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The best tool for finding errors in a million line
code is not a developer

= Compilers can easily spot bugs which are opaque to users
— “=" and “==" look the same to humans, but are unrelated to a compiler

= Many standard static analysis tools are available
— Klockwork, Coverity, Clang-tidy, Fortify, cppcheck, Lint, etc.

= Standard tools help if we are writing bad code for the language

= What if I'm writing good C++ but bad Kokkos?

— What if I’'m writing good RAJA but bad Ardra?
— What if what was good Ardra yesterday isn’t good Ardra today?

Static analysis can be customized to the style and idiom of a specific

code to find errors quickly and make developers more productive
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Customized static analysis easily finds
idiom-specific performance problems

* To make codes play nicely with UM, access only the innermost
portions of data structures in kernels. Valid C++. Bad RAJA

RAJA: : forall<RAJA::5€ed0 EX€ 0 o F=1{%y

my field[i] =|AllPhysics->Hydrodynamics->Temperature->Data[i];

});: -

Traversing the data hierarchy in the GPU section A simple alias
can cause large data transfers to GPU avoids the problem
auto data = AllPhysics->Hydrodynamics->Temperature->Data;
RAJAI I IOra ::seq_exec J, 11U, = n
my field[1] = data[i];
})i

This issue is easy to spot in three lines of code, but very difficult to

enforce in three million over thirty years of development
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Clang query provides a flexible, maintainable
method to create customized static analysis

= Clang query is a scripting language which describes patterns in
an AST, for which Clang will then report matches

* Pro:
— Tested and updated with clang API changes

— Uses scripts instead of shared libraries.
* Less vulnerable to APl changes.
+ Easier to distribute

* Con:
— Some expressive power is lost
— Can’t “unpack” a lambda and see inside
— But you can frequently find work-arounds
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Clang query script code to find access through
hierarchy of structures

let foralls callExpr(
callee(
functionDecl (matchesName("for.*all"))

)

match memberExpr(
hasAncestor(
lambdaExpr (
hasAncestor(foralls)

This looks complicated, but experience has shown that with a few examples

and modest training, developers can start to write their own clang query scripts
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Clang query can find many performance bugs
and other anti-patterns

= RAJA Kernels

— Uses of outer structs
— Uses of indirection arrays
— Kernels with no Reducers not taking advantage of reducer-free policies

— CHAI ManagedArrays used outside of Kernels
» Uses of raw arrays inside Kernels

» Kokkos Kernels
— Uses of STL classes
— Non-const index arguments in lambdas
— Nested parallelism errors

+ Kokkos::single types in inappropriate enclosing construct
» Writes to variables in an outer scope from inside a parallel_for
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Application programmers love clang query

= Brian Ryujin, Ares: “[The] tool greatly simplified this process to the
point that we could split the code up between the team and finish the
entire code in 3 days. This would have been impossible to do without
the tool. | would estimate that it saved over 100 hours of effort and a
fair amount of sanity. | think it goes without saying that we were very
happy with the tool.”

= Adam Kunen, Ardra: “/ am really interested in using this tool, as it will
help us discover porting mistakes as we continue to transition our
code to RAJA+CHAI. | am particularly excited at how easily it
integrated into an existing CMake build system, and how powerful of a
tool it is. This tool is really high-impact and low-cost. We are not
currently using it, but over the next 6 months intend to collaborate
with David more extensively on this tool.”

* Tzanio Kolev, MFEM, CEED: “/ want to add this to my code!”

Static analysis based on clang query is on its way to production!!!
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Early experience with GPUs and Cardioid
revealed a need for JIT compilation

= Cardioid relies heavily on polynomial evaluation

= Performance is greatly improved when polynomial orders and
coefficients (model parameters) are known at compile time

= Scientists prefer to define model parameters at run time

Loop Time (us)

0 >0 100 150 200 250

JIT compilation is the only practical way to get

High performance and the preferred usage model
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OCCA implementation of Laghos set the GPU
performance bar very high!

Laghos Total Rate - CUDA Speedup: OCCA/RAJA 20
10 ——
A OCCA performance
: advantage derives
! 33 from
N %ﬁ * hand tuned
= |
g 20 kernels
3 39 * shared memory
' utilization
100 * JIT compilation
1000
0403 10000
Q3Q2 100000 # Elems
Oraer uzﬂl 1E+ﬂ5
Q1Qa@e+07

RAJA needs a JIT capability to match OCCA performance
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Loops in high-order finite element codes are
excellent targets for run-time optimization

= Laghos & Blast: Loop bounds defined by input deck

for(int el =0; el<numElements;el++){
double e_xy[NUM_QUAD_ 1D*NUM_QUAD_1D];
for (int dx = 0; dx < NUM DOFS 1D; ++dx) {
const double r e = e[ijkN(dx,dy,el,NUM_DOFS_1D)];
for (int gx = 0; gx < NUM_QUAD 1D; ++gx) {
myField += L2DofToQuad[ijN(gx,dx,NUM QUAD 1D)] * r e;
/** More tensor math */
}
}
bi

= NUM_QUAD 1D and NUM_DOFS 1D are in the (4,32) range
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We created a prototype JIT compiler for RAJA to
explore possible optimizations

Changed from RAJA: : forall<RAJA: :seq_exec>

Jit fnrnll cp 0,numElements,[&](int el) {

o[o)ble | QUAD_1D*NUM_QUAD_1D];
for {int dx = 0; dx < NUM DOFS_1D; ++dx) {
const double r e = E[ijknldx dy,el,NUM_DOFS 1D));
for (int gx = 0; gx < NUM QUAD 1D; ++gx) {
myField += L2DofToQuad[ijN(gx,dx,NUM QUAD 1D)] * r_e;
/** More tensor math */
}
}

parameters(myField,L2DofToQuad,
replace_ scalar(NUM _QUAD 1D),

replace_scalar(NUM_DOFS_1D)

Tells JIT compiler what optimizations to use

JIT-able functions are practically unchanged from original RAJA version
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Two compilers are required to produce a JIT

enabled binary

Exhibit Jit 2R
Compiler i inehoD
Recipes
Source Code
with Linker - Executable
“jit_forall” Calls
Normal Normal .o
( Compiler files
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JIT run-time overhead is nearly zero

,.--'f. ' “‘x
. Yes
Jit_forall Call g la  USE N
Version Version
P ) ““ Yes ~ Use Generic
Pending W Raja
No
Concretize Asynchronously -~ Use Generic
: ' callnormal — :
recipe Raja
compiler
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Exhibit compiler creates a function recipe

tring* prograom =new

...-:.;_ : |:| r'r:

b A - - - f -~ -
5td: :string(specii

Balal =% P e
LK A Tigd =

+5td: :string(replacements|(@])
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A concretized version is generated from the
recipe

extern "C" void initialization_0(
int compiller_generated_start_index_name,
1nt compiller_generated_end_index_name,
float * h_array,
1nt debug_do_not_merge=0

)

for(int 1 = compiler_generated_start_index_name;

1<compller_generated_end_index_name;
++1

H
h_array[1] = 8 * 1;

¥
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Our first trials with JIT were very encouraging

jit_kernel_gpu<2>(code_location, @, array_size,[=] __device__(int 1)}
for(int k = @;: k < scalar: k‘*)l

d_array[i1] += scalar * scalar * scalar;

1
J

ﬂ, parameters(d_array), muke_replucement(sculﬂr)l;

131.322 9.888
128 39.403 9.882
2 11.504 9.860
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JIT improves performance

= GPU Polynomial evaluation (n=120)
— No JIT: 175 seconds
— JIT: 20 seconds

= Laghos on GPU — parity with templates

— Template: 13.91 seconds
— JIT: 13.83 seconds

= MFEM on CPU: E——
(Thermal, Speedup From Jit
Kinematic Orders)
(2,3) 20%
(3,4) 35%
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JIT is the final piece of the puzzle to allow RAJA
to match OCCA performance

Laghos 2DP1 1xRay Speedup: <gpuK-share=>/0OCCA a

8 5
4.5 " 4.5
4
S 35 s
-
g 3 2.5
B 25 2
W 1.5
1.5 -
1 le+07
02(}10'3{}2 1e+06
M504 100000
Q65 10000, .0
order 7%%gq7 1000

P*F10q9 100
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JIT is the final piece of the puzzle to allow RAJA
to match OCCA performance

Laghos 2DP1 1xRay Speedup: <gpuk-share>/OCCA 4

5 5
4.5 " 4.5
- |
5 35 o
Tl
$ 3 25
o 2.5 2
v 2 1.5
1.5 1
1 le+07
0261{}'3 Q3 le+06
040":’:;-504 100000
Q605 10000, oo
order 7%%gq7 1000

Qg%amog 100
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If templates can provide the necessary
specializations, why do we need JIT?

= Template solution involves instantiation of thirty commonly
used thermal and kinematic orders

= Binary size (per object file) (approximately 40 object files in

MFEM)

— Without JIT: 209K
— With JIT: 14K

= Compile time
— Without Jit: 72 seconds
— With Jit: 11 seconds

JIT substantially lowers compile time and produces smaller binaries
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JIT isn’t just for RAJA

» To test interoperability with the other labs, we decided to JIT
Kokkos regions and pass them to Kitsune.

* We tested two benchmarks:
— GUPS
— Stream

= Neither was predicted to see performance benefits from JIT,
and neither did. However, we introduced no overhead.

= We are looking into KokkosKernels for possible JIT optimization
candidates

Our prototype RAJA JIT compiler was easily adapted to handle Kokkos
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We plan to bring customized static analysis and
JIT into production with ASC codes

= Customized static analysis has a demonstrated ability to

— Find problems in code
— Improve developer productivity

= Qur JIT prototype has shown sufficiently promising results to

justify work on a production quality implementation
— MARBL lead Rob Rieben has asked for a RAJA JIT capability

* Contacts:
— David Richards (richards12@lInl.gov)
— David Poliakoff (poliakoffl@IInl.gov)
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