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Multirate Solvers

Multirate solvers involve the use of multiple time steps in evolving
different components of a system of ordinary differential equations.

Problems that require multirate solvers arise from multiphysics process
(for example in climate modeling) that:

Have different components that evolve at different rates.

Mix stiff and nonstiff components.

Focus of talk: The numerical implementation of Multirate
Exponential Runge Kutta Methods (MERK).

Main question in the assessment of multirate solvers:
How do we pick test problems in a way that offers meaningful
comparison between solvers?
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Motivations for multirate solvers

Stiff Problems

Do not want to use an implicit solver.

Concern is not on the accuracy of the fast time scale but the
stability.

The fast time step can be fixed to satisfy stability conditions.

Multirate Problems

The fast time scale contributes significantly to the slow dynamics.

Capture coupling between slow and fast time scales accurately.

Investigate what the optimal time scale separation is.
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Problem definition & assumptions

Consider the following system:

u′(t) = F (t, u(t))

= Au(t) + g(t, u(t)),

u(t0) = u0

on t0 ≤ t ≤ T .

Vector field F (t, u(t)).

F (t, u(t)) has a natural splitting into :

Au(t) linear (stiff) fast part - cheap
g(t, u(t)) nonlinear (nonstiff) slow part - expensive

.
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Multirate Exponential Runge Kutta (MERK) Integrators

Consider the s-stage explicit one-step exponential Runge-Kutta method:

Un,i = ecihAun + h

i−1∑
j=1

aij(hA)g(tn + cjh, Un,j), 1 ≤ i ≤ s,

un+1 = ehAun + h

s∑
i=1

bi(hA)g(tn + cih, Un,i).

where un+1 ≈ u(tn+1) = u(tn + h) and Un,i ≈ u(tn + cih) are the
internal stages.
Then u(tn+1) and u(tn + cih) are exact solutions of:

v′(τ) = Av(τ) + g(tn + τ, u(tn + τ)), v(0) = u(tn),

at τ = h and τ = cih respectively.

MERK methods: Find modified ODEs whose exact solutions at τ = cih
and τ = h are Un,i and un+1 and solve them numerically to get

approximations Ûn,i and ûn+1.
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MERK Strategy

1 Set Ûn,1 = ûn ≈ un.

2 Ûn,1 is now known. Evaluate p̂n,2(τ) and solve modified ODE:

ŷ′n,2(τ) = Ayn,2(τ) + p̂n,2(τ), ŷn,2(0) = ûn

on [0, c2h] to obtain Ûn,2 ≈ ŷn,2(c2h).
3 Ûn,1, Ûn,2 are now known. Evaluate p̂n,3(τ) and solve modified

ODE to obtain Ûn,3 ≈ ŷn,3(c3h).
...

4 Ûn,1, · · · Ûn,s−1 are now known. Evaluate p̂n,s(τ) and solve modified

ODE to obtain Ûn,s ≈ ŷn,s(csh).
5 Knowing all Ûn,i we find q̂n(τ) and solve:

y′n(τ) = Ayn(τ) + q̂n(τ), yn(0) = ûn

on [0, h] to find ûn+1.
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MERK Algorithms

For in-depth discussion, please see:

“On the Derivation of a New Class of Multirate Methods Based on
Exponential Integrators”, Vu Thai Luan
MS390: Friday 11:30 -11:50am

MERK highlights

MERK methods expand on the idea of using a modified ODE to
evolve the fast time scale from one slow stage to another.

MERK methods do not invlove matrix function evaluations.

Currently, MERK methods up to fifth order have been generated
though in theory, arbitrary order is possible.
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MERK Implementation

We have a macro time-step H and a micro time-step h is used in
evaluating the modified ODEs.

The slow and fast time scales are separated by a factor of m.

We consider three MERK methods:

MERK3 - 3 stages, 3rd order.
MERK4 - 6 stages, 4th order
Note : Un,3 and Un,4 share the same modified ODE. So does Un,5

and Un,6.
MERK5 - 10 stages, 5th order.
Note : Un,3 and Un,4 share the same modified ODE.
So does Un,5, Un,6 and Un,7;
Un,8, Un,9 and Un,10.

Run comparisons with Knoth & Wolke’s Multirate Infinitesimal Step
3rd order method MIS-KW3 [Knoth & Wolke 1998, Schlegel et al. 2009].
Same concept: Evolve fast time scale using modified ODEs.
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Choice of test problems

Due to the varied nature of multirate problems we test MERK methods
on two different categories of test problems.

Category I Category II

Stiff fast part Stiff or non-stiff

Temporal error mostly from slow part Fast error contributes significantly to overall temporal error

Micro time-step h constant Time scale separation factor m fixed

Brusselator problem, Reaction Diffusion One-way coupling and Bidirectional coupling

For each of the test problems, we show convergence and efficiency
plots.

Efficiency is evaluated using number of function calls (slow, total).

More emphasis on slow function calls.
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Reaction and Diffusion Problem [Savcenco,Hundsdorfer & Verwer 2007]

ut =
1

ε · 104
uxx + u2(1− u),

for 0 < x < L, 0 < t ≤ T . Initial and boundary conditions are given by

ux(0, t) = ux(L, t) = 0, u(x, 0) = (1 + eλ(x−1))−1,

where λ = 1
2

√
2ε · 104.
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Reaction and Diffusion Results
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Convergence stagnates at ∼10−13, indicating reference solution accuracy.

Best-fit convergence rates:
MERK3 - 3.03, MERK4 - 4.93, MERK5 - 5.71 and MIS-KW3 - 3.20.

For slow function calls MERK4 is the most efficient.
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Brusselator Problem (stiff version of [Hairer, Nørsett & Wanner 1993])

uv
w

′ =
a− (w + 1)u+ u2v

wu− u2v
b−w
ε − uw

 ,
u(0) = [1.2, 3.1, 3]T

on interval [0, 2] with a = 1, b = 3.5 and 1
ε = 100.

A =

 0 0 0
0 0 0
−1
ε 0 0

, g(t, u) =

a− (w + 1)u+ u2v
wu− u2v
b
ε − uw

.
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Brusselator Results
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Best-fit convergence rates:
MERK3 - 2.62, MERK4- 3.75, MERK5 - 4.36, MIS-KW3 - 2.61.

Total number of function calls remains almost constant as error
decreases since we held the micro time-step constant.
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One-way coupling [Estep, Ginting & Tavener 2012]

uv
w

′ =
 0 −50 0
50 0 0
1 −1 −1

uv
w

 ,
u(0) = [1, 0, 2]T

solved on [0, 1].

A =

 0 −50 0
50 0 0
1 −1 0

, g(t,u) =

 0
0
−w

.
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Optimal m for MERK4
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Slow function calls
- Smallest m : any increase in m results in the same error for the same
work.
- Smallest of the m values for which lines lie on top of each other.

Total function calls
- Largest of the m values for which lines lie on top of each other.
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One-way coupling results

Best-fit convergence rates:
MERK3 (m = 75) - 3.16,
MERK4 (m = 50) - 4.28,
MERK5 (m = 25) - 5.26,
MIS-KW3 (m = 75) - 3.20.

MERK4 and MERK5 are eventually most
efficient.

10
-4

10
-3

10
-2

10
-1

H

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

M
a

x
 E

rr
o

r

MERK3

MERK4

MERK5

MIS-KW3

10
1

10
2

10
3

10
4

10
5

Slow function calls

10
-15

10
-10

10
-5

10
0

M
a

x
 E

rr
o

r

MERK3

MERK4

MERK5

MIS-KW3

10
3

10
4

10
5

10
6

10
7

Total function calls

10
-15

10
-10

10
-5

10
0

M
a

x
 E

rr
o

r

MERK3

MERK4

MERK5

MIS-KW3



17/21

Introduction Category I Category II Other Characteristics Conclusion

Bidirectional coupling

uv
w

′ =
 0 100 1
−100 0 0
1 0 −1

uv
w

 ,
u(0) =

[
9001

10001
,

105

10001
, 1000

]T
solved on [0, 2].

A =

 0 100 0
−100 0 0
1 0 0

, g(t,u) =

 w
0
−w

.
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Bidirectional coupling results

Convergence stagnates at ∼10−11,
indicating reference solution accuracy.

Best-fit convergence rates:
MERK3 (m = 50) - 3.07,
MERK4 (m = 50) - 4.14,
MERK5 (m = 25) - 4.75,
MIS-KW3 (m = 25) - 3.08.
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Choice of inner solver [One-way coupling]

Compare using inner methods of varied
accuracy to check for the most effective
use of the algorithms.

Best-fit convergence rates:

MERK3(2) - 2.00 , MERK3(3) - 3.16 ,
MERK3(4) - 3.20.
MERK4(3) - 3.00 , MERK4(4) - 4.37 ,
MERK4(5) - 4.37.
MERK5(4) - 4.74 , MERK5(5) - 5.12 ,
MERK5(6) - 5.23.

Lower order inner method results in overall
low order. Higher order inner method
results in overall decrease in efficiency.
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Implicit inner method [Reaction-Diffusion problem]
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MERK4 is tested with inner implicit methods of the same, lower and higher
orders of convergence.

Modified ODEs are solved using a single time step.

Best-fit convergence rates:
MERK4 (3) - 3.02, MERK4(4) - 4.84 and MERK4(5) - 4.48.
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Conclusion & Future Work

Recap

Investigated the characteristics of a new class of algorithms based on
exponential Runge-Kutta methods.

Discussed a number of test problems to which we can apply the
methods, how we apply them and why.

Confirmed convergence rates.

Ran comparisons with another multirate method.

Determined the importance of choosing an appropriate inner
method.

Future Considerations

Extend methods to include a nonlinear fast part.

Develop higher order methods.

Investigate time adaptivity.
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Polynomials

p̂n,i(τ) =

i−1∑
j=1

(
lij∑
k=1

α
(k)
ij

cki h
k−1(k − 1)!

τk−1

)
g(tn + cjh, Ûn,j),

q̂n,s(τ) =

s∑
i=1

(
mi∑
k=1

β
(k)
i

hk−1(k − 1)!
τk−1

)
g(tn + cih, Ûn,i),
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MERK4 Characteristics

Conditions to be satisfied: c3 6= c4, c5 6= c6, c6 6= 2
3 , c5 = 4c6−3

6c6−4 .
Two sets of c values:

c2 = 1
2 = c3 = c5; c4 = 1

3 ; c6 = 1.

c2 = c3 = 1
2 ; c4 = c6 = 1

3 ; c5 = 5
6 .
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Comparison with MRI-GARK methods [Sandu, arxiv 2018]

Comparison ran on test problem with
one-way coupling.

Best-fit convergence rates:
MERK3 (m = 75) - 3.16,
MERK4 (m = 50) - 4.28,
MERK5 (m = 25) - 5.26,
MRI-GARK33 (m = 25) - 3.13
MRI-GARK45a (m = 10) - 4.20.
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