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Motivation

Given an Inverse Problem

(IP) Find θ ∈ X : G(θ) + η = y ,

where
G : X → Y is the forward response operator,
θ ∈ X is the unknown parameter,
η ∼ N(0, Γ) is observational noise and
y ∈ Y is observed data,
X ,Y are Hilbert spaces
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Motivation

Example (regression)

θ : D → R is a function
y are observations of this function
G maps any function θ to its values at the observed positions:

θ 7→ (θ(xi ) : i = 1, ...,Nobs) ∈ Y .

Task: Identify the function θ given these point evaluations
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Motivation

Example (groundwater flow)

θ : D → R models the log-conductivity of a groundwater reservoir
y are observations of the pressure in the groundwater reservoir
G = O ◦G is the combination of

the solution operator G(θ) := p of the elliptic PDE:

−∇ · exp(θ(x))∇p(x) = f (x) (x ∈ D)(PDE)
p(x) = 0 (x ∈ ∂D)

the observation operator O(p) := (p(xi ) : i = 1, ...,Nobs) ∈ Y

Task: Identify the log-conductivity θ given the pressure data y . (PDE) links θ, y .
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Motivation

We approach (PDE)-based (IP) Bayesian. So Assume,

(Prior) θ ∈ L2(Ω,A,P; X ), θ ∼ µ0.

(BIP) Find µy := P(θ ∈ ·|G(θ) + η = y),

given by

(Bayes’ Rule)
dµy

dµ0
(θ) ∝ L(y |θ) := exp

− 1
2
‖Γ− 1

2 (G(θ)− y) ‖2
Y︸ ︷︷ ︸

=:Φ(θ)

 .
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Prior measure µ0

θ is a function in C0(D),
e.g. model θ as a (mean-zero) Gaussian random field (RF), where

Cov(θ) := C(`, σ)

is an exponential covariance operator

ϕ 7→ C(`, σ)ϕ :=

∫
D
σ2 exp(−‖x − ·‖2/`)ϕ(x)dx .

Typical assumption: `, σ are given a priori

What if they are unknown?
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What if...?
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Figure: Estimating the true value with a Bayesian approach given noisy (noise level = 1%) evaluations of the random field
at the 9 ‘•’. The three upper (lower) right plots show posterior mean (variances) estimates of the true values given a prior
with exponential covariance with ` = 1, 0.5, 0.1, 0.05. The true random field is a sample from an exponential covariance
with ` = 0.5.
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What if...?

“It ain’t what you don’t know that gets you into trouble.
It’s what you know for sure that just ain’t so.

– Mark Twain, 1835-1910

Use a hierarchical approach, i.e.
(`, σ) ∼ µ′

are also uncertain and shall be estimated
we will now only focus on ` ∼ µ′ and assume that σ is known.
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Hierarchical Bayesian Inverse Problem

State of the art:
Hierarchical Bayesian Estimation

Discussed in various standard textbooks4

Hierarchical Bayesian Inverse Problem
Hierarchical level set inversion5

Theoretical considerations and applications in probabilistic numerics6

Polynomial chaos surrogates for hierarchical Bayesian inverse problems7

4Robert (2007): The Bayesian Choice, Springer.
5Dunlop, Iglesias, Stuart (2017): Hierarchical Bayesian level set inversion, Statistics and Computing: 27(6):1555-1584.
6Roinien, Girolami, Lasanen, Markkanen (2016): Hyperpriors for Matérn fields with applications in Bayesian inversion,

ArXiv e-prints 1410.5522:1-27.
7Sraj, Le Maı̂tre, Knio, Hoteit (2016): Coordinate Transformation and Polynomial Chaos for Bayesian Inference of a

Gaussian Process with Parametrized Prior Covariance Function, Comp. Meth. Appl. Mech. Engrg. 289:205–228.
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Hierarchical Bayesian Inverse Problem: Setting

Given an Inverse Problem

(IP) Find θ ∈ X : G(θ) + η = y ,

where

G : X → Y is the forward response operator,

θ ∈ X is the unknown parameter,

η ∼ N(0, Γ) is observational noise,

y ∈ Y is observed data and

X ,Y are Hilbert spaces, X := L2,Y := Rn.

Hierarchical Bayesian setting:
Given θ ∼ K (·|`) = N(0, C(`)) (as a hyperprior) and
` ∼ µ′ (prior for `).
Compute µy := P((`, θ) ∈ ·|G(θ) + η = y).

14



Hierarchical Bayesian Inverse Problem

Bayes’ Rule for hierarchical Bayesian Inverse Problem

µy (B) =
1

Z (y)

∫∫
B

exp (−Φ(θ)) K (dθ|`)µ′(d`) (B ∈ R⊗ BX )

Z (y) =

∫∫
R×X

exp (−Φ(θ)) K (dθ|`)µ′(d`)

Generate posterior samples with Metropolis-within-Gibbs MCMC

15
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Random field sampling
MCMC sampling requires sampling from N(0, C(`)) for any ` ∈ R

Expand θ ∼ N(0, C(`)) in a Karhunen-Loève (KL) expansion:

(KL) θ :=
∞∑
i=1

√
λi (`)ψi (`)ξi ,

where
ξ1, ξ2, ... ∼ N(0,1) i.i.d.
(λi (`), ψi (`))∞i=1 are eigenpairs of C(`),
where λ1(`) ≥ λ2(`) ≥ · · ·

Discretisation: Truncate after Nsto terms

(truncKL) θKL :=
Nsto∑
i=1

√
λi (`)ψi (`)ξi ,

17



Computational cost

Each MCMC sample requires evaluations of G︸︷︷︸
PDE

(

RF︷︸︸︷
θ ).

PDE: N piecewise linear FEs (e.g. multigrid solver)

Cost
Sample : O(N; N →∞)

RF: Nsto-term KLE and N piecew. const. FEs (e.g. impl. rest. Lanczos method; eigs)

Cost
Sample : O(N2Nsto; N →∞)

Toy example. Elliptic PDE in 2D, N = 2562, Nsto = 400 KL terms.
PDE solve ∼ 1s (50000 MCMC Samples: ∼ 14h)
KL solve ∼ 50min (50000 MCMC Samples: ∼ 5 years)
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Summary

Why would someone do that?
Fixing uncertain parameters can lead to wrong estimation results

Why is that complicated?
Recomputing the KL expansion is computationally very expensive
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Mech. Engrg. (in Press, available online 15 Feb 2019).
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Galerkin approximation of the eigenproblem

Problem. Compute eigenpairs of the covariance operators C(`), for various `.

Definition. (λi (`), ψi (`)) is an eigenpair of C(`) in the weak formulation, if

(`EVP) γ(`;ψi (`), v) = λi (`)〈ψi (`), v〉X ∀v ∈ X .

Here, γ(`; ·, ·) is a bilinear form, given by

γ(`; u, v) := 〈C(`)u, v〉X

Discretisation: replace X by a finite-dimensional ansatz space Xh

21



Galerkin approximation
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Figure: KL eigenfunctions on L-shaped domain, discretised with piecewise constant finite elements. Coarse
grid (left) vs. fine grid (right).
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Overview

At the moment: Solve the KL eigenproblem on a standard FE ansatz space.
high-dimensional and expensive

Reduced basis idea: Tailor a specific ansatz space for this eigenproblem.
changing the parameter may not influence the eigenproblem too severely

23



Reduced Basis

Offline phase:
Construct a reduced space XRB = span(W ).
W is orthonormal
Online-Offline-Decomposition with linearly separable operator

Online phase:
Construct reduced operator
Galerkin approximation on the reduced space
Project the reduced solution on Xh (resp. X )

24



Offline phase: Basis construction

1. Snapshot-based construction: Solve the full eigenproblem for some `snap ∈ RNsnap and obtain

W snap := (ψi (`
snap
p ) : i = 1, ...,Nsto,p = 1, ...,Nsnap),

with eigenvectors ψi (`) of C(`).
2. Consider all the snapshot eigenfunctions as basis functions and orthonormalise this basis with

SVD (= proper orthogonal decomposition (POD)).

W snap = UΣV ,

where
Σ = diag(λsnapi : i = 1, ...,NstoNsnap), U = (ui : i = 1, ...,NstoNsnap)

25



Dimensionality reduction

Either of
Set W := (ui : λsnapi > 0).

Possibly still high dimensional
Uses all the information from the snapshots

Set W := (ui : λsnapi > λ) for some threshold λ > 0.
This leads to a further dimensionality reduction, but to a larger reduced basis error.
Often: Full operator sparse, reduced operator dense
Here: All operators are dense.

Obtain a reduced basis W and
NRB-dimensional reduced space XRB := span(W )
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Online-Offline Decomposition

The reduced operator is given by
CRB(`) = W ∗C(`)W

(Constr. costs online about O(N2))
Assume that we can decompose C(`) in the following way

C(`) :=

Nlin∑
m=1

Fm(`)Cm.

Then, we can construct the

CRB(`) :=

Nlin∑
m=1

Fm(`)CRB
m :=

Nlin∑
m=1

Fm(`) W ∗CmW︸ ︷︷ ︸
Keep in the memory.

(Constr. cost online O(N2
RBNlin))
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Online phase: Reduced Basis Sampling

Use the KL expansion to sample from the random field
Compute the KL eigenfunctions on a reduced basis

Algorithm:
1. Sample ` ∼ µ′

2. Compute (Λ(`),ΨRB(`))← eigs(CRB(`),Nsto)

3. θRB ←W ΨRB(`)Λ(`)1/2ξ, ξ ∼ N(0, Id).

28
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Computational cost

Standard Sampling: O(N2NsmplNsto)
Reduced Basis Sampling:

Offline:
O(NsnapN2︸ ︷︷ ︸

(1)

+ NsnapN2Nsto︸ ︷︷ ︸
(2)

+ NsnapN2Nsto︸ ︷︷ ︸
(3)

; N →∞)

(1) Construct full operator, (2) Solve full eigenproblem, (3) POD.
Online:

O(NsmplN2
RBNlin︸ ︷︷ ︸

(4)

+ NsmplN2
RBNsto︸ ︷︷ ︸

(5)

+ NNsmpl︸ ︷︷ ︸
(6)

NRB; N →∞),

(4) Construct reduced operator, (5) Solve reduced eigenproblem, (6) Project the reduced
solution onto the full space

In the online phase, the cost of one KL solve is equivalent to the cost of one PDE solve,
linear in N.
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Memory requirement and random field expansion

How do we keep the collected data?
keep only (`, ξ) - Memory efficient (O(Nsto + 1)), but time consuming when the full random
field is needed.
keep the full random field θ - Memory inefficient O(N), but fast.

Neither is actually useful.
Furthermore:

When using MCMC (Gibbs move of `), we need to construct C(`) in any step. (that is O(N) in
time and O(N2) in memory)
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Reduced basis expansion

Consider the KL expansion

θ =
Nsto∑
i=1

λi (`)
1/2ψi (`)ξi

RB
≈

Nsto∑
i=1

λi (`)
1/2ξiWψRB

i (`)

=
Nsto∑
i=1

NRB∑
j=1

λi (`)
1/2ψRB

i,j (`)wj

=

NRB∑
j=1

(
Nsto∑
i=1

λi (`)
1/2ψRB

i,j (`)

)
︸ ︷︷ ︸

Multivar. Gaussian random variable, for fixed `

wj =: Wb(`)
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Reduced Basis expansion

b(`) ∼ N(0, CRB(`)) contains the full covariance information of θ.
We can use b(`) ∈ RNRB to represent the full random field.

Replaces the full random field in the Gibbs Move of ` in MCMC sampling algorithm.
⇒ computational cost of the Gibbs Move of ` is independent of N.
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Timings and accuracy

Spatial domain: D = (0,1)2, resolved with piecewise constant finite elements
C(`) is the exponential covariance operator for ` = 0.1,0.5,1.4
Nsto = 100 KL eigenpairs
Reduced Bases are computed with a POD given 10 snapshots.

We measure:
The reduced basis error (in the eigenvalues) using NRB = 21, ...,213, given a fixed FE
dimension N = 1002.
The speed-up of the reduced basis with NRB = 256, when increasing the FE dimension
N = 22·4, ...,22·7.
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Accuracy of RB approximation
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Figure: Relative Error of Eigenvalues, exponential covariance, N = 1002,Nsto = 100

If NRB ≥ 256, the RB error is constantly small.
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Timings
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Figure: Timings of Eigenproblems, NRB = 256,Nlin = 39,Nsto = 100, Code ran in MATLAB with Intel i7 (2.6
Ghz) CPU and 16 GB Ram. Each timing is averaged over 3 runs.

RB surrogate appears to be almost constant in N (actually, the RB eigenproblem dominates
the cost)
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Bayesian Inverse Problem: Random field estim.

We observe a Gaussian random field discretised on 2562 with piecewise constant finite elements
Spatial domain: D = [0,1]2

Prior K (·|`, σ) = N(0, C(`, σ)), where
C(`, σ) is the exponential covariance operator for ` ∈ [0.1,

√
2], σ ∈ [0.1,1] (mean-zero)

`−1 ∼ Unif[2−1/2,10],
σ ∼ N(0.5,0.12)(· ∩ [0.1,1])

Nsto = 800
Observations generated with random fields with ` = 0.2,1.1, σ2 = 0.5
2500 observations, assume noise level 6%
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Figure: Correlation length: ` := 0.2. (Left) Observations of the random fields. (Right) True random field
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Reduced Basis Construction

POD with
`snap = (0.1148,0.1491,0.2124,0.3694,1.4142)

(Chosen according to the prior of ` and to account for the degeneration of the exponential
kernel)
Dimensionality reduction: Cut-off singular values ≤ 1E− 5.
Resulted in NRB = 1153.
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Figure: Estimation with RB-MCMC. True Correlation length: ` := 0.2. Markov Chain with 1.5E5 Samples.
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Discussion

Assumed to have a good initial value for the Markov Chain (hardly any burn-in)
Assess convergence of the MCMC with 24 shorter Markov Chains and 4 of the same length
Standard deviation is difficult to estimate (it heavily influences the MCMC proposal)
Random field estimates are fairly good
Correlation length estimates are heavily influenced by the high noise level
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Outline

Motivation: Sampling from parameterised random fields
Reduced Basis for Eigenproblems
Reduced Basis Sampling
Numerical Experiments
Conclusions
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Take-home messages

Using RBM in the online phase reduces the computational cost to O(N)

Can be used for efficient hierarchical Bayesian inverse problems
Significant reduction of memory requirement

Moreover:
Can also be used in a hierarchical forward problem
Approximate Offline-Online decomposition possible for any Matérn Covariance Operator
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Current10 and future research

Reducing cost in offline phase
Do we need to construct full covariance matrices?
Do we need to solve full eigenproblems?

RB error management with error indicator and greedy methods
How do we choose `snap?

Other linearisation techniques for covariance kernels
Yet, we use a Taylor approximation that is numerically unsuitable for small `. Can we do
better?

Real-world applications:
Deep Gaussian process regression
Hierarchical Bayesian hydraulic tomography in 3D

10Kressner, L., Massei, Ullmann: Low-rank approximation of parameterised dense covariance matrices, in preparation.
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