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Introduction

Motivation

Sampling algorithms
Compute expectations (e.g. mean, variance) using Monte Carlo sum
Used in Bayesian inference, filtering, experimental design

Scope
Can evaluate the log-density of the target, up to a constant
Can evaluate Jacobian actions, perhaps higher derivatives

Types
Markov chain Monte Carlo (MCMC)
Self-normalized importance sampling (IS)

Efficiency depends on transition (in MCMC) or biasing distribution (in IS)
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Introduction

Sampling algorithms that involve optimization
Optimization-based samplers

1 Construct objective functions using:
parts of target distribution
sample from a reference random variable

2 Minimize the objective functions to get proposal samples
3 Compute log-densities of the resulting proposal samples
4 Samples (+ densities) are used as:

independent proposal in Metropolis-Hastings
biasing distribution in self-normalized IS

Examples
Implicit sampling/filtering Chorin et al. (2010); Morzfeld et al. (2012)
Randomize-then-optimize (RTO) Bardsley et al. (2014)
Metropolized randomized maximum likelihood Oliver (2017)
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Transport Maps

Exact transport maps

Seek a transformation of random variables such that:

T]πref
d= πtar
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v ∼ πtar

T−−−−→

S←−−−−

T (ξ) = v S(v) := T−1(v) = ξ
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Transport Maps

Approximate transport maps

T]πref (v)
=
∣∣∇S∣∣πref(S(v))

S]πtar (ξ)
=
∣∣∇T ∣∣πtar(T (ξ))

πref T]πref

T−−−→

S]πtar πtar

S:=T −1
←−−−
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RTO’s mapping

Randomize-then-Optimize (RTO)

Required form of the target

log πtar(v) = −1
2
∥∥H(v)

∥∥2

RTO’s mapping (ansatz)

ξ = Q>H(v)

Output dimension of H is larger than that of v
Reference samples ξ are drawn from a standard normal
Matrix Q is found from thin-QR factorization of ∇H (vMAP)
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RTO’s mapping

Randomize-then-Optimize (RTO)

RTO’s mapping (ansatz)

ξ = Q>H(v)

Guidelines for a useful mapping from Chorin et al. (2010)
1 One-to-one
2 Maps the neighborhood of zero to a set that contains the mode
3 Smooth near ξ = 0
4 Easily compute the Jacobian (actions and determinant)
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RTO’s mapping

Simple Bayesian inference example
Consider the following inverse problem

d︸︷︷︸
observation

=
forward model︷ ︸︸ ︷
G(v) + e︸︷︷︸

noise
v ∼ N(0, In) e ∼ N(0, Im)

p(v|d)︸ ︷︷ ︸
posterior

∝ exp
(
−1

2 (G(v)− d)2
)

exp
(
−1

2v
2
)

= exp
(
− 1

2

∥∥∥∥
[

v
G(v)

]
−
[
0
d

]
︸ ︷︷ ︸

H(v)

∥∥∥∥2)

= exp
(
−1

2
∥∥H(v)‖2

)
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RTO’s mapping

Simple Bayesian inference example
Given problem structure:

H(v) =
[

v
G(v)− d

]
1 Find the posterior mode vMAP.
2 Solve a thin-QR factorization to find the matrix Q.

QR = ∇H (vMAP) =
[

In

∇G (vMAP)

]
3 Draw a reference sample ξ and solve nonlinear system for v.

ξ = Q>H(v)
4 Compute the proposal density.

q(v) = (2π)−
n
2

∣∣∣Q>∇H(v)
∣∣∣ exp

(
−1

2

∥∥∥Q>H(v)
∥∥∥2
)

5 Repeat steps 3 and 4.
Z. Wang (MIT) Optimization-based samplers February 26, 2019 10 / 25



Directions of parameter space

A different choice of Q

Algorithmic modification
Exploit the structure of ∇H(vMAP) to reduce computation.

QR = ∇H(vMAP) =
[

In

∇G(vMAP)

]

Represent range of Q using an SVD. Let r = rank of ∇G(vMAP).

Choose a symmetric R̃ =
(
∇H(vMAP)>∇H(vMAP)

) 1
2 . Then,

Q̃ = ∇H(vMAP)R̃−1 =
[
Φ(Λ2 + Ir)−

1
2 Φ> + (In − ΦΦ>)

ΨΛ(Λ2 + Ir)−
1
2 Φ>

]

Q̃: orthogonal, same range, represented by Ψ,Λ,Φ.
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Directions of parameter space

Scalable implementation of RTO

To propose a point, solve ξ = Q̃>H(v): (In − ΦΦ>)ξ = (In − ΦΦ>)v,

ΦΦ>ξ = Φ
[
(Λ2 + Ir)−

1
2 Φ>v + Λ(Λ2 + Ir)−

1
2 Ψ>G(v)

]
System of equations splits in two. Optimize only for r-dim. part.

To calculate the proposal density:∣∣∣ Q̃>∇H(v)︸ ︷︷ ︸
n×n

∣∣∣ =
∣∣∣(Λ2 + Ir)−

1
2

∣∣∣ · ∣∣∣ Ir + ΛΨ>∇G(v)Φ︸ ︷︷ ︸
r×r

∣∣∣
Find determinant of an r × r matrix. Reduced from n× n matrix.
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Directions of parameter space

Unwhitened system of equations

u v ξ ζ
v = S−1pr (u−mpr) Q̃>H(v) = ξ ζ = Sprξ +mpr

∼ πRTO(u)
unwhitened proposal

∼ q(v)
whitened proposal

∼ N(0, I)
whitened reference

∼ N(mpr,Γpr)
prior

RTO’s unwhitened mapping:{
(I − P ) ζ = (I − P )u,

P ζ = F (u)

Takeaway
RTO’s mapping keeps most parameter directions fixed.
Directions that move depend on those that are fixed.
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Directions of parameter space

Truncated SVD for a linear model

Linear model G, using rank r = 2:
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Directions of parameter space

Truncated SVD for a linear model

Linear model G, using rank r = 1:
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Directions of parameter space

Truncated SVD for a linear model

Linear model G, using rank r = 0:
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Directions of parameter space

Truncated SVD for a nonlinear model

Nonlinear model G, using rank r = 2:
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Directions of parameter space

Truncated SVD for a nonlinear model

Nonlinear model G, using rank r = 1:
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Directions of parameter space

Truncated SVD for a nonlinear model

Nonlinear model G, using rank r = 0:
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RTO in function space

Dimension independence

Empirically, our scalable implementation of RTO appears to have
dimension-independent performance.

Table: Numerical ESS for the chain, average acceptance rate, and average
optimization iterations for RTO, varying parameter dimension.

Parameter Dim. 321 641 1281 2561 5121 10241

Numerical ESS 4343.5 4544.8 4464.5 4523.3 4484.9 4532.2
Acceptance Rate 0.936 0.948 0.950 0.954 0.950 0.953
Opt. Iterations 324.04 357.76 307.50 198.81 165.06 142.25
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RTO in function space

RTO in function space

RTO’s mapping make sense in function space.{
(I − P ) ζ = (I − P )u,

P ζ = F (u)

Illustration:
1 Draw a realization ζ ∈ H from the prior (Gaussian process).
2 Discretize this sample ζ on grids of different resolution.
3 Apply RTO’s prior-to-proposal mapping to each discretized sample.
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RTO in function space

Illustration: different discretizations
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RTO in function space

Theoretical result

Theorem
(Absolute continuity of RTO’s proposal with respect to the prior.)
Suppose that the prior µpr is a non-degenerate Gaussian measure on H, the
random variable ζ is distributed according to µpr, the random variable u is
defined through the mapping above, and for every b ∈W⊥, the mapping

a 7→ a+ ΛΨTS−1
obs(F (X(a) + b)− y)

is Lipshitz continuous, injective, and its inverse is Lipschitz continuous,
where µRTO is the measure induced by u. Then µRTO is absolutely
continuous with respect to µpr.
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RTO in function space

Theoretical result

Steps of the proof
1 Formulate finite dimensional mapping in unwhitened coordinates.
2 Recast mapping in function space by defining the projector P through

an inner product with sufficiently smooth basis functions χi.
3 Determine the proposal measure as the push-forward of the prior

Gaussian process through the mapping. Find its Radon-Nikodym
derivative with respect to the prior.

Z. Wang (MIT) Optimization-based samplers February 26, 2019 20 / 25



RTO in function space

Review

RTO
Specfies an approximate transport map.
Yields a non-Gaussian proposal distribution.
Scalable implementation makes inference tractable for high parameter
dimension.
Works well for weakly nonlinear problems.
Provably dimension independent.

However, sampling can be poor if the problem is sufficiently nonlinear.
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X-ray tomography

X-ray tomography

Harriet Li:
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X-ray tomography

X-ray tomography

Deterministic solution:
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X-ray tomography

X-ray tomography
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Discussion

Discussion

Recap
Samplers based on optimization often describe a mapping.
RTO is an ansatz.
Parameter dimensions are split into two groups.
Theoretical result: RTO is dimension independent.
Correlated samples between discretizations.
Sampling can be poor for sufficiently nonlinear inverse problems.

Future work
Improve sampling by using local proposals.
Use a mixture of the prior to combat invertibility requirements.
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Backup

Robust to observational noise

Empirically RTO is robust to observational noise.

Table: Numerical ESS for the chain, average acceptance rate, and average
optimization iterations for RTO, varying observational noise.

Observational Noise 10−7 10−6 10−5 10−4 10−3 10−2

Numerical ESS 4504.8 4427.4 4349.9 4423.0 4415.1 4187.2
Acceptance Rate 0.946 0.944 0.941 0.945 0.935 0.924
Opt. Iterations 567.64 495.41 363.71 296.55 89.07 8.32
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