
1 

A map-based approach to understanding 
circadian modulation of sleep	

1 

Cecilia Diniz Behn 
 

Department of Applied Mathematics and Statistics 
Colorado School of Mines, Golden, CO, USA  

 
Division of Endocrinology, Department of Pediatrics 

University of Colorado Anschutz Medical Campus, Aurora, CO, USA 
 
 



Overview	
n  Motivation 
n  Sleep/wake network model 
n  1-D map 

q  Algorithm for map 
q  Map for different REM behavior patterns 
q  Bifurcations in map as homeostatic parameter 

varies 
n  Conclusions and future directions 



Human sleep/wake behavior	
n  Normal adult human 

sleep occurs in a 
consolidated nighttime 
period 

n  Sleep includes both 
rapid-eye movement 
(REM) sleep and non-
REM (NREM) sleep 

n  Over the course of the 
night, people cycle 
between NREM and 
REM sleep 
approximately every 
90 minutes 

Scammell et al., Neuron, 2017 



Circadian rhythms	
n  Circa dia:  “about a day;” 

approximately 24 hours 
n  Biological rhythm 

observed in nearly all 
species 

n  Generated by molecular 
clock in neurons within 
the suprachiasmatic 
nucleus of the 
hypothalamus (SCN)  

n  Clock modulates firing of 
SCN neurons 

Time (hours) 

Deboer et al., Nature Neurosci, 2003 

Tsimakouridze, Fronters in Pharma, 2015 



SCN modulates timing of sleep/wake 
behavior	
n  SCN entrains to the 

environmental light/dark 
cycle 

n  SCN acts as master 
pacemaker and 
determines timing of 
sleep/wake behavior 

n  Perturbations to 
entrained system result 
in misalignment of 
behavior and circadian 
phase 

Neural pathways that regulate 
circadian modulation of sleep 

Scammell et al., Neuron, 2017 



Goal	

Use mathematical modeling and analysis to 
investigate circadian modulation of sleep/wake 
behavior and the dynamics of re-entrainment. 
 
 



Physiology of sleep/wake regulation	
Wake-promoting pathways 

NREM-promoting pathways 

Scammell et al., Neuron, 2017 



Models of the sleep/wake regulatory 
network 	
n  Competing hypotheses for the 

structure of the network have led to 
multiple mathematical models 

Phillips and Robinson, 2007, 2008 

Sleep-
promoting 

Wake-
promoting 

Diniz Behn and Booth, 2010,  2011, 2013 

Kumar et al., 2012 

Sleep-
promoting 

Wake-
promoting 



Reduced population firing rate 
model formalism	

Postsynaptic 
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Reduced sleep/wake regulatory 
network model	
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Homeostatic and circadian drives	
n  Interactions in the sleep/

wake regulatory network 
are modulated by 
homeostatic and circadian 
drives 

n  Homeostatic drive 
represents sleep need that 
increases with time awake 

n  Circadian drive represents 
sleep need that varies with 
time of day 

Light 



Homeostatic sleep drive	
n  Denoted by H 
n  Fit to time course of 

slow wave activity 
n  Mimics effect of 

adenosine 
n  Promotes activity of 

NREM-promoting 
population 

     

Kilduff et al., Cell, 2011  
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Circadian drive	
n  Human circadian 

pacemaker represented 
as modified van der Pol 
oscillator (Forger et al., 
1999): 

n  Can be entrained to 
external light schedule 
with light input mediated 
through B 

human circadian pacemaker (Jewett and Kronauer,
1998). Experimental studies focusing on circadian
amplitude in humans (Jewett et al., 1994; Jewett and
Kronauer 1998) have reported the following findings:
(1) if the circadian amplitude is slightly perturbed
from its normal value, it will recover within one to two
cycles, and (2) when the circadian amplitude is
reduced to below ~1

4 of its unperturbed value, it
remains at low values for several cycles. To model this
phenomenon, Jewett and Kronauer (1998) switched
from the conventional cubic van der Pol oscillator to a
more complex seventh-order polynomial van der Pol
type oscillator. This model was able to accurately pre-
dict both amplitude reduction studies and phase-
shifting studies in humans.

However, there are many reasons why the conven-
tional cubic van der Pol oscillator would be preferable
to the higher order oscillator of Jewett and Kronauer
(1998). Whenever possible, simpler mathematical
models are generally preferred (Occam’s razor), since
unnecessary model complexity can imply added bio-
logical complexity that may not exist. In addition, the
conventional van der Pol model has been used more
widely by mathematicians and in the modeling of cir-
cadian systems across diverse species than the newer
model of Jewett and Kronauer (1998). Finally, because
the van der Pol oscillator contains only one nonlinear
term of small magnitude, it is simpler to use, both ana-
lytically and computationally.

For these reasons, we use the classic van der Pol

model of the human circadian system. However, we

have added three important items. First, to model

Aschoff’s rule, we have added an effect of light on the

circadian period, following the method outlined in

Jewett and Kronauer (1998). Second, to accurately pre-

dict the circadian response to brief pulses of light, we

have incorporated the dynamic stimulus model

(Process L) described in Kronauer et al. (1999). Process

L is a model of a biological process that converts a

time-varying light signal into a drive onto the pace-

maker. Adding this process does not affect the struc-

ture of the model of the pacemaker itself. Third, to

modulate the effective sensitivity of the van der Pol

oscillator to the drive from Process L as a function of

the current state of the oscillator, we included within

the pacemaker structure the circadian stimulus modu-

lator described in Jewett et al. (1999). With these addi-

tions, we investigate whether this simpler cubic

mathematical model of the human circadian pace-

maker can predict experimental data with the same

accuracy as that of higher order nonlinear models.

METHOD

Model Equations

Kronauer’s (1990) original model of the effect of
light on the human circadian system is shown in equa-
tions (1) and (2):
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Kronauer used the classic cubic van der Pol equation,
normalized to a limit cycle amplitude of 1.0 and scaled

to a oscillator period of τx = 24.2 h. In Kronauer’s
model, B represents the effect of light. In the cubic
model presented here in equations (3) and (4), we
remove the amplitude recovery terms (x – 4x3/3) of the
van der Pol oscillator from the dx/dt equation and
replace them with the corresponding terms (xc –
4x c

3 /3) in the dxc/dt equation. This causes the ampli-
tude of the limit cycle to be dependent on the
strength of the light drive (B), with a limit cycle
amplitude of 1.0 in darkness. In addition, we have
removed the secondary divergent effect of light, Bxc,
from the dxc/dt equation (2). A small correction to

the period of the oscillator,
1

0 99669

2

.
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, in the dxc/dt

equation (4) is required for the observed period to

equal τx due to the oscillator’s nonlinear terms (Jewett
et al., 1999).
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To add a direct effect of light on the circadian
period in the spirit of Aschoff’s rule, we modify equa-
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tion (3) by adding the term kBx to the dxc/dt equation
(Jewett and Kronauer, 1998).
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The drive due to light from Process L and the circadian
sensitivity modulation of this drive are shown below
(Kronauer et al., 1999):

Process L
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Sensitivity Modulation

B B x xc= − −( . )( . ).1 0 4 1 0 4 (9)

where α0 = 0.16, β = 0.013, G = 19.875, p = 0.6, k = 0.55,
I0 = 9500.

The relationship between the core body tempera-
ture minimum (CBTmin), which is used experimentally
to assess circadian phase, and the minimum of the
state variable x (xmin) is

CBTmin min= +x refφ . (10)

Simulations and Data Analysis

All simulations were run using Mathematica 3.0 for
students (Wolfram Research, Champaign, IL). The
simpler cubic model presented here was compared to
the higher order models of Jewett and Kronauer (1998)
and Kronauer et al. (1999). For the simpler cubic
model, the initial conditions at habitual bedtime were
x = –0.3 and xc = –1.13 (Jewett and Kronauer, 1998); the
intrinsic circadian period, τx, was set to 24.2 h (Czeisler
et al., 1999); and the values of µ and φref were defined to
be those that produced the best fit to our comparison
experimental data sets. Two comparison experimen-
tal data sets were chosen: (1) the three-cycle human
phase response curve (PRC) experiment described in
Khalsa et al. (1997) and (2) the amplitude reduction

experiments described in Jewett et al. (1991). For each
model, simulations of the two experimental protocols
were conducted for initial phases every 0.25 h. We
then linearly interpolated between those points to cre-
ate the simulation PRCs and amplitude response
curves (ARCs).

To determine the best possible fit to the three-pulse
PRC data used to validate our model, the experimen-
tal data points were smoothed using the smoothing
procedure described in Jewett et al. (1994). A smooth-
ing window of seven points was used instead of five
because the Khalsa (1997) experimental data set con-
tained more data points than the data set considered
by Jewett et al. (1994). To compute the perpendicular
error of the smoothed fit, the perpendicular distance
between each data point and the smoothed fit was
computed, and the magnitudes of those distances
were averaged across all of the data points.

RESULTS

Model simulations determined that the following
parameter values for our cubic model provided the
best fit to the experimental data:

µ φ= =0 23 0 0. , .ref
.

Figure 1 (solid line) shows the simpler cubic model’s
prediction of the experimental data (solid circles) from
the three-pulse human PRC protocol reported in
Khalsa et al. (1997). This protocol was also simulated
using Kronauer et al.’s (1999) model (Fig. 1, dashed
line), which uses the same 7th-order polynomial oscil-
lator as Jewett and Kronauer’s (1998) model. Outside
of the critical region (initial phases near CBTmin), the
two models have very similar predictions. Inside the
critical region, the slope of our simpler cubic model’s
PRC is steeper than that of Kronauer et al.’s (1999)
higher order model. Despite the difference in slope,
Figure 1 indicates that our conventional van der Pol
oscillator simulates this three-pulse PRC protocol as
well as the higher order model of Kronauer et al.
(1999).

The average perpendicular error from the data
points to the smoothed three-cycle PRC fit was 0.55 h.
Our simpler cubic model produced an average error
of 0.67 h. The average error of Kronauer et al.’s (1999)
model and Jewett and Kronauer’s (1999) model was
0.77 h and 0.83 h, respectively. Our simpler model,
therefore, adds only 0.12 h to the average perpendicu-
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Simulated stereotypical human sleep	
n  Behavioral state 

determined by activity of 
neuronal populations 

n  Under normal conditions, 
sleep cycle and circadian 
rhythm are synchronized 

n  More interesting 
dynamics occur in de-
synchronizing situations: 
q  All-nighters 
q  Sleep deprivation & 

recovery 
q  Shift work 



Map construction	
n  Numerically 

constructed a 1-D 
map to describe 
dependence of sleep 
on circadian phase in 
full model 

n  Simulated the model 
from initial conditions 
corresponding to 
sleep onset occurring 
at different circadian 
phases 
q  Algorithm to define 

sleep onset in high 
dimensional model 

Sleep 
onset 

Booth, Xique, & Diniz Behn, SIAM J Appl Dyn Sys, to appear 



Transitions between sleep and wake 
correspond to movement around 
hysteresis loop	

Wake Population 
n  Fast-slow 

decomposition with 
slow parameter h 

n  Stable wake and 
NREM states form Z-
shaped steady state 
curve 

n  Sleep onset 
corresponds to upper 
knee of Z 

Diniz Behn & Booth, SIAM J Appl Dyn Sys, 2012 
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curve of the fast subsystem and introduces another slow time scale to the system. Although251

the general structure of the Z is preserved, the location of the Z with respect to h changes with252

di↵erent values of c. Figure 3 shows the bifurcation curves for the maximum (high c = 1.113)253

and minimum (low c = �1.115) values c attains during its 24 h cycle. As c slowly varies on254

its 24 h time scale, the Z-shaped curve moves slowly between these extremes, thus defining255

a family of curves or a Z-shaped surface. This results in modulation of the locations of the256

upper and lower saddle-node points and homoclinic bifurcation as a function of c. Since these257

points correspond to values of sleep-wake variables at transition points, modulation of these258

bifurcation points results in changing dynamics of the underlying sleep-wake network. From259

a network perspective, changes in the circadian variable c a↵ect the magnitude of inputs to260

each neuronal population receiving projections from the SCN, thereby modulating, on a 24 h261

time scale, their ability to activate.262

Interestingly, the e↵ect of modulating the bifurcation structure of the fast subsystem263

with respect to h also depends on the structure itself. For �
R

= �0.3, there is a smooth264

deformation from the Z associated with a high c value to the Z associated with a low c value,265

so the trajectory can follow the quasi-fixed points associated with a changing c value. By266

contrast, for �
R

= �0.8, the combination of the kink near the lower saddle-node point and267

the periodic branch means that there is no clear path for the trajectory to follow as c varies.268

This makes the transition from sleep to wake of the system for �
R

= �0.8 much less robust269

than this transition for �
R

= �0.3. Thus, at di↵erent values of �
R

, the e↵ect of including270

circadian modulation in the model will di↵er.271
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Figure 3. Bifurcation diagrams of the reduced sleep-wake network model computed with
respect to the homeostatic sleep drive h as the bifurcation parameter and fixed values of the
circadian drive c, representing its maximum (c=1.113, high c) and minimum (c=-1.115, low c)
values during its 24 h cycle. A: For �R = �0.3, steady state solutions form a Z-shaped curve in the
wake variable FW defining the stable wake (green) and NREM sleep (red) states. These stable
states are separated by the unstable (dashed black/gray) steady state. At high c values, this
curve (dark green, black, purple) is shifted right compared to the curve (light green, gray, red)
at low c values, indicating that transitions take place at higher values of h. B: For �R = �0.8, the
general Z-shaped curve and c-dependence with respect to h is preserved. However, the NREM
sleep branch (red/purple), loses stablity, and is surrounded by stable periodic orbits representing
NREM-REM cycling.

This manuscript is for review purposes only.

n  3 time scales in system 
q  Neuronal dynamics are 

fast 
q  Homeostatic drive and 

circadian modulation are 
slow 

n  Circadian modulation 
slowly varies Z 

n  Sleep onset tracks 
position of knee in full 
high-dimensional space 

Booth, Xique,& Diniz Behn, SIAM J Appl Dyn Sys, to appear  

Circadian modulation introduces another 
slow variable	

Wake Population 



Numerical algorithm for computing 
a 1D map for this model	
n  Compute appropriate initial conditions for 

sleep onset for each circadian phase 
q  Sleep onset occurs at upper saddle-node point so 

this specifies network variables 
q  Use two-parameter numerical continuation to 

determine the values of the remaining circadian 
variables 

n  For each set of ICs, simulate full model and 
track circadian phase of subsequent sleep 
onsets 



1D map for full model	
n  Computed map of Φn+1 as 

a function of Φn 

n  Vertical discontinuities 
between different 
branches of map 

n  Fixed point of map (    ) at 
Φ=0.793 corresponds to 
entrained case 

n  Slope < 1 (~0.35) at fixed 
point indicates stability 

12 Booth, Xique and Diniz Behn

A

B

Figure 5. (A) One-dimensional map for the re-entrainment dynamics between sleep-wake cycles and the
circadian rhythm for the sleep-wake regulatory network model simulating typical human sleep behavior (�R =
�0.8). Circadian phase of sleep onset on day n + 1 �n+1, computed relative to minimum of the circadian
drive variable c, is plotted as a function of circadian phase of sleep onset on day n �n; double plot illustrates
the day that �n+1 occurs. Gray portion of map curve indicates phase points in the ”wake promoting zone”
that were computed from adjusted initial conditions that force sleep onset to occur (see Section 3.1). Traces of
the circadian drive variable c (green curves) and labels of map branches shown for reference. (B) Time traces
of firing rates of the neuronal populations from initial conditions used to compute the map showing circadian
modulation of sleep-wake behavior. Top: short sleep with 3 REM bouts and short wake when �n = 0.186 on
the left portion of branch 1; second panel: short sleep with 4 REM bouts and extended wake when �n = 0.568
on branch 2; third panel: longer sleep with 5 REM bouts and extended wake when �n = 0.596 on branch 3;
bottom: long sleep with 6 REM bouts and extended wake when �n = 0.664 on branch 4.

we discuss below, sleep-wake characteristics during the cycle between the pair of sleep onset373

phases represented by each point on the map vary significantly among the di↵erent branches374

of the map. These characteristics include sleep and wake bout durations and number of REM375

bouts. Thus, by tracking the model trajectory on the map, we can predict the cycle-by-cycle376

changes in sleep-wake behavior during the re-entrainment process.377

3.3. Map validation. To reduce model dynamics to a one-dimensional map, we made378

several assumptions relating to the lack of synchronization between the sleep-wake network379

and the circadian drive. Specifically, in constructing the map we assumed that the sleep-wake380

variables were close to a stable solution of the isolated sleep-wake network when the circadian381

drive c is a fixed parameter, and we assumed that the circadian variables were close to a382

stable solution of the isolated circadian system. Thus, we assumed that desynchronization383

of the sleep-wake network and the circadian rhythm occurred without disrupting the internal384

dynamics of either system. However, mathematically, in the 8-variable model, stable syn-385

This manuscript is for review purposes only.



Wake-promoting zone in 1D map	
n  In grey region, sleep onset did 

not immediately occur from 
the given ICs 
q  Initially, FW decreased and FN 

increased 
q  Then variables reversed 

directions 
n  Related to system time scales  
n  To force transition, used ICs 

on unstable manifold of saddle 
associated with upper saddle-
node point 

n  Refer to this region as “wake-
promoting zone” 
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Figure 5. (A) One-dimensional map for the re-entrainment dynamics between sleep-wake cycles and the
circadian rhythm for the sleep-wake regulatory network model simulating typical human sleep behavior (�R =
�0.8). Circadian phase of sleep onset on day n + 1 �n+1, computed relative to minimum of the circadian
drive variable c, is plotted as a function of circadian phase of sleep onset on day n �n; double plot illustrates
the day that �n+1 occurs. Gray portion of map curve indicates phase points in the ”wake promoting zone”
that were computed from adjusted initial conditions that force sleep onset to occur (see Section 3.1). Traces of
the circadian drive variable c (green curves) and labels of map branches shown for reference. (B) Time traces
of firing rates of the neuronal populations from initial conditions used to compute the map showing circadian
modulation of sleep-wake behavior. Top: short sleep with 3 REM bouts and short wake when �n = 0.186 on
the left portion of branch 1; second panel: short sleep with 4 REM bouts and extended wake when �n = 0.568
on branch 2; third panel: longer sleep with 5 REM bouts and extended wake when �n = 0.596 on branch 3;
bottom: long sleep with 6 REM bouts and extended wake when �n = 0.664 on branch 4.

we discuss below, sleep-wake characteristics during the cycle between the pair of sleep onset373

phases represented by each point on the map vary significantly among the di↵erent branches374

of the map. These characteristics include sleep and wake bout durations and number of REM375

bouts. Thus, by tracking the model trajectory on the map, we can predict the cycle-by-cycle376

changes in sleep-wake behavior during the re-entrainment process.377

3.3. Map validation. To reduce model dynamics to a one-dimensional map, we made378

several assumptions relating to the lack of synchronization between the sleep-wake network379

and the circadian drive. Specifically, in constructing the map we assumed that the sleep-wake380

variables were close to a stable solution of the isolated sleep-wake network when the circadian381

drive c is a fixed parameter, and we assumed that the circadian variables were close to a382

stable solution of the isolated circadian system. Thus, we assumed that desynchronization383

of the sleep-wake network and the circadian rhythm occurred without disrupting the internal384

dynamics of either system. However, mathematically, in the 8-variable model, stable syn-385

This manuscript is for review purposes only.



n  Sleep cycle associated 
with fixed point has 4 
REM bouts 

n  Branches 2 & 6 also 
have 4 REM bouts 

n  Branches 3, 4, & 5 have 
more REM bouts 

n  Branch 1 has only 3 
REM bouts 
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Figure 5. (A) One-dimensional map for the re-entrainment dynamics between sleep-wake cycles and the
circadian rhythm for the sleep-wake regulatory network model simulating typical human sleep behavior (�R =
�0.8). Circadian phase of sleep onset on day n + 1 �n+1, computed relative to minimum of the circadian
drive variable c, is plotted as a function of circadian phase of sleep onset on day n �n; double plot illustrates
the day that �n+1 occurs. Gray portion of map curve indicates phase points in the ”wake promoting zone”
that were computed from adjusted initial conditions that force sleep onset to occur (see Section 3.1). Traces of
the circadian drive variable c (green curves) and labels of map branches shown for reference. (B) Time traces
of firing rates of the neuronal populations from initial conditions used to compute the map showing circadian
modulation of sleep-wake behavior. Top: short sleep with 3 REM bouts and short wake when �n = 0.186 on
the left portion of branch 1; second panel: short sleep with 4 REM bouts and extended wake when �n = 0.568
on branch 2; third panel: longer sleep with 5 REM bouts and extended wake when �n = 0.596 on branch 3;
bottom: long sleep with 6 REM bouts and extended wake when �n = 0.664 on branch 4.

we discuss below, sleep-wake characteristics during the cycle between the pair of sleep onset373

phases represented by each point on the map vary significantly among the di↵erent branches374

of the map. These characteristics include sleep and wake bout durations and number of REM375

bouts. Thus, by tracking the model trajectory on the map, we can predict the cycle-by-cycle376

changes in sleep-wake behavior during the re-entrainment process.377

3.3. Map validation. To reduce model dynamics to a one-dimensional map, we made378

several assumptions relating to the lack of synchronization between the sleep-wake network379

and the circadian drive. Specifically, in constructing the map we assumed that the sleep-wake380

variables were close to a stable solution of the isolated sleep-wake network when the circadian381

drive c is a fixed parameter, and we assumed that the circadian variables were close to a382

stable solution of the isolated circadian system. Thus, we assumed that desynchronization383

of the sleep-wake network and the circadian rhythm occurred without disrupting the internal384

dynamics of either system. However, mathematically, in the 8-variable model, stable syn-385

This manuscript is for review purposes only.

Different branches of map associated 
with different numbers of REM bouts	
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Figure 5. (A) One-dimensional map for the re-entrainment dynamics between sleep-wake cycles and the
circadian rhythm for the sleep-wake regulatory network model simulating typical human sleep behavior (�R =
�0.8). Circadian phase of sleep onset on day n + 1 �n+1, computed relative to minimum of the circadian
drive variable c, is plotted as a function of circadian phase of sleep onset on day n �n; double plot illustrates
the day that �n+1 occurs. Gray portion of map curve indicates phase points in the ”wake promoting zone”
that were computed from adjusted initial conditions that force sleep onset to occur (see Section 3.1). Traces of
the circadian drive variable c (green curves) and labels of map branches shown for reference. (B) Time traces
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n  Iterates converge to stable 
fixed point 

n  Re-entrainment typically 
occurs after 2-4 days 
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Time scale of homeostatic sleep 
drive	
n  Time course of slow wave activity changes in 

early childhood 
n  May play a role in transitions from napping to 

non-napping behavior in early childhood 
n  Introduced scaling parameter χ to investigate 

bifurcations in sleep patterns as h time scale 
varies 
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Maps as χ decreases	
n  Fixed point for synchronized solution loses stability 
n  Fixed point loses existence due to discontinuity 
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Bifurcations in number of daily sleep 
episodes	
n  As χ decreases more sleep episodes occur per day 

Scaling parameter χ
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2nd iterate map to examine region 
with 2 sleep cycles per day	

χ=0.58 
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For χ=0.58, two stable two cycles	
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Bifurcations in number of daily sleep 
episodes	
n  As χ decreases more sleep episodes occur per day 
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Devil’s staircase structure in number 
of daily sleep episodes	
n  M = number of sleep 

episodes and N = 
number of days in 
periodic solution 

n  Define rotation number 

n  Examine how ρ changes 
as a function of χ 

n  Consistent with a 
border collision 
bifurcation 

R
ot

at
io

n 
nu

m
be

r 𝜌
 

Scaling parameter χ
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solution found 
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Period-adding behavior in number of 
daily sleep episodes	
n  Rotation numbers follow 

a Farey sequence 
n  If the rotation numbers   

a/b and c/d of two disjoint 
intervals are Farey 
neighbors (|ad-bc|=1), 
then between them, there 
is a cycle with a rotation 
number = their Farey 
sum: 

Scaling parameter χ
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Period-adding bifurcation in number 
of REM episodes	
n  When fixed point loses stability, the number of REM 

bouts per night alternates between 4 and 5 
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Conclusions & future work	
n  1D maps for sleep-wake network 

q  Provide insight into circadian modulation of sleep 
q  Can be used to predict re-entrainment after 

desynchronization of sleep and circadian rhythms 
q  Establish a framework for understanding bifurcations of 

sleep-wake patterns as model parameters vary 
q  Implications for developmentally-mediated changes 

n  Current work includes 
q  Analysis of interactions of multiple slow time scales in 

the system 
q  Using maps to understand recovery from sleep 

deprivation 
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