y4) =

(
x4 + x5

2
,
y4 + y5

2

)
(x5, y5) =

(
x5 + x1

2
,
y5 + y1

2

)

Centroid Preservation: (x̄ , ȳ) = (x̄ , ȳ)



Polygon Averaging (Shifted to Origin)

Generating Polygons P1,P2, . . .

x = rand(n,1); x = x - mean(x);

y = rand(n,1); y = y - mean(y);

for k = 1, 2, . . .

x = ( x +[x(2:end);x(1)] )/2;

y = ( y +[y(2:end);y(1)] )/2;

end



The Vertex Vector Update in Matrix-Vector Terms


(x1 + x2)/2

(x2 + x3)/2

(x3 + x4)/2

(x4 + x5)/2

(x5 + x1)/2

 =
1

2


1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1




x1

x2

x3

x4

x5


︸ ︷︷ ︸

M5



Polygon Averaging (in Matrix Terms)

Generating Polygons P1,P2, . . .

x = rand(n,1); x = x - mean(x);

y = rand(n,1); y = y - mean(y);

for k = 1, 2, . . .

x = M*x;

y = M*y;

end

We have two copies of the power method:

The k-th x-vector is Mk·(initial x-vector).

The k-th y-vector is Mk·(initial y-vector).

Analysis requires an understanding of M’s eigensystem.



Mn has a Highly Structured Real Schur Decomposition

QTMQ = T where Q is orthogonal and T upper quasi-triangular.

If M = M5 then

Q =
0.4472 0.6325 0 0.6325 0

0.4472 0.1954 0.6015 -0.5117 0.3717

0.4472 -0.5117 0.3717 0.1954 -0.6015

0.4472 -0.5117 -0.3717 0.1954 0.6015

0.4472 0.1954 -0.6015 -0.5117 -0.3717

T =
1.0000 0 0 0 0

0 0.6545 0.4755 0 0

0 -0.4755 0.6545 0 0

0 0 0 0.0955 0.2939

0 0 0 -0.2939 0.0955

Eigenvalues: 1.0000, .6545±.4755i, .0955±.2939i



The Matrix Mn

The “update” matrix Mn is given by

Mn = (In + Sn)/2

where Sn is the n-by-n upshift matrix

Sn =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

 (n = 5)

The eigenvalues and eigenvectors of Sn are completely known.



The Eigenvalues of M5.



The Real Schur Decomposition: QTM5Q = T

Q =


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

 T =


x 0 0 0 0
0 x x 0 0
0 x x 0 0
0 0 0 x x
0 0 0 x x



M5 has three invariant subspaces of interest:

Invariant Subspace Associated Eigenvalue(s)

Black λ0

Red λ1 , λ̄1

Blue λ2 , λ̄2



M5: The Black Invariant Subspace

Q =


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

 T =


x 0 0 0 0
0 x x 0 0
0 x x 0 0
0 0 0 x x
0 0 0 x x




x
x
x
x
x

 =
1√
5


1
1
1
1
1

 [
x
]

=
[

1
]

λ0 = 1 is the largest eigenvalue and ones(n,1) is the eigenvector.



M5: The Red Invariant Subspace

Q =


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

 T =


x 0 0 0 0
0 x x 0 0
0 x x 0 0
0 0 0 x x
0 0 0 x x



√
2
5

26666666664

cos(0π/5) sin(0π/5)

cos(2π/5) sin(2π/5)

cos(4π/5) sin(4π/5)

cos(6π/5) sin(6π/5)

cos(8π/5) sin(8π/5)

37777777775
1
2

"
1 + cos(2π/5) sin(2π/5)

− sin(2π/5) 1 + cos(2π/5)

#



M5: The Blue Invariant Subspace

Q =


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

 T =


x 0 0 0 0
0 x x 0 0
0 x x 0 0
0 0 0 x x
0 0 0 x x



√
2
5

26666666664

cos(0π/5) sin(0π/5)

cos(4π/5) sin(4π/5)

cos(8π/5) sin(8π/5)

cos(12π/5) sin(12π/5)

cos(16π/5) sin(16π/5)

37777777775
1
2

"
1 + cos(4π/5) sin(4π/5)

− sin(4π/5) 1 + cos(4π/5)

#



The Eigenvalues of M6

Mn is singular if n is even.



No Surprise that Mn is Singular if n is Even

1

2



1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1





1
−1

1
−1

1
−1





The Real Schur Decomposition: QTM6Q = T

Q =



x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x

 T =



x 0 0 0 0 0
0 x x 0 0 0
0 x x 0 0 0
0 0 0 x x 0
0 0 0 x x 0
0 0 0 0 0 0



M6 has four invariant subspaces of interest:

Invariant Subspace Associated Eigenvalue(s)

Black λ0

Red λ1 , λ̄1

Blue λ2 , λ̄2

Purple 0



M6: The Purple Invariant Subspace

Q =



x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x

 T =



x 0 0 0 0 0
0 x x 0 0 0
0 x x 0 0 0
0 0 0 x x 0
0 0 0 x x 0
0 0 0 0 0 0




x
x
x
x
x
x

 =
1√
6



1
−1

1
−1

1
−1





Let’s Use the Real Schur to Track the Vertex Vectors

Mkx =
(
QTQT

)k
x = QT k(QT x)

Mky =
(
QTQT

)k
y = QT k(QT y)

Q =
0.4472 0.6325 0 0.6325 0

0.4472 0.1954 0.6015 -0.5117 0.3717

0.4472 -0.5117 0.3717 0.1954 -0.6015

0.4472 -0.5117 -0.3717 0.1954 0.6015

0.4472 0.1954 -0.6015 -0.5117 -0.3717

T =
1.0000 0 0 0 0

0 0.6545 0.4755 0 0

0 -0.4755 0.6545 0 0

0 0 0 0.0955 0.2939

0 0 0 -0.2939 0.0955



Expand the Vertex Vectors in the Real Schur Basis

x = α0


x
x
x
x
x

 +


x x
x x
x x
x x
x x


"

α1

β1

#
+


x x
x x
x x
x x
x x


"

α2

β2

#

y = γ0


x
x
x
x
x

 +


x x
x x
x x
x x
x x


"

γ1

δ1

#
+


x x
x x
x x
x x
x x


"

γ2

δ2

#

We’re showing n = 5 but the expansion starts out like this for any n.



Implication of mean(x) = 0

This is an orthonormal basis expansion:

x = α0


x
x
x
x
x

 +


x x
x x
x x
x x
x x


"

α1

β1

#
+


x x
x x
x x
x x
x x


"

α2

β2

#

Since x has zero mean we have...

α0 =
1√
5


1
1
1
1
1


T 

x1

x2

x3

x4

x5

 = (x1 + x2 + x3 + x4 + x5)/
√

5 = 0



The Dominant Eigenvector is Not Around

Thus,

x =


x x
x x
x x
x x
x x


"

α1

β1

#
+


x x
x x
x x
x x
x x


"

α2

β2

#

and so after the k-th iterate this vertex vector is given by

x = Mk


x x
x x
x x
x x
x x


"

α1

β1

#
+ Mk


x x
x x
x x
x x
x x


"

α2

β2

#

As k →∞ this vector goes to zero and as this happens the red component
increasingly dominates the blue component.



M5x : Intuition

Mkx = Mk


x x
x x
x x
x x
x x


"

α1

β1

#
+ Mk


x x
x x
x x
x x
x x


"

α2

β2

#

Why Red Dominates Blue:

|λ2|
|λ1| = .3820

Why the whole things goes to zero:

‖Mx ‖ ≤ |λ1|‖ x ‖ = .6545 · ‖ x ‖



Why the Polygons Collapse to (0,0)

If x has zero mean then

‖Mk
n x ‖ ≤ |λ1|k‖ x ‖ = cos(2π/n)k ‖ x ‖

The exact reduction in norm each step:

‖Mx ‖22 = ‖ x ‖22 −
1
4‖ (I − S)x ‖22

= ‖ x ‖22 −
1
4

n∑
i=1

(xi − xi+1)
2



Let’s Prevent This

P0 P1 P2

P15 P30 P60



Polygon Averaging (with 2-norm normalization)

Generating Polygons P1,P2, . . .

x = rand(n,1); x = x - mean(x); x = x/norm(x);

y = rand(n,1); y = y - mean(y); y = y/norm(y);

for k = 1, 2, . . .

x = M*x; x = x/norm(x);

y = M*y; y = y/norm(y);

end

Two copies of the power method with normalization:

The k-th x is a unit vector in the direction of Mk·(initial x).

The k-th y is a unit vector in the direction of Mk·(initial y).

Let’s look at these vectors!



A Fact About Mk Acting on an Invariant Subspace

To understand the red and blue components of the k-th vertex
vectors we need to work with

Mk


x x
x x
x x
x x
x x

 =


x x
x x
x x
x x
x x


[

Re(λ1) Im(λ1)

-Im(λ1) Re(λ1)

]k

Mk


x x
x x
x x
x x
x x

 =


x x
x x
x x
x x
x x


[

Re(λ2) Im(λ2)

-Im(λ2) Re(λ2)

]k



Mkx → Red Subspace

Mkx =


x x
x x
x x
x x
x x


([

x x
x x

]k" α1

β1

#)
+


x x
x x
x x
x x
x x


([

x x
x x

]k" α2

β2

#)

∣∣∣∣∣
∣∣∣∣∣
[

x x
x x

]k" α2

β2

# ∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
[

x x
x x

]k" α1

β1

# ∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣cos(2π/5)

cos(π/5)

∣∣∣∣k ·
√√√√α2

2 + β2
2

α2
1 + β2

1

Damping Factor =

∣∣∣∣cos(2π/5)

cos(π/5)

∣∣∣∣ = .3820.



The Damping Factor for General n

n ρn

5 .3820
10 .8507
20 .9629
30 .9835
40 .9907
50 .9941
100 .9985

ρn =
|λ2|
|λ1|

=

∣∣∣∣cos(2π/n)

cos(π/n)

∣∣∣∣ = 1− 3

2

(π

n

)2
+ O

(
1

n4

)



Now Let’s Figure Out the Limiting Ellipse

Because of damping we may assume that the initial unit 2-norm vertex
vectors x and y are given by

x =


x x
x x
x x
x x
x x


"

cos(θx)

sin(θx)

# "
cos(θx)

sin(θx)

#
=

[
x x x x x
x x x x x

]
x1

x2

x3

x4

x5



y =


x x
x x
x x
x x
x x


"

cos(θy )

sin(θy )

# "
cos(θy )

sin(θy )

#
=

[
x x x x x
x x x x x

]
y1

y2

y3

y4

y5


The scalars cos(θx), sin(θx), cos(θy ), and sin(θy ) are computable since we

know the red matrix and initial vertex vectors x and y .



The {(xi , yi)} Sit on an Ellipse

Recall that the Red Matrix is made of cosines and sines and so26666664

x1

x2

x3

x4

x5

37777775 =

r
2

5

26666664

cos(0τ) sin(0τ)

cos(1τ) sin(1τ)

cos(2τ) sin(2τ)

cos(3τ) sin(3τ)

cos(4τ) sin(4τ)

37777775
"

cos(θx)

sin(θx)

#
τ =

q
2π
5

26666664

y1

y2

y3

y4

y5

37777775 =

r
2

5

26666664

cos(0τ) sin(0τ)

cos(1τ) sin(1τ)

cos(2τ) sin(2τ)

cos(3τ) sin(3τ)

cos(4τ) sin(4τ)

37777775
"

cos(θy )

sin(θy )

#
τ =

√
2π
5

i.e.,"
xi

yi

#
=

 r
2

5

"
cos(θx) sin(θx)

cos(θy ) sin(θy )

#!"
cos(ti )

sin(ti )

#
ti = (i − 1)τ, i = 1:5



The SVD Tells Us All About the Ellipse

The ellipse

E =

{ [
a11 a12

a21 a22

][
cos(t)

sin(t)

]
: 0 ≤ t ≤ 2π

}

looks like this

where A = UΣV T and U = [u1 u2] and Σ = diag(σ1, σ2).



And the Ellipse has a 45-Degree Tilt

2x2 SVD Theorem

If

A = µ

[
cos(θx) sin(θx)

cos(θy ) sin(θy )

]
← Rows of equal length.

then its SVD A = UΣV T is given by

U =

[
cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)

]
V =

[
cos(a) − sin(a)

sin(a) cos(a)

]

Σ = µ

[ √
2 cos(b) 0

0
√

2 sin(b)

]
where

a =
θx + θy

2
and b =

θx − θy

2
.



Three Parting Shots

1. The vertices converge to the limiting ellipse but continue to move.

2. The inverse polygon averaging problem can be explained.

3. Kepler’s ”Centered” Second Law



The Vertices Appear to Move Around the Limiting Ellipse

n = 11

Red vertices depict the polygon after an even number of averagings.

Black vertices depict the polygon after an odd number of averagings.



Reason: Structured Sines and Cosines in the Red Matrix

even odd even odd even
x1

x2

x3

x4

x5

 →


x ′1
x ′2
x ′3
x ′4
x ′5

 →


x5

x1

x2

x3

x4

 →


x ′5
x ′1
x ′2
x ′3
x ′4

 →


x4

x5

x1

x2

x3

 →


y1

y2

y3

y4

y5

 →


y ′1
y ′2
y ′3
y ′4
y ′5

 →


y5

y1

y2

y3

y4

 →


y ′5
y ′1
y ′2
y ′3
y ′4

 →


y4

y5

y1

y2

y3

 →

Downshifted versions of the grandparent.



The Inverse Polygon Averaging Problem

Generating Polygons P−1,P−2, . . .

x = rand(n,1); x = x - mean(x); x = x/norm(x)

y = rand(n,1); y = y - mean(y); y = y/norm(y)

for k = 1, 2, . . .

x = inv(M)*x; x = x/norm(x)

y = inv(M)*y; y = y/norm(y)

end

M =
1

2


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

 M−1 =


1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

1 −1 1 1 −1
−1 1 −1 1 1





The Inverse Polygon Averaging Problem

P(0) P(−5)

The invariant subspace associated with M’s smallest complex
eigenvalue is relevant.



The Inverse Polygon Averaging Problem

For n = 13, the columns of this matrix span that space:

0.3922 0
-0.3808 0.0939
0.3473 -0.1823

-0.2936 0.2601
0.2228 -0.3228

-0.1391 0.3667
0.0473 -0.3894
0.0473 0.3894

-0.1391 -0.3667
0.2228 0.3228

-0.2936 -0.2601
0.3473 0.1823

-0.3808 -0.0939


Having the maximum number of sign changes explains why the limiting

inverse polygon has a maximal number of ”edge crossings.”



Kepler’s ”Centered” Second Law

Conjecture: The vertices on the limiting ellipse define triangular
”pizza slices” with equal area:

Triangle Areas
7.065091311397755e-02
7.065091311397753e-02
7.065091311397756e-02
7.065091311397756e-02
7.065091311397759e-02
7.065091311397755e-02
7.065091311397756e-02
7.065091311397755e-02

An “equal-area/equal-time” planet travels along the perimeter of
limiting polygon as it orbits the Sun. The time it takes to travel from
vertex to vertex is uniform.



Proof By Matlab

.01012159232550550

.01012159232550551

.01012159232550551

.01012159232550551

.01012159232550552

.01012159232550553

.01012159232550551

.01012159232550549

.01012159232550551

.01012159232550553

.01012159232550549

.01012159232550552

.01012159232550552

.01012159232550550

.01012159232550550

.01012159232550552

.01012159232550553

.01012159232550549

.01012159232550551

.01012159232550552

.01012159232550551

.01012159232550550

.01012159232550550

.01012159232550554

The triangle areas agree through 15 digits.



Summary

A = UΣV T

A = QTQT
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