MS238 Theory and Application of Surrogate Models MS271 for Bayesian Inverse Problems

Minisymposium@CSE19, February $28^{\text {th }}$ 2019, 9:45 AM-11:25 AM and 2:15 PM-3:55 PM, Location: Ballroom 100BC

$1^{\text {st }}$ session		$2^{\text {nd }}$ session	
09:45 AM	$\left[\begin{array}{ccc} * & \cdots & * \\ \vdots & \ddots & \vdots \\ * & \cdots & * \end{array}\right] \rightarrow\left[\begin{array}{cc} * & * \\ * & * \end{array}\right]$	02:15 PM	$\mathcal{G}(\theta) \approx \sum_{i} \chi_{\Omega_{i}} \sum_{k} a_{i, k} \theta^{k}$
10:10 AM	(cancelled)	02:40 PM	GENEO
10:35 AM	$\frac{4}{4} \frac{1}{4}=$	03:05 PM	$\mathcal{G}(\theta) \sim \mathrm{N}\left(m^{(L)}(\theta), c^{(L)}(\theta, \theta)\right)$
11:00 AM		03:30 PM	

Fast Sampling of parameterised Gaussian random fields

Jonas Latz

Input/Output: WWW.latz.io

Technical University of Munich
Department of Mathematics, Chair for Numerical Analysis
Email: jonas.latz@tum.de

February $28^{\text {th }}$ 2019, SIAM Conference on Computational Science and Engineering, Spokane, WA, USA.

Joint work with

Marvin Eisenberger ${ }^{1} \quad$ Daniel Kressner ${ }^{2} \quad$ Stefano Massei ${ }^{2} \quad$ Elisabeth Ullmann ${ }^{3}$

Acknowledgments

German research fund (DFG)
Technical University of Munich (TUM)
International Graduate School of Science and Engineering (IGSSE)
École Polytechnique Fédérale de Lausanne (EPFL)
Isaac Newton Institute, Cambridge, UK (INI)

DFG
Deutsche
Forschungsgemeinschaft

Isaac Newton Institute
for Mathematical Sciences

[^0]Motivation: Sampling from parameterised random fields
Reduced Basis for Eigenproblems and Reduced Basis Sampling
Numerical Experiments
Conclusions

[^1]
Motivation

Given an Inverse Problem

$$
\begin{equation*}
\text { Find } \theta \in X: \mathcal{G}(\theta)+\eta=y \tag{IP}
\end{equation*}
$$

where
$\mathcal{G}: X \rightarrow Y$ is the forward response operator,
$\theta \in X$ is the unknown parameter,
$\eta \sim \mathrm{N}(0, \Gamma)$ is observational noise and
$y \in Y$ is observed data,
X, Y are Hilbert spaces

Motivation

Example (regression)
$\theta: D \rightarrow \mathbb{R}$ is a function
y are observations of this function
\mathcal{G} maps any function θ to its values at the observed positions:

$$
\theta \mapsto\left(\theta\left(x_{i}\right): i=1, \ldots, N_{\mathrm{obs}}\right) \in Y .
$$

Task: Identify the function θ given these point evaluations

Motivation

Example (groundwater flow)

$\theta: D \rightarrow \mathbb{R}$ models the log-conductivity of a groundwater reservoir y are observations of the pressure in the groundwater reservoir $\mathcal{G}=\mathcal{O} \circ G$ is the combination of
the solution operator $G(\theta):=p$ of the elliptic PDE:
(PDE)

$$
\begin{aligned}
-\nabla \cdot \exp (\theta(x)) \nabla p(x) & =f(x) & & (x \in D) \\
p(x) & =0 & & (x \in \partial D)
\end{aligned}
$$

the observation operator $\mathcal{O}(p):=\left(p\left(x_{i}\right): i=1, \ldots, N_{\text {obs }}\right) \in Y$

Task: Identify the log-conductivity θ given the pressure data y. (PDE) links θ, y.

We approach (PDE)-based (IP) Bayesian. So Assume,

$$
\theta \in \mathcal{L}^{2}(\Omega, \mathcal{A}, \mathbb{P} ; X), \theta \sim \mu_{0} .
$$

given by

$$
\text { Find } \mu^{y}:=\mathbb{P}(\theta \in \cdot \mid \mathcal{G}(\theta)+\eta=y) \text {, }
$$

Motivation

We approach (PDE)-based (IP) Bayesian. So Assume,
(Prior)

$$
\theta \in \mathcal{L}^{2}(\Omega, \mathcal{A}, \mathbb{P} ; X), \theta \sim \mu_{0} .
$$

$$
\begin{equation*}
\text { Find } \mu^{y}:=\mathbb{P}(\theta \in \cdot \mid \mathcal{G}(\theta)+\eta=y), \tag{BIP}
\end{equation*}
$$

Motivation

We approach (PDE)-based (IP) Bayesian. So Assume,
(Prior)
(BIP)
given by
(Bayes’ Rule)

$$
\theta \in \mathcal{L}^{2}(\Omega, \mathcal{A}, \mathbb{P} ; X), \theta \sim \mu_{0} .
$$

$$
\text { Find } \mu^{y}:=\mathbb{P}(\theta \in \cdot \mid \mathcal{G}(\theta)+\eta=y),
$$

$$
\frac{\mathrm{d} \mu^{y}}{\mathrm{~d} \mu_{0}}(\theta) \propto L(y \mid \theta):=\exp (-\underbrace{\frac{1}{2}\left\|\Gamma^{-\frac{1}{2}}(\mathcal{G}(\theta)-y)\right\|^{2}}_{=: \Phi(\theta)}) .
$$

Prior measure μ_{0}

θ is a function in $C^{0}(D)$,
e.g. model θ as a (mean-zero) Gaussian random field (RF), where

$$
\operatorname{Cov}(\theta):=\mathcal{C}(\ell, \sigma)
$$

is an exponential covariance operator

$$
\varphi \mapsto \mathcal{C}(\ell, \sigma) \varphi:=\int_{D} \sigma^{2} \exp \left(-\|x-\cdot\|_{2} / \ell\right) \varphi(x) \mathrm{d} x
$$

Typical assumption: ℓ, σ are given a priori
What if they are unknown?

Prior measure μ_{0}

θ is a function in $C^{0}(D)$,
e.g. model θ as a (mean-zero) Gaussian random field (RF), where

$$
\operatorname{Cov}(\theta):=\mathcal{C}(\ell, \sigma)
$$

is an exponential covariance operator

$$
\varphi \mapsto \mathcal{C}(\ell, \sigma) \varphi:=\int_{D} \sigma^{2} \exp \left(-\|x-\cdot\|_{2} / \ell\right) \varphi(x) \mathrm{d} x
$$

Typical assumption: ℓ, σ are given a priori
What if they are unknown?

What if...?

Figure: Estimating the true value with a Bayesian approach given noisy (noise level $=1 \%$) evaluations of the random field at the 9 ' \bullet '. The three upper (lower) right plots show posterior mean (variances) estimates of the true values given a prior with exponential covariance with $\ell=1,0.5,0.1,0.05$. The true random field is a sample from an exponential covariance with $\ell=0.5$.

$$
\begin{aligned}
& \text { "'It ain't what you don't know that gets you into trouble. } \\
& \text { It's what you know for sure that just ain't so. } \\
& \text { - Mark Twain, 1835-1910 }
\end{aligned}
$$

Use a hierarchical approach, i.e.
are also uncertain and shall be estimated
we will now only focus on $\ell \sim \mu^{\prime}$ and assume that σ is known.

"It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so.

- Mark Twain, 1835-1910

Use a hierarchical approach, i.e.

$$
(\ell, \sigma) \sim \mu^{\prime}
$$

are also uncertain and shall be estimated
we will now only focus on $\ell \sim \mu^{\prime}$ and assume that σ is known.

"It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so.

- Mark Twain, 1835-1910

Use a hierarchical approach, i.e.

$$
(\ell, \sigma) \sim \mu^{\prime}
$$

are also uncertain and shall be estimated
we will now only focus on $\ell \sim \mu^{\prime}$ and assume that σ is known.

Hierarchical Bayesian Inverse Problem

State of the art:

Hierarchical Bayesian Estimation
Discussed in various standard textbooks ${ }^{4}$
Hierarchical Bayesian Inverse Problem
Hierarchical level set inversion ${ }^{5}$
Theoretical considerations and applications in probabilistic numerics ${ }^{6}$
Polynomial chaos surrogates for hierarchical Bayesian inverse problems ${ }^{7}$

[^2]
Hierarchical Bayesian Inverse Problem: Setting

Given an Inverse Problem

$$
\begin{equation*}
\text { Find } \theta \in X: \mathcal{G}(\theta)+\eta=y \tag{IP}
\end{equation*}
$$

where
$\mathcal{G}: X \rightarrow Y$ is the forward response operator,
$\theta \in X$ is the unknown parameter,
$\eta \sim \mathrm{N}(0, \Gamma)$ is observational noise,
$y \in Y$ is observed data and
X, Y are Hilbert spaces, $X:=\mathcal{L}^{2}, Y:=\mathbb{R}^{n}$.
Hierarchical Bayesian setting:
Given $\theta \sim K(\cdot \mid \ell)=\mathrm{N}(0, \mathcal{C}(\ell))$ (as a hyperprior) and
$\ell \sim \mu^{\prime}$ (prior for ℓ).
Compute $\mu^{y}:=\mathbb{P}((\ell, \theta) \in \cdot \mid \mathcal{G}(\theta)+\eta=y)$.

Hierarchical Bayesian Inverse Problem

Bayes' Rule for hierarchical Bayesian Inverse Problem

$$
\begin{aligned}
\mu^{y}(B) & =\frac{1}{Z(y)} \iint_{B} \exp (-\Phi(\theta)) K(\mathrm{~d} \theta \mid \ell) \mu^{\prime}(\mathrm{d} \ell) \quad(B \in \mathcal{R} \otimes \mathcal{B} X) \\
Z(y) & =\iint_{R \times X} \exp (-\Phi(\theta)) K(\mathrm{~d} \theta \mid \ell) \mu^{\prime}(\mathrm{d} \ell)
\end{aligned}
$$

Generate posterior samples with Metropolis-within-Gibbs MCMC

Motivation: Sampling from parameterised random fields
\quad Why would someone do that?
\quad Why is that complicated?
Reduced Basis for Eigenproblems
Reduced Basis Sampling
Numerical Experiments
Conclusions

Random field sampling

MCMC sampling requires sampling from $\mathrm{N}(0, \mathcal{C}(\ell))$ for any $\ell \in R$

Expand $\theta \sim \mathrm{N}(0, \mathcal{C}(\ell))$ in a Karhunen-Loève (KL) expansion:
(KL)

$$
\theta:=\sum_{i=1}^{\infty} \sqrt{\lambda_{i}(\ell)} \psi_{i}(\ell) \xi_{i},
$$

where

$$
\xi_{1}, \xi_{2}, \ldots \sim N(0,1) \text { i.i.d. }
$$

$\left(\lambda_{i}(\ell), \psi_{i}(\ell)\right)_{i=1}^{\infty}$ are eigenpairs of $\mathcal{C}(\ell)$, where $\lambda_{1}(\ell) \geq \lambda_{2}(\ell) \geq \cdots$

Discretisation: Truncate after $N_{\text {sto }}$ terms
(truncKL)

$$
\theta_{K L}:=\sum_{i=1}^{N_{\text {sto }}} \sqrt{\lambda_{i}(\ell)} \psi_{i}(\ell) \xi_{i}
$$

Computational cost

Each MCMC sample requires evaluations of $\underbrace{\mathcal{G}}_{\text {PDE }}(\overbrace{\theta}^{\mathrm{RF}})$.
PDE: N piecewise linear FEs (e.g. multigrid solver)

RF: $N_{\text {sto }}$-term KLE and N piecew. const. FEs (e.g. impl. rest. Lanczos method; eigs)

```
Toy example. Elliptic PDE in 2D, \(N=256^{2}, N_{\text {sto }}=400 \mathrm{KL}\) terms. PDE solve \(\sim 1 \mathrm{~s}(50000\) MCMC Samples: \(\sim 14 \mathrm{~h})\) KL solve \(\sim 50 \mathrm{~min}\) ( 50000 MCMC Samples: \(\sim 5\) years)
```


Computational cost

Each MCMC sample requires evaluations of $\underbrace{\mathcal{G}}_{\text {PDE }}(\overbrace{\theta}^{\mathrm{RF}})$.
PDE: N piecewise linear FEs (e.g. multigrid solver)

$$
\frac{\text { Cost }}{\text { Sample }}: O(N ; N \rightarrow \infty)
$$

RF: $N_{\text {sto }}$-term KLE and N piecew. const. FEs (e.g. impl. rest. Lanczos method; eigs)

$$
\frac{\text { Cost }}{\text { Sample }}: O\left(N^{2} N_{\text {sto }} ; N \rightarrow \infty\right)
$$

```
Toy example. Elliptic PDE in 2D, \(N=256^{2}, N_{\text {sto }}=400 \mathrm{KL}\) terms.
    PDE solve \(\sim 1 \mathrm{~s}(50000\) MCMC Samples: \(\sim 14 \mathrm{~h})\)
    KL solve \(\sim 50 \min (50000\) MCMC Samples: \(\sim 5\) years)
```


Computational cost

Each MCMC sample requires evaluations of $\underbrace{\mathcal{G}}_{\text {PDE }}(\overbrace{\theta}^{\mathrm{RF}})$.
PDE: N piecewise linear FEs (e.g. multigrid solver)

$$
\frac{\text { Cost }}{\text { Sample }}: O(N ; N \rightarrow \infty)
$$

RF: $N_{\text {sto }}$-term KLE and N piecew. const. FEs (e.g. impl. rest. Lanczos method; eigs)

$$
\frac{\text { Cost }}{\text { Sample }}: O\left(N^{2} N_{\text {sto }} ; N \rightarrow \infty\right)
$$

Toy example. Elliptic PDE in 2D, $N=256^{2}, N_{\text {sto }}=400 \mathrm{KL}$ terms.

> PDE solve $\sim 1 \mathrm{~s}(50000$ MCMC Samples: $\sim 14 \mathrm{~h})$
> KL solve $\sim 50 \mathrm{~min}(50000$ MCMC Samples: ~ 5 years

Computational cost

Each MCMC sample requires evaluations of $\underbrace{\mathcal{G}}_{\text {PDE }}(\overbrace{\theta}^{\mathrm{RF}})$.
PDE: N piecewise linear FEs (e.g. multigrid solver)

$$
\frac{\text { Cost }}{\text { Sample }}: O(N ; N \rightarrow \infty)
$$

RF: $N_{\text {sto }}$-term KLE and N piecew. const. FEs (e.g. impl. rest. Lanczos method; eigs)

$$
\frac{\text { Cost }}{\text { Sample }}: O\left(N^{2} N_{\text {sto }} ; N \rightarrow \infty\right)
$$

Toy example. Elliptic PDE in 2D, $N=256^{2}, N_{\text {sto }}=400 \mathrm{KL}$ terms.
PDE solve $\sim 1 \mathrm{~s}(50000$ MCMC Samples: $\sim 14 \mathrm{~h}$)
KL solve $\sim 50 \mathrm{~min}$ (50000 MCMC Samples: ~ 5 years)

Computational cost

Each MCMC sample requires evaluations of $\underbrace{\mathcal{G}}_{P D E}(\overbrace{\theta}^{\mathrm{RF}})$.
PDE: N piecewise linear FEs (e.g. multigrid solver)

$$
\frac{\text { Cost }}{\text { Sample }}: O(N ; N \rightarrow \infty)
$$

RF: $N_{\text {sto }}$-term KLE and N piecew. const. FEs (e.g. impl. rest. Lanczos method; eigs)

$$
\frac{\text { Cost }}{\text { Sample }}: O\left(N^{2} N_{\text {sto }} ; N \rightarrow \infty\right)
$$

Toy example. Elliptic PDE in 2D, $N=256^{2}, N_{\text {sto }}=400 \mathrm{KL}$ terms.
PDE solve ~ 1s (50000 MCMC Samples: ~ 14h)
KL solve $\sim 50 \min$ (50000 MCMC Samples: ~ 5 years)

Summary

Why would someone do that?
Fixing uncertain parameters can lead to wrong estimation results
Why is that complicated?
Recomputing the KL expansion is computationally very expensive

Outline

Motivation: Sampling from parameterised random fields
Reduced Basis for Eigenproblems and Reduced Basis Sampling ${ }^{8}$
Parameterised eigenproblems and reduced bases
Cost and memory requirement
Numerical Experiments
Conclusions

[^3]
Galerkin approximation of the eigenproblem

Problem. Compute eigenpairs of the covariance operators $\mathcal{C}(\ell)$, for various ℓ.

Definition. $\left(\lambda_{i}(\ell), \psi_{i}(\ell)\right)$ is an eigenpair of $\mathcal{C}(\ell)$ in the weak formulation, if
(ℓ EVP)

$$
\gamma\left(\ell ; \psi_{i}(\ell), v\right)=\lambda_{i}(\ell)\left\langle\psi_{i}(\ell), v\right\rangle_{X} \quad \forall v \in X
$$

Here, $\gamma(\ell ; \cdot, \cdot)$ is a bilinear form, given by

$$
\gamma(\ell ; u, v):=\langle\mathcal{C}(\ell) u, v\rangle_{X}
$$

Discretisation: replace X by a finite-dimensional ansatz space X_{h}

Galerkin approximation

Figure: KL eigenfunctions on L-shaped domain, discretised with piecewise constant finite elements. Coarse grid (left) vs. fine grid (right).

At the moment: Solve the KL eigenproblem on a standard FE ansatz space. high-dimensional and expensive

Reduced basis idea: Tailor a specific ansatz space for this eigenproblem. changing the parameter may not influence the eigenproblem too severely

Offline phase:
Construct a reduced space $X_{R B}=\operatorname{span}(W)$.
W is orthonormal
Online-Offline-Decomposition with linearly separable operator
Online phase:
Construct reduced operator
Galerkin approximation on the reduced space
Project the reduced solution on X_{h} (resp. X)

Offline phase: Basis construction

1. Snapshot-based construction: Solve the full eigenproblem for some $\ell^{\text {snap }} \in R^{N_{\text {snap }}}$ and obtain

$$
W^{\text {snap }}:=\left(\psi_{i}\left(\ell_{p}^{\text {snap }}\right): i=1, \ldots, N_{\text {sto }}, p=1, \ldots, N_{\text {snap }}\right)
$$

with eigenvectors $\psi_{i}(\ell)$ of $\mathcal{C}(\ell)$.
2. Consider all the snapshot eigenfunctions as basis functions and orthonormalise this basis with SVD (= proper orthogonal decomposition (POD)).

$$
W^{\text {snap }}=U \Sigma V
$$

where

$$
\Sigma=\operatorname{diag}\left(\lambda_{i}^{\text {snap }}: i=1, \ldots, N_{\text {sto }} N_{\text {snap }}\right), \quad U=\left(u_{i}: i=1, \ldots, N_{\text {sto }} N_{\text {snap }}\right)
$$

Dimensionality reduction

Either of
Set $W:=\left(u_{i}: \lambda_{i}^{\text {snap }}>0\right)$.
Possibly still high dimensional
Uses all the information from the snapshots
Set $W:=\left(u_{i}: \lambda_{i}^{\text {snap }}>\underline{\lambda}\right)$ for some threshold $\underline{\lambda}>0$.
This leads to a further dimensionality reduction, but to a larger reduced basis error.
Often: Full operator sparse, reduced operator dense
Here: All operators are dense.
Obtain a reduced basis W and
$N_{\text {RB }}$-dimensional reduced space $X_{\mathrm{RB}}:=\operatorname{span}(W)$

Online-Offline Decomposition

The reduced operator is given by

$$
\mathcal{C}^{R B}(\ell)=W^{*} \mathcal{C}(\ell) W
$$

(Constr. costs online about $O\left(N^{2}\right)$)
Assume that we can decompose $\mathcal{C}(\ell)$ in the following way

$$
\mathcal{C}(\ell):=\sum_{m=1}^{N_{\mathrm{Iin}}} F_{m}(\ell) \mathcal{C}_{m}
$$

Then, we can construct the

$$
\mathcal{C}^{R B}(\ell):=\sum_{m=1}^{N_{\text {lin }}} F_{m}(\ell) \mathcal{C}_{m}^{R B}:=\sum_{m=1}^{N_{\text {lin }}} F_{m}(\ell) \underbrace{W^{*} \mathcal{C}_{m} W}_{\text {Keep in the memory. }}
$$

(Constr. cost online $O\left(N_{R B}^{2} N_{\text {lin }}\right)$)

Online phase: Reduced Basis Sampling

Use the KL expansion to sample from the random field Compute the KL eigenfunctions on a reduced basis

Algorithm:

1. Sample $\ell \sim \mu^{\prime}$
2. Compute $\left(\Lambda(\ell), \Psi^{R B}(\ell)\right) \leftarrow \operatorname{eigs}\left(\mathcal{C}^{R B}(\ell), N_{\text {sto }}\right)$
3. $\theta_{R B} \leftarrow W \Psi^{R B}(\ell) \wedge(\ell)^{1 / 2} \xi, \xi \sim \mathrm{~N}(0, \mathrm{Id})$.

Outline

Motivation: Sampling from parameterised random fields
Reduced Basis for Eigenproblems and Reduced Basis Sampling ${ }^{9}$
Parameterised eigenproblems and reduced bases
Cost and memory requirement
Numerical Experiments
Conclusions

[^4]
Computational cost

Standard Sampling: $O\left(N^{2} N_{\text {smpl }} N_{\text {sto }}\right)$
Reduced Basis Sampling:
Offline:

(1) Construct full operator, (2) Solve full eigenproblem, (3) POD.

Online:

(4) Construct reduced operator, (5) Solve reduced eigenproblem, (6) Project the reduced solution onto the full space

In the online phase, the cost of one KL solve is equivalent to the cost of one PDE solve,
linear in N.

Computational cost

Standard Sampling: $O\left(N^{2} N_{\text {smpl }} N_{\text {sto }}\right)$
Reduced Basis Sampling:
Offline:

$$
O(\underbrace{N_{\text {snap }} N^{2}}_{(1)}+\underbrace{N_{\text {snap }} N^{2} N_{\text {sto }}}_{(2)}+\underbrace{N_{\text {snap }} N^{2} N_{\text {sto }} ;}_{(3)} ; N \rightarrow \infty)
$$

(1) Construct full operator, (2) Solve full eigenproblem, (3) POD.

Online:

$$
O(\underbrace{N_{\mathrm{smpl}} N_{\mathrm{RB}}^{2} N_{\mathrm{lin}}}_{(4)}+\underbrace{N_{\mathrm{smpl}} N_{\mathrm{RB}}^{2} N_{\mathrm{sto}}}_{(5)}+\underbrace{N N_{\mathrm{smpl}}}_{(6)} N_{\mathrm{RB}} ; N \rightarrow \infty)
$$

(4) Construct reduced operator, (5) Solve reduced eigenproblem, (6) Project the reduced solution onto the full space

In the online phase, the cost of one KL solve is equivalent to the cost of one PDE solve, linear in N.

Computational cost

Standard Sampling: $O\left(N^{2} N_{\text {smpl }} N_{\text {sto }}\right)$
Reduced Basis Sampling:
Offline:

$$
O(\underbrace{N_{\text {snap }} N^{2}}_{(1)}+\underbrace{N_{\text {snap }} N^{2} N_{\text {sto }}}_{(2)}+\underbrace{N_{\text {snap }} N^{2} N_{\text {sto }} ;}_{(3)} ; N \rightarrow \infty)
$$

(1) Construct full operator, (2) Solve full eigenproblem, (3) POD.

Online:

$$
O(\underbrace{N_{\mathrm{smpl}} N_{\mathrm{RB}}^{2} N_{\mathrm{lin}}}_{(4)}+\underbrace{N_{\mathrm{smpl}} N_{\mathrm{RB}}^{2} N_{\mathrm{sto}}}_{(5)}+\underbrace{N N_{\mathrm{smpl}}}_{(6)} N_{\mathrm{RB}} ; N \rightarrow \infty)
$$

(4) Construct reduced operator, (5) Solve reduced eigenproblem, (6) Project the reduced solution onto the full space

In the online phase, the cost of one KL solve is equivalent to the cost of one PDE solve, linear in N.

Memory requirement and random field expansion

How do we keep the collected data?
keep only (ℓ, ξ) - Memory efficient $\left(O\left(N_{\text {sto }}+1\right)\right)$, but time consuming when the full random field is needed.
keep the full random field θ - Memory inefficient $O(N)$, but fast.
Neither is actually useful.
Furthermore:
When using MCMC (Gibbs move of ℓ), we need to construct $\mathcal{C}(\ell)$ in any step. (that is $O(N)$ in time and $O\left(N^{2}\right)$ in memory)

Reduced basis expansion

Consider the KL expansion

$$
\begin{aligned}
\theta & =\sum_{i=1}^{N_{\text {sto }}} \lambda_{i}(\ell)^{1 / 2} \psi_{i}(\ell) \xi_{i} \\
& \stackrel{\text { RB }}{\approx} \sum_{i=1}^{N_{\text {sto }}} \lambda_{i}(\ell)^{1 / 2} \xi_{i} W \psi_{i}^{R B}(\ell) \\
& =\sum_{i=1}^{N_{\text {sto }}} \sum_{j=1}^{N_{R B}} \lambda_{i}(\ell)^{1 / 2} \psi_{i, j}^{R B}(\ell) w_{j} \\
& =\sum_{j=1}^{N_{\text {RB }}} \underbrace{\left(\sum_{i=1}^{N_{\text {sto }}} \lambda_{i}(\ell)^{1 / 2} \psi_{i, j}^{R B}(\ell)\right)}_{\text {Multivar. Gaussian random variable, for fixed } \ell} w_{j}=: W b(\ell)
\end{aligned}
$$

$b(\ell) \sim \mathrm{N}\left(0, \mathcal{C}^{R B}(\ell)\right)$ contains the full covariance information of θ. We can use $b(\ell) \in \mathbb{R}^{N_{R B}}$ to represent the full random field.

Replaces the full random field in the Gibbs Move of ℓ in MCMC sampling algorithm.
\Rightarrow computational cost of the Gibbs Move of ℓ is independent of N.

Reduced Basis expansion

$b(\ell) \sim \mathrm{N}\left(0, \mathcal{C}^{R B}(\ell)\right)$ contains the full covariance information of θ.
We can use $b(\ell) \in \mathbb{R}^{N_{R B}}$ to represent the full random field.

Replaces the full random field in the Gibbs Move of ℓ in MCMC sampling algorithm.
\Rightarrow computational cost of the Gibbs Move of ℓ is independent of N.

Reduced Basis expansion

$b(\ell) \sim \mathrm{N}\left(0, \mathcal{C}^{R B}(\ell)\right)$ contains the full covariance information of θ.
We can use $b(\ell) \in \mathbb{R}^{N_{R B}}$ to represent the full random field.

Replaces the full random field in the Gibbs Move of ℓ in MCMC sampling algorithm.
\Rightarrow computational cost of the Gibbs Move of ℓ is independent of N.

Outline

Motivation: Sampling from parameterised random fields
Reduced Basis for Eigenproblems and Reduced Basis Sampling
Numerical Experiments
Timings and Accuracy
Bayesian Inverse Problem: Observations from a random field
Conclusions

Timings and accuracy

Spatial domain: $D=(0,1)^{2}$, resolved with piecewise constant finite elements
$\mathcal{C}(\ell)$ is the exponential covariance operator for $\ell=0.1,0.5,1.4$
$N_{\text {sto }}=100 \mathrm{KL}$ eigenpairs
Reduced Bases are computed with a POD given 10 snapshots.
We measure:
The reduced basis error (in the eigenvalues) using $N_{R B}=2^{1}, \ldots, 2^{13}$, given a fixed FE dimension $N=100^{2}$.

The speed-up of the reduced basis with $N_{R B}=256$, when increasing the FE dimension $N=2^{2 \cdot 4}, \ldots, 2^{2 \cdot 7}$.

Accuracy of RB approximation

Figure: Relative Error of Eigenvalues, exponential covariance, $N=100^{2}, N_{\text {sto }}=100$

If $N_{\mathrm{RB}} \geq 256$, the RB error is constantly small.

Timings

Figure: Timings of Eigenproblems, $N_{R B}=256, N_{\text {lin }}=39, N_{\text {sto }}=100$, Code ran in MATLAB with Intel i7 (2.6 Ghz) CPU and 16 GB Ram. Each timing is averaged over 3 runs.

RB surrogate appears to be almost constant in N (actually, the RB eigenproblem dominates the cost)

Motivation: Sampling from parameterised random fields
Reduced Basis for Eigenproblems and Reduced Basis Sampling
Numerical Experiments
Timings and Accuracy
Bayesian Inverse Problem: Observations from a random field
Conclusions

Bayesian Inverse Problem: Random field estim.

We observe a Gaussian random field discretised on 256^{2} with piecewise constant finite elements
Spatial domain: $D=[0,1]^{2}$
Prior $K(\cdot \mid \ell, \sigma)=\mathrm{N}(0, \mathcal{C}(\ell, \sigma))$, where
$\mathcal{C}(\ell, \sigma)$ is the exponential covariance operator for $\ell \in[0.1, \sqrt{2}], \sigma \in[0.1,1]$ (mean-zero)
$\ell^{-1} \sim \operatorname{Unif}\left[2^{-1 / 2}, 10\right]$,
$\sigma \sim \mathrm{N}\left(0.5,0.1^{2}\right)(\cdot \cap[0.1,1])$
$N_{\text {sto }}=800$
Observations generated with random fields with $\ell=0.2,1.1, \sigma^{2}=0.5$
2500 observations, assume noise level 6%

Figure: Correlation length: $\ell:=0.2$. (Left) Observations of the random fields. (Right) True random field

POD with

$$
\ell^{\text {snap }}=(0.1148,0.1491,0.2124,0.3694,1.4142)
$$

(Chosen according to the prior of ℓ and to account for the degeneration of the exponential kernel)
Dimensionality reduction: Cut-off singular values $\leq 1 \mathrm{E}-5$.
Resulted in $N_{R B}=1153$.

Figure: Estimation with RB-MCMC. True Correlation length: $\ell:=0.2$. Markov Chain with 1.5E5 Samples.

Discussion

Assumed to have a good initial value for the Markov Chain (hardly any burn-in)
Assess convergence of the MCMC with 24 shorter Markov Chains and 4 of the same length
Standard deviation is difficult to estimate (it heavily influences the MCMC proposal)
Random field estimates are fairly good
Correlation length estimates are heavily influenced by the high noise level

Motivation: Sampling from parameterised random fields
Reduced Basis for Eigenproblems
Reduced Basis Sampling
Numerical Experiments
Conclusions

Using RBM in the online phase reduces the computational cost to $O(N)$
Can be used for efficient hierarchical Bayesian inverse problems
Significant reduction of memory requirement

Moreover:
Can also be used in a hierarchical forward problem
Approximate Offline-Online decomposition possible for any Matérn Covariance Operator

Current ${ }^{10}$ and future research

Reducing cost in offline phase
Do we need to construct full covariance matrices?
Do we need to solve full eigenproblems?
RB error management with error indicator and greedy methods
How do we choose $\ell^{\text {snap }}$?
Other linearisation techniques for covariance kernels
Yet, we use a Taylor approximation that is numerically unsuitable for small ℓ. Can we do better?

Real-world applications:
Deep Gaussian process regression
Hierarchical Bayesian hydraulic tomography in 3D

[^5]Jonas Latz

[^0]: ${ }^{1}$ Computer Vision Group, Department of Informatics, TUM, Germany
 ${ }^{2}$ Chair for Numerical Algorithms and HPC, Mathematics Section, EPFL, Switzerland
 ${ }^{3}$ Chair for Numerical Analysis, Department of Mathematics, TUM, Germany

[^1]: Motivation: Sampling from parameterised random fields Why would someone do that?
 Why is that complicated?
 Reduced Basis for Eigenproblems and Reduced Basis Sampling
 Numerical Experiments
 Conclusions

[^2]: ${ }^{4}$ Robert (2007): The Bayesian Choice, Springer.
 ${ }^{5}$ Dunlop, Iglesias, Stuart (2017): Hierarchical Bayesian level set inversion, Statistics and Computing: 27(6):1555-1584.
 ${ }^{6}$ Roinien, Girolami, Lasanen, Markkanen (2016): Hyperpriors for Matérn fields with applications in Bayesian inversion, ArXiv e-prints 1410.5522:1-27.
 ${ }^{7}$ Sraj, Le Maître, Knio, Hoteit (2016): Coordinate Transformation and Polynomial Chaos for Bayesian Inference of a Gaussian Process with Parametrized Prior Covariance Function, Comp. Meth. Appl. Mech. Engrg. 289:205-228.

[^3]: ${ }^{8}$ L., Eisenberger, Ullmann (2019): Fast Sampling of parameterised Gaussian random fields, Comput. Methods in Appl. Mech. Engrg. (in Press, available online 15 Feb 2019).

[^4]: ${ }^{9}$ L., Eisenberger, Ullmann (2019): Fast Sampling of parameterised Gaussian random fields, Comput. Methods in Appl. Mech. Engrg. (in Press, available online 15 Feb 2019).

[^5]: ${ }^{10}$ Kressner, L., Massei, Ullmann: Low-rank approximation of parameterised dense covariance matrices, in preparation.

