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1. Alternating Direction Method of Multipliers (ADMM):
Background and Existing Work



Basic Formulation

minimize f(z)+ h(y)

z,Y

subject to Az + By =

= functions f, h can take the extended value oo, can be nonsmooth



ADMM

Define the augmented Lagrangian
Lo, yiw) = (@) + hly) + (w, Az -+ By —b) + 2 | Az + By — bl

Algorithm:
« zF € argmin Lg(z, y®; wb)
x

k41

» "t cargmin Lg(zFT!

sy w")
Yy
. ,wk'+l — wk: +6(A[L‘k+1 + Byk+l _ b)

Feature: splits numerically awkward combinations of f and h

Often, one or both subproblems are easy to solve



Brief history (convex by default)

1950s, Douglas-Rachford Splitting (DRS) for PDEs
ADM (ADMM) Glowinski and Marroco'75, Gabay and Mercier'76
Convergence proof: Glowinski'83

ADMM=dual-DRS (Gabay'83), ADMM=DRS and ADMM=dual-ADMM
(Eckstein'89, E.-Fukushima’94, Yan-Yin'14), ADMM=PPA (E’92)

if a subproblem is quadratic, equivalent under order swapping (Yan-Yin'14)

Convergence rates (Monterio-Svaiter'12, He-Yuan'12, Deng-Yin'12,
Hong-Luo’'13, Davis-Yin'14, ...)

Accelerations (Goldstein et al'1l, Ouyang et al’13)

Nonconvex (Hong-Luo-Raz.. 14, Wang-Cao-Xu'14, Li-Pong’14, this work)



2. Nonconvex ADMM Applications



Background extraction from video

From observation b of a video Z, decompose it into low-rank background
L and sparse foreground S’ by

1 2

inimize V(L) 4+ ® —|A(Z) —

minimize W(L) + &(5) + 5[ A(Z) - bl
subject to L+ S = Z.

Originally proposed by J.Wright et al. as Robust PCA

Yuan-Yang'09 and Shen-Wen-Zhang'12 apply convex ADMM

R.Chartrand’'12 and Yang-Pong-Chen’14 use nonconvex regularization



Results of £,-minimization for S from Yang-Pong-Chen'14

input p=1 p=0.5




Matrix completion with nonnegative factors

= From partial observations, recover a matrix Z ~ XY where X,Y >0
= Xu-Yin-Wen-Zhang'12 applies ADMM to the model

minimize fHXY Z||F +t50(U) + t>0(V)
X,Y,Z,U,V N

subject to X —U =0
Y-V=0

Proj,(Z) = observation.

= The objective is nonconvex due to XY



Results from Xu-Yin-Wen-Zhang'12
Original images
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Results from Xu-Yin-Wen-Zhang'12
Recovered images (SR: sample ratio)

ADM SR =0.1 ADM SR =0.1

ADM SR =0.2 ADM SR =0.15
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Ptychographic phase retrieval

= Ptychography: a diffractive imaging technique that reconstructs an object
from a set of diffraction patterns produced by a moving probe. The probe
illuminates a portion of the object at a time.

Thibault-Menzel'13

= Phaseless measurements: b; = |FQ;z|, where z is the object and Q; is an

illumination matrix.
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= let |z| denote the amplitude vector of a complex vector z

= Wen-Yang-Liu-Marchesini'12 develops nonconvex ADMM for the model

minimize %H|Z1| - b1”2 4 %H|Zp| — pr2

T,21,.452p

subject to z; — FQix =0, i=1,...,p.

|original “gold ball”

|prob| recovered “gold ball”|
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Optimization on spherical and Stiefel manifolds

= Lai-Osher'12 develops nonconvex ADMM for

mlr)l(lr}pnze F(X) + vp(P)

s

subject to X — P = 0.

= Examples of P
= Spherical manifold P = {P : |P(:,7)||2 = 1}

» Stiefel manifold P = {P: PP =TI}



Chromatic-noise removal results from Lai-Osher'12
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= “Curvilinear” is a feasible algorithm for manifold optimization from

Wen-Yin'10
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Mean-p-Basel portfolio optimization

Goal: allocate assets for expected return, Basel regulation, and low risk

Wen-Peng-Liu-Bai-Sun’13 applies nonconvex ADMM to solve this problem

minimize 4y (u) + tpBasei<c(x) + p(y)

subject to x + Ru =0
y+Yu=0.

U={u>0:pTu>r1Tu=1}

PBasel<c (—Ru) is Basel Accord requirement, calculated on certain
regulated dataset R

p(=Yu) is the risk measure, such as variance, VaR, CVaR

Their results are reportedly better than MIPs solved by CPLEX
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Other applications

tensor factorization (Liavas-Sidiropoulos'14)

compressive sensing (Chartrand-Wohlberg'13)

optimal power flow (You-Peng'71)

direction fields correction, global conformal mapping (Lai-Osher'14)
image registration (Bouaziz-Tagliasacchi-Pauly'13)

network inference (Miksik et al’14)
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3. A simple example



A simple example

RV D N
minimize =(z° —y°)
z,yER 2

subject tox —y =0
z € [-1,1]

= augmented Lagrangian

1 2
Lo, y,w) = 5% =) + (@) +wlz —y) + S|e -y

= ALM diverges for any fixed 8 (but will converge if 8 — o0)
= ADMM converges for any fixed g > 1
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Numerical ALM

= set § = 2, initialize x, y, w as iid randn

= ALM iteration:

z®, y* oscillate, w* also does in a small amount



why ALM diverges: (z,y) = argmin, , Lg(z,y,w) is too sensitive in w

w=—1

Contours of Lg(x,y,w) for 8 = 2 and varying w
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ADMM

= ADMM following the order z — y — w:

k+1

2" = argmin, Ls(z,y", w")

k+1

y" " =argmin, Lg (zF+?

Ly, w")

Wt = Jraﬂ(mk-H . yk+1)
or the order y — = — w:

y* T = argmin, Lg(z",y,w")

"t = argmin, Ls(z, v+, wh)

wk+1 — ’U.)k +aﬁ(xk+1 _ yk+1)

= when 3 > 1, both z- and y-subproblems are (strongly) convex, so their

solutions are stable



ADMM following the order z — y — w

2" = proji_, 4 (55 (BY" —w"))

Yt = g (B wt)

wk+1 — ’U_)k +a6(:rk+l _ yk+1)

= supposing a = 1 and eliminating y* = —w", we get
k+1 : k
T = proji_; ;1(—w") -1 .
ol 1 . 2}+1 o= W= ﬁ(ﬁpro.][_Lu(*wk)erk)
w =77 (ﬁx +w )

= pick 8 > 2 and change variable fw" «+ w*

« if w® € [~1,1], then proj[,l’l](—wk) = —w" and wF! ="
k+1 _ _1 —k kL)

= ow., W = ﬁ(sign(ﬁ)k) —w") so |w ﬁ“wﬂ - 1|

{z* y*,w"} converges geometrically with finite termination
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ADMM following the order y — x — w

yk+1:ﬁ(ﬁmk+wk)

2" = proji_y y (537 (By*H —w)
wk+1 — wk + aﬁ(xk+1 _ yk+1)

= set @ = 1 and introduce z* = 62171(621"" +w"); we get

1 .
= —— (Bproji_, 4 (z") — 2*),
Bs—1
which is similar to w**! in ADMM z — y — w.

- &M= projy 4(2") and whtt = pakt — (5 4 1)2*

. {xk,yk,wk} converges geometrically with finite termination



Numerical test: finite convergence

ADMM z — y — w ADMM y — = — w

==

Both iterations converge to a global solution in 3 steps



Why ADMM converges? Reduces to convex coordinate descent

= For this problem, we can show y* = —w* for ADMM z — y — w
= Setting w = —y yields a convex function:
Lo,y w)],__, = 2%~ )+ uoin(@) (e —9) + S|o |’
= 2 ey 4 (@)
=: f(z,y)
= ADMM z — y — w = coordinate descent to the convex f(z,y):

2" = argmin,, f(z,y")
Yt =yt = o F TR

where p = I
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4. New convergence results

N



The generic model

minimize ¢($1, vy Tpy y) (1)
T1,.-Tp,Y

subject to  Aix1 + -+ Apxp + By = b,

we single out y because of its unique role: “locking” the dual variable w*



Notation:

= x = [T15...5@p] €ER”
" Xog 1= [£C1;...;l'7;_1]
" X5 1= [ZC-H_l;...;(L'p]

[ ] A:: [Al cee AP}GRMXTL
= Ax = Z?:l Az, € R™.
= Augmented Lagrangian:
Lﬁ(l‘h...,l’p,y,w) :¢($1,...,$p,y)+ <’LU,AX+By—b>

+ §||Ax+ By —b|?
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The Gauss-Seidel ADMM algorithm

0. initialize x°, 3%, w°

1. for k=0,1,... do

2 fori=1,...,pdo

3 xf“ < argmin,, Lg(x’ifl, Zi, :cl;i, y®, wk);

4. Yt — arg min,, Lg(x* g, w®);

5 wFtt — w4+ 8 (Aka + Byt — b);

6 if stopping conditions are satisfied, return z¥,. .. ,{E]; and y*.



The overview of analysis

= Loss of convexity = no Fejer-monotonicity, or VI based analysis.

= Choice of Lyapunov function is critical. Following

Hong-Luo-Razaviyayn'l4, we use the augmented Lagrangian.

= The last block y plays an important role.



ADMM is better than ALM for a class of nonconvex problems

= ALM: nonsmoothness generally requires § — oo;

= ADMM: works with a finite 3 if the problem has the y-block (h, B) where
h is smooth and Im(A) C Im(B), even if the problem is nonsmooth

= in addition, ADMM has simpler subproblems



Analysis keystones

P1 (boundedness) {x* y* w"} is bounded, Lg(x*, y*, w") is lower bounded;

P2 (sufficient descent) for all sufficiently large k, we have

L/B(Xkayk7wk) - LB(xk+l7yk+17wk+l)
r
> C(IBE =17+ D Al — )%,
i=1
P3 (subgradient bound) exists d"*' € ALg(x"*! y*+ wF*1) such that
r
&) < Co (1B = g+ A — b))
i=1

k

Similar to coordinate descent but treats w” in a special manner



Proposition

Suppose that the sequence (x*,y*, w") satisfies P1-P3.

(i) It has at least a limit point (x*,y",w™), and any limit point (x*,y",w") is

a stationary solution. That is, 0 € OLg(x*,y", w™).

(ii) The running best rates ® of {|[B(y**" — y*)||> + >°0_, || Ai(2f — 251)|°}

and {||d"*1||*} are o(%).

(iii) If Lg is a Kt function, then converges globally to the point (x*,y*, w™).

a . n o q q
A nonnegative sequence aj, induces its running best sequence by, = min{a;

running best rate of o(1/k) if by, = o(1/k).

The proof is rather standard.

: 4 < k}; therefore, aj, has



y* controls w*

Notation: - denotes -**1

Assumption: f is sufficiently large but fixed

By combining y-update and w-update
(plugging w* = w*~! 4+ B(Ax" 4+ By* — b) into the y-optimality cond.)

0=Vh(y*)+B"w* k=12...
Assumption {b} UIm(A) C Im(B) = w"* € Im(B)
Then, with additional assumptions, we have
lw —w"|| < O(IBy™ — By*l)

and
Lg(a™,y* ") — La(z",y",w™) > O(|By* — By"||?)

(see the next slide for detailed steps)



Detailed steps
= Bound Aw by ABy:
[w*—w®|| < C| BT (w" —w")|| = O(|Vh(y")=Vh(y")|)) < O(| By" —By"|)

where C := A;i/Q(BTB), the 1st “<" follows from w™,w* € Im(B), and
the 2nd “<" follows from the assumption of Lipschitz sub-minimization

path (see later)
= Then, smooth h leads to sufficient decent during the y- and w-updates:

L3($+ayk7wk) —Lg(x+,y+,w+)

1
7
>~ 0(1By" - B*I) + 2 1By* — By - 0(1By" ~ Byt )

k2
|

=(h(") = h(y") + (w*, By* — By")) + gIIBaﬁ - By*|I” = Zllwt —w

(with suff. large )
=0(|By*" — By"|1*)
where the “>" follows from the assumption of Lipschitz sub-minimization

path (see later)
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z*-subproblems: fewer conditions on f, A

We only need conditions to ensure monotonicity and sufficient decent like

+
= Lg(zl,,

af, e,y wh) > La(al, af 2%, y*, "))

and sufficient descent:

Lo(at; af, 2%, o* 0" —Ls(aly, ol 2l y" w")) > O(|| Aif — Aia %)
L1

For Gauss-Seidel updates, the proof is inductive i = p,p — 1,.

A sufficient condition for what we need:
,Zp) has the form: smooth + separable-nonsmoooth

flza, ...
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Remedy of nonconvexity: Prox-regularity

= A convex function f has subdifferentials in int(dom ) and satisfies
fy) = f(@) +(dy—=), x,yecdomf,dedf(x)
= A function f is prox-regular if 3 + such that
J@) + Flle =yl* = f@) +(d.y o), @y domf,d € df(a)
where Of is the limiting subdifferential.

= Limitation: not satisfied by functions with sharps, e.g., £1,2, which are

often used in sparse optimization.



Restricted prox-regularity

Motivation: your points do not land on the steep region around the sharp,

which we call the exclusion set
Exclusion set: for M > 0, define

Snm = {z € dom(9f) : ||d|| > M for all d € 9f(z)}
idea: points in Sy are never visited (for a suff. large M)

A function is restricted prox-regular if 3 M,~ > 0 such that
Sm C dom(9f) and any bounded T € dom(f)

f(y)+%|\$*y\|2 2 fle)+{d,y—x), w,y € T\Su, d€df(z), ||| < M.

Example: ¢4 quasinorm, Schattern—g quasinorm, indicator function of
compact smooth manifold
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Main theorem 1

Assumptions: ¢(z1,...,Zn,y) = f(x) + h(y)

Al. the problem is feasible, the objective is feasible-coercive®
A2. Im(A) C Im(B)

A3. F(x) = g(x) + fi(@1) + - + fu(2n), where

= g is Lipschitz differentiable

= fi is either restricted prox-regular, or continuous and piecewise linear®
A4. h(y) is Lipschitz differentiable

A5. z and y subproblems have Lipschitz sub-minimization paths

Results: subsequential convergence to a stationary point from any start point;
if Lg is KL, then whole-sequence convergence.

For feasible points (z1,...,xp,y), if [[(x1,...,Zn,y)|| = oo, then ¢(x1,...,Tn,y) — oco.
ze.g., anisotropic total variation, sorted £1 function (nonconvex), (—£71) function, continuous piece-wise linear
approximation of a function



Necessity of assumptions A2 A4

= Assumptions A2 A4 apply to the last block (h, B)

= A2 cannot be completely dropped.
Counter example: the 3-block divergence example by Chen-He-Ye-Yuan'13

= A4 cannot be completely dropped.
Counter example:

minimize — |z| + |y|
@,y
subject to x —y =0, z € [-1,1].

ADMM generates the alternating sequence :I:(%, 0,1)
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Lipschitz sub-minimization path

ADMM subproblem has the form

y" € argmin h(y) + gHBy + constants||?
y

Let u = By". Then y* is also the solution to

minimize h(y) subject to By = u.
y

We assume a Lipschitz subminimization path
H(u*) 4+ Null(B)

H(u)
")

sub-minimization path

Sufficient conditions: (i) smooth h + full col-rank B, (ii) smooth and

strongly convex h; (iii) not above but your subprob solver warmstarts and

finds a nearby solution.



Main theorem 2

Assumptions: ¢(x1,...,Zn,y) can be fully coupled
= Feasible, the objective is feasible-coercive
= Im(A) C Im(B)
= ¢ is Lipschitz differentiable
= 1z and y subproblems have Lipschitz sub-minimization paths

Results: subsequential convergence to a stationary point from any start point;
if Lg is KL, then whole-sequence convergence.



5. Comparison with Recent Results



Compare to Hong-Luo-Razaviyayn’14

= Their assumptions are strictly stronger, e.g., only smooth functions

- f= ZZ fi, where f; Lipschitz differentiable or convex
= h Lipschitz differentiable
= A; has full col-rank and B =1

= Applications in consensus and sharing problems.
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Compare to Li-Pong’14

= Their assumptions are strictly stronger
= p=1and fis ls.c.

= h € C? is Lipschitz differentiable and strongly convex
= A =1 and B has full row-rank

= h is coercive and f is lower bounded.
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Compare to Wang-Cao-Xu'14

= Analyzed Bregman ADMM, which reduces to ADMM with vanishing aux.

functions.

= Their assumptions are strictly stronger
= B is invertible
_\P ;
= f(x) =37 |, where f; is strongly convex
= h is Lipschitz differentiable and lower bounded.
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6. Applications of Nonconvex ADMM
with Convergence Guarantees



Application: statistical learning

mlmmlze r(x) + E Li(

= 1 is regularization, [;'s are fitting measures

= ADMM-ready formulation

mlnlmlze r(xz) + E li(Aiz; — by)

z,{z;}
subject toz = z;, 1 =1,...,p.
= ADMM will converge if
. r(x) = ||z)|§ = >, |zi|?, for 0 < g <1, or piecewise linear

= r(x) 4+ Y " Li(Aix — bi) is coercive
= l1,...,1lp are Lipschitz differentiable
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Application: optimization on smooth manifold

minimize J(x) subject to z € S.

= ADMM-ready formulation
minimize ts(x) + J(y)
@,y

subject to x — y = 0.

= ADMM will converge if
= S is a compact smooth manifold, e.g., sphere, Stiefel, and Grassmann
manifolds
= J is Lipschitz differentiable
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Application: matrix/tensor decomposition

minimize r1(X) +r2(Y) + || Z|%
X,Y,Z

subject to X +Y + Z = Input.

= Video decomposition: background + foreground 4+ noise
= Hyperspectral decomposition: background + foreground + noise

= ADMM will converge if 1 and r2 satisfy our assumptions on f
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6. Summary
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Summary

= ADMM indeed works for some nonconvex problems!

= The theory indicates that ADMM works better than ALM when the
problem has a block (h(y), B) where h is smooth and Im(B) is dominant

= Future directions: weaker conditions, numerical results



Thank you!
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