Two Insane Compiler Tricks
That Will Blow Your Mind

How to Get Better Performance and Higher Productivity

David Richards & David Poliakoff
February 28, 2019

]
Fd ‘?_ .
= =
v -4
|

L: Lawrence Livermore
National Laboratory

r-

Acknowledgements

= Tom Scogland, Jean-Sylvain Camier (LLNL JIT)

= Ramesh Pankajakshan, Bjorn Sjogreen (LLNL SW4)
= Rob Rieben, Tzanio Kolev (LLNL Blast/Laghos)

= Peter Robinson & the ALE3D Team

* Brian Ryujin & the Ares Team

= Adam Kunen & the Ardra Team

= Si Hammond, Christian Trott (Sandia Kokkos)

t Lawrence Livermore National Laboratory __Nl'& 4

LLNL FRES-TH 108

Acknowledgements

= Tom Scogland, Jean-Sylvain Camier (LLNL JIT)

= Ramesh Pankajakshan, Bjorn Sjogreen (LLNL SW4)
= Rob Rieben, Tzanio Kolev (LLNL Blast/Laghos)

= Peter Robinson & the ALE3D Team

* Brian Ryujin & the Ares Team

= Adam Kunen & the Ardra Team

= Si Hammond, Christian Trott (Sandia Kokkos)

I ‘mei;hummnmm __Nl'& r

LML FRES- T30 109

The best tool for finding errors in a million line
code is not a developer

= Compilers can easily spot bugs which are opaque to users
— “=" and “==" look the same to humans, but are unrelated to a compiler

= Many standard static analysis tools are available
— Klockwork, Coverity, Clang-tidy, Fortify, cppcheck, Lint, etc.

= Standard tools help if we are writing bad code for the language

= What if I'm writing good C++ but bad Kokkos?

— What if I’'m writing good RAJA but bad Ardra?
— What if what was good Ardra yesterday isn’t good Ardra today?

Static analysis can be customized to the style and idiom of a specific

code to find errors quickly and make developers more productive

Lawrence Livermore National Laboratory NIYSH 5i

LML FRES- TSR 108

Customized static analysis easily finds
idiom-specific performance problems

* To make codes play nicely with UM, access only the innermost
portions of data structures in kernels. Valid C++. Bad RAJA

RAJA: : forall<RAJA::5€ed0 EX€ 0 o F=1{%y

my field[i] =|AllPhysics->Hydrodynamics->Temperature->Data[i];

});: -

Traversing the data hierarchy in the GPU section A simple alias
can cause large data transfers to GPU avoids the problem
auto data = AllPhysics->Hydrodynamics->Temperature->Data;
RAJAI I IOra ::seq_exec J, 11U, = n
my field[1] = data[i];
})i

This issue is easy to spot in three lines of code, but very difficult to

enforce in three million over thirty years of development

Lawrence Livermore National Laboratory Nl‘ 6

LML -PHES- TR DR

Clang query provides a flexible, maintainable
method to create customized static analysis

= Clang query is a scripting language which describes patterns in
an AST, for which Clang will then report matches

* Pro:
— Tested and updated with clang API changes

— Uses scripts instead of shared libraries.
* Less vulnerable to APl changes.
+ Easier to distribute

* Con:
— Some expressive power is lost
— Can’t “unpack” a lambda and see inside
— But you can frequently find work-arounds

I B Lowrence Livermore Nationl Laboratory NS4 -

LML FPRES- T5 109

Clang query script code to find access through
hierarchy of structures

let foralls callExpr(
callee(
functionDecl (matchesName("for.*all"))

)

match memberExpr(
hasAncestor(
lambdaExpr (
hasAncestor(foralls)

This looks complicated, but experience has shown that with a few examples

and modest training, developers can start to write their own clang query scripts

Lawrence Livermore National Laboratory ygsa v

LML PAES-T58 108

Clang query can find many performance bugs
and other anti-patterns

= RAJA Kernels

— Uses of outer structs
— Uses of indirection arrays
— Kernels with no Reducers not taking advantage of reducer-free policies

— CHAI ManagedArrays used outside of Kernels
» Uses of raw arrays inside Kernels

» Kokkos Kernels
— Uses of STL classes
— Non-const index arguments in lambdas
— Nested parallelism errors

+ Kokkos::single types in inappropriate enclosing construct
» Writes to variables in an outer scope from inside a parallel_for

Lawrence Livermore National Laboratory INVSE o

LLML PAES- 758108 .

Clang query can find many performance bugs
and other anti-patterns

= RAJA Kernels

— Uses of outer structs
— Uses of indirection arrays
— Kernels with no Reducers not taking advantage of reducer-free policies

— CHAI ManagedArrays used outside of Kernels
» Uses of raw arrays inside Kernels

= Kokkos Kernels
— Uses of STL classes
— Non-const index arguments in lambdas
— Nested parallelism errors

» Kokkos::single types in inappropriate enclosing construct
» Writes to variables in an outer scope from inside a parallel_for

Lawrence Livermore National Laboratory INVSE o

LML FRAES-TH 109

Application programmers love clang query

= Brian Ryujin, Ares: “[The] tool greatly simplified this process to the
point that we could split the code up between the team and finish the
entire code in 3 days. This would have been impossible to do without
the tool. | would estimate that it saved over 100 hours of effort and a
fair amount of sanity. | think it goes without saying that we were very
happy with the tool.”

= Adam Kunen, Ardra: “/ am really interested in using this tool, as it will
help us discover porting mistakes as we continue to transition our
code to RAJA+CHAI. | am particularly excited at how easily it
integrated into an existing CMake build system, and how powerful of a
tool it is. This tool is really high-impact and low-cost. We are not
currently using it, but over the next 6 months intend to collaborate
with David more extensively on this tool.”

* Tzanio Kolev, MFEM, CEED: “/ want to add this to my code!”

Static analysis based on clang query is on its way to production!!!

Lawrence Livermore National Laboratory NVSE 3

LML -PHES. TSA108 & i

Early experience with GPUs and Cardioid
revealed a need for JIT compilation

= Cardioid relies heavily on polynomial evaluation

= Performance is greatly improved when polynomial orders and
coefficients (model parameters) are known at compile time

= Scientists prefer to define model parameters at run time

Loop Time (us)

0 >0 100 150 200 250

JIT compilation is the only practical way to get

High performance and the preferred usage model

t Lawrence Livermore National Laboratory NUYSE o

LLMNL FPAES- 75108

OCCA implementation of Laghos set the GPU
performance bar very high!

Laghos Total Rate - CUDA Speedup: OCCA/RAJA 20
10 ——
A OCCA performance
: advantage derives
! 33 from
N %ﬁ * hand tuned
= |
g 20 kernels
3 39 * shared memory
' utilization
100 * JIT compilation
1000
0403 10000
Q3Q2 100000 # Elems
Oraer uzﬂl 1E+ﬂ5
Q1Qa@e+07

RAJA needs a JIT capability to match OCCA performance

\J
B Lovrence Livermore Nationl Laboratory N\ 13

Loops in high-order finite element codes are
excellent targets for run-time optimization

= Laghos & Blast: Loop bounds defined by input deck

for(int el =0; el<numElements;el++){
double e_xy[NUM_QUAD_ 1D*NUM_QUAD_1D];
for (int dx = 0; dx < NUM DOFS 1D; ++dx) {
const double r e = e[ijkN(dx,dy,el,NUM_DOFS_1D)];
for (int gx = 0; gx < NUM_QUAD 1D; ++gx) {
myField += L2DofToQuad[ijN(gx,dx,NUM QUAD 1D)] * r e;
/** More tensor math */
}
}
bi

= NUM_QUAD 1D and NUM_DOFS 1D are in the (4,32) range

t Lawrence Livermore National Laboratory me 14

We created a prototype JIT compiler for RAJA to
explore possible optimizations

Changed from RAJA: : forall<RAJA: :seq_exec>

Jit fnrnll cp 0,numElements,[&](int el) {

o[o)ble | QUAD_1D*NUM_QUAD_1D];
for {int dx = 0; dx < NUM DOFS_1D; ++dx) {
const double r e = E[ijknldx dy,el,NUM_DOFS 1D));
for (int gx = 0; gx < NUM QUAD 1D; ++gx) {
myField += L2DofToQuad[ijN(gx,dx,NUM QUAD 1D)] * r_e;
/** More tensor math */
}
}

parameters(myField,L2DofToQuad,
replace_ scalar(NUM _QUAD 1D),

replace_scalar(NUM_DOFS_1D)

Tells JIT compiler what optimizations to use

JIT-able functions are practically unchanged from original RAJA version

Lawrence Livermore National Laboratory Nl' 15

LML FRES- 58 109

Two compilers are required to produce a JIT

enabled binary

Exhibit Jit 2R
Compiler i inehoD
Recipes
Source Code
with Linker - Executable
“jit_forall” Calls
Normal Normal .o
(Compiler files
‘ Lawrence Livermore Nationsl Laboratory NUYSE s

JIT run-time overhead is nearly zero

,.--'f. ' “‘x
. Yes
Jit_forall Call g la USE N
Version Version
P) ““ Yes ~ Use Generic
Pending W Raja
No
Concretize Asynchronously -~ Use Generic
: ' callnormal — :
recipe Raja
compiler
Lawrence Livermore National Laboratory me 17

Exhibit compiler creates a function recipe

tring* prograom =new

...-:.;_ : |:| r'r:

b A - - - f -~ -
5td: :string(specii

Balal =% P e
LK A Tigd =

+5td: :string(replacements|(@])

Lawrence Livermore National Laboratory N iLSﬁi 18

LLML -PRES- 758109

A concretized version is generated from the
recipe

extern "C" void initialization_0(
int compiller_generated_start_index_name,
1nt compiller_generated_end_index_name,
float * h_array,
1nt debug_do_not_merge=0

)

for(int 1 = compiler_generated_start_index_name;

1<compller_generated_end_index_name;
++1

H
h_array[1] = 8 * 1;

¥

Lawrence Livermore National Laboratory N l.LS:;:‘I 19

LLNL -PRES- 758 108

Our first trials with JIT were very encouraging

jit_kernel_gpu<2>(code_location, @, array_size,[=] __device__(int 1)}
for(int k = @;: k < scalar: k‘*)l

d_array[i1] += scalar * scalar * scalar;

1
J

ﬂ, parameters(d_array), muke_replucement(sculﬂr)l;

131.322 9.888
128 39.403 9.882
2 11.504 9.860

Lawrence Livermore National Laboratory N lt_.Sﬂ 20

LLML -FRES- T30 109

JIT improves performance

= GPU Polynomial evaluation (n=120)
— No JIT: 175 seconds
— JIT: 20 seconds

= Laghos on GPU — parity with templates

— Template: 13.91 seconds
— JIT: 13.83 seconds

= MFEM on CPU: E——
(Thermal, Speedup From Jit
Kinematic Orders)
(2,3) 20%
(3,4) 35%

I W Lavrence Livermore National Laboratory NIYSE »

LML -PHES-THNI0R

JIT is the final piece of the puzzle to allow RAJA
to match OCCA performance

Laghos 2DP1 1xRay Speedup: <gpuK-share=>/0OCCA a

8 5
4.5 " 4.5
4
S 35 s
-
g 3 2.5
B 25 2
W 1.5
1.5 -
1 le+07
02(}10'3{}2 1e+06
M504 100000
Q65 10000, .0
order 7%%gq7 1000

P*F10q9 100

| ‘ Lawrence Livermore National Laboratory Ngﬂ 22

JIT improves performance

= GPU Polynomial evaluation (n=120)
— No JIT: 175 seconds
— JIT: 20 seconds

= Laghos on GPU — parity with templates

— Template: 13.91 seconds
— JIT: 13.83 seconds

= MFEM on CPU: ———
(Thermal, Speedup From lJit
Kinematic Orders)
(2,3) 20%
(3,4) 35%

LML -PHES-THA 108

JIT improves performance

= GPU Polynomial evaluation (n=120)
— No JIT: 175 seconds
— JIT: 20 seconds

= Laghos on GPU — parity with templates

— Template: 13.91 seconds
— JIT: 13.83 seconds

= MFEM on CPU: ———
(Thermal, Speedup From lJit
Kinematic Orders)
(2,3) 20%
(3,4) 35%

LML -PHES-THA 108

JIT is the final piece of the puzzle to allow RAJA
to match OCCA performance

Laghos 2DP1 1xRay Speedup: <gpuk-share>/OCCA 4

5 5
4.5 " 4.5
- |
5 35 o
Tl
$ 3 25
o 2.5 2
v 2 1.5
1.5 1
1 le+07
0261{}'3 Q3 le+06
040":’:;-504 100000
Q605 10000, oo
order 7%%gq7 1000

Qg%amog 100

Lawrence Livermore National Laboratory Nﬂ'ﬂ 22

If templates can provide the necessary
specializations, why do we need JIT?

= Template solution involves instantiation of thirty commonly
used thermal and kinematic orders

= Binary size (per object file) (approximately 40 object files in

MFEM)

— Without JIT: 209K
— With JIT: 14K

= Compile time
— Without Jit: 72 seconds
— With Jit: 11 seconds

JIT substantially lowers compile time and produces smaller binaries

t Lawrence Livermore National Laboratory Nl'Sﬂ 23

LML FPRECS-T58 109

JIT isn’t just for RAJA

» To test interoperability with the other labs, we decided to JIT
Kokkos regions and pass them to Kitsune.

* We tested two benchmarks:
— GUPS
— Stream

= Neither was predicted to see performance benefits from JIT,
and neither did. However, we introduced no overhead.

= We are looking into KokkosKernels for possible JIT optimization
candidates

Our prototype RAJA JIT compiler was easily adapted to handle Kokkos

Lawrence Livermore National Laboratory Nl‘m 24

LML PRES-T5 109

We plan to bring customized static analysis and
JIT into production with ASC codes

= Customized static analysis has a demonstrated ability to

— Find problems in code
— Improve developer productivity

= Qur JIT prototype has shown sufficiently promising results to

justify work on a production quality implementation
— MARBL lead Rob Rieben has asked for a RAJA JIT capability

* Contacts:
— David Richards (richards12@lInl.gov)
— David Poliakoff (poliakoffl@IInl.gov)

I B Lovrence Livermore National Laboratory NIYSH

LLMNL PRES-THE 108

Dol adrmee

This decument was prepared a5 an account of work sponsored by an agency of the Unted States
governirmaent. Nelther the United States government nor Lvwnence Lisermmore Metions! Secunty, LLE,
P &y of the employsst maked any WAMTanTy, ¢xpréised of implied, oF Jajurmed any legad hability
of responsbility for the acturacy, completeness, or issehdness of any iInformatsaon, apparatis,
product, of process deacloned, oF represents that ds use would mot indringe privately oaned rights

Relerence heteln L0 Gy ipecilic commeeriaal proclut, process, or jendce by trade name, Irademark,
= ranul acturer, or otherwise does nol necessarily comtitule of imphy ils endorsement,
- Lame nce Lwemore recammendation, or favorng by the Unded States government or Lawrenge Livermors Natsnal
] Security, LLC. The viesws and apinions of suthon expressed herdin do nol necessarily state or reflect
Naﬂonal Lammtow those of the Undted States government or Leserence Livermore Matbwoaal Security, LLE, and shall mol be

vied for sdvertaing of produt! endorusment purpo e

	slide02-0.48
	slide03-0.54
	slide04-0.52
	slide05-0.82
	slide06-0.46
	slide07-0.54
	slide08-0.35
	slide09-0.22
	slide10-0.46
	slide11-0.54
	slide12-0.60
	slide13-0.54
	slide14-0.59
	slide15-0.61
	slide16-0.74
	slide17-0.21
	slide18-0.47
	slide19-0.42
	slide20-0.27
	slide21-0.58
	slide22-0.58
	slide23-0.27
	slide24-0.27
	slide25-0.38
	slide26-0.80
	slide27-0.55
	slide28--0.00
	slide29--0.00

