

Comparative analysis of groundwater modeling software to describe the interaction between surface water and groundwater during floods

Pablo Merchan-Rivera¹, Gabriele Chiogna^{1,2}, Markus Disse¹

¹ Technical University of Munich² University of Innsbruck

March 2019

Surface water (SW) and groundwater (GW)

Numerical flow modeling and uncertainty

Our main goal: compare epistemic uncertainty

To identify and compare the **applicability**, **performance**, and **results** of widely used hydrogeological simulation tools for modeling, applying a **sophisticated benchmark problem**

To understand the significance of the **conceptualization of the physical processes** for simulating the SW-GW interaction

To provide a framework for researchers and practitioners to assess the choice of **simplicity-complexity** in the conceptual and numerical flow modeling of SW-GW

Materials and methods

Methodological approach

Groundwater modeling software

Groundwater modeling software

MODFLOW-2005

- Modular code for solving the groundwater flow equation
- Source code is free public domain software
- Microsoft Windows or Unix-like operating systems
- Standard code for aquifer simulation
- USGS (United States)

MIKE SHE

- Integrated hydrological model for surface water flow, groundwater flow, recharge and evapotranspiration
- Proprietary software
- Microsoft Windows
- DHI (Denmark)

Characteristics

ПП

MODFLOW-2005

NUMERICAL METHODS

- Finite Difference
 - Saturated subsurface flows(3D groundwater flow equation)

MIKE SHE

NUMERICAL METHODS

- Finite Difference
 - Overland processes (2D Saint-Venant equation)
 - Saturated subsurface flows(3D groundwater flow equation)
- Analytical solutions
 - Interception, evapotranspiration and snow melt

Characteristics

ТШ

MODFLOW-2005

SOLVERS

- Preconditioned Conjugate Gradient (PCG)
- Geometric Multigrid (GMG)
- Newton Solver (NWT)

SOLVERS

Preconditioned Conjugate Gradient (PCG)

MIKE SHE

Successive Over-Relaxation (SOR)

Characteristics

ПП

MODFLOW-2005

RIVER REPRESENTATION

- River Package
 - To simulate head-dependent flux boundaries (Cauchy boundary conditions)
 - Parameters: elevation, stage, and conductance

MIKE SHE

RIVER REPRESENTATION

- Coupled with MIKE 11
 - Hydraulic modelling system
 - Based on the complete dynamic wave formulation of the Saint Venant equations
 - Parameters: elevation, stage, inflows, stream cross section, leakage coefficient

The flood event and the benchmark problem

Benchmark problem

Flood event (30/may/2013 – 02/jul/2013)

Benchmark model

Benchmark model

Kilometers

Shallow unconsolidated sedimentary aquifer

٦Π

Groundwater flooding

ТШ

Benchmark model

Kilometers

Benchmark model

Kilometers

Model setting

Results and discussion

Summary of comparison

Software	Solver	Name	Conditions	RMSE
MODFLOW-2005	Preconditioned Conjugate Gradient (PCG)	MODFLOW-PCG	2D model	0.1746
	Geometric Multigrid (GMG)	MODFLOW-GMG	2D model	0.1748
	Newton Solver (NWT)	MODFLOW-NWT3D	3D model Vertical discretization of 5 layers	0.2500
MIKE SHE	Preconditioned Conjugate Gradient (PCG)	MIKE-PCG	2D model Bed topography using grid data	0.3214
	Preconditioned Conjugate Gradient (PCG)	MIKE-NF	2D model No flooding area	0.3981
	Preconditioned Conjugate Gradient (PCG)	MIKE-CS	2D model Bed topography using cross sections	0.5121
	Preconditioned Conjugate Gradient (PCG)	MIKE-NFCS	2D model No flooding area Bed topography using cross sections	0.3981
	Successive Over-Relaxation (SOR)	MIKE-SOR	2D model Bed topography using grid data	0.4235

Simulation results

Simulation results

Hydraulic heads [m a.s.l.] - Time

1,1,07

Simulation results

Hydraulic head differences

MODFLOW-PCG MIKE-PCG

Hydraulic head differences

MODFLOW-PCG MIKE-NF

Some conclusions...

Conclusions

The models perform similarly on the simulated case, but none of them catches the responses of the aquifer in the zone immediately close to the streams

The model intercomparison give us a baseline for understanding the impact of numerical couplings, model physics and parameterizations

It is necessary to extend the tools for comparison and the applied methodology in order to understand the incomes that are necessary to improve the solutions of complex SW-GW models during extreme events

Outlook

Extend our evaluation to understand the movement of solutes in the groundwater during groundwater flooding

Thank you for your attention!

PABLO MERCHÁN RIVERA

pablo.merchan@tum.de

Augustenstraße 44 – Room 2903.02.201 80333 München 089.289.23229

Technical University of Munich Department of Civil, Geo and Environmental Engineering Chair of Hydrology and River Basin Management

March 2019